簡易檢索 / 詳目顯示

研究生: 李賢哲
XIAN-ZHE LEE
論文名稱: 聚乙二醇單甲醚/左左旋聚乳酸兩性雙團聯共聚物在水中相圖測定:力學與動態光散射方法及Flory-Huggins均場理論的模型
The Phase Diagram Measurements of Polyether-Poly(L-lactic acid)Diblock Copolymers in Aqueous Solutions by Rheology, Dynamic Light Scattering and Flory-Huggins Mean Field Theory
指導教授: 胡孝光
Shiaw-Guang Hu
口試委員: 童世煌
SHIH-HUANG TUNG
李文福
Wen-Fu Lee
何明樺
Ming-Hua Ho
胡孝光
Shiaw-Guang Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 102
中文關鍵詞: 相變化均場理論智慧型凝膠溫敏性兩性團聯共聚物相圖聚乙二醇單甲醚-聚乳酸
外文關鍵詞: smart gel, phase diagram, mean feild theory, Amphiphilic copolymers, gel-sol phase transition, Polyether-Poly(L-lactic acid)Diblock Copolymers
相關次數: 點閱:273下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用聚乙二醇單甲醚與左旋-丙交酯以開環聚合方法合成聚乙二醇單甲醚-聚乳酸(methoxypoly(ethylene glycol)-poly(L-lactide))(mPEG-PLLA)雙團聯共聚物。將其中親水段mPEG聚合度固定為113,並合成三種PLLA疏水段(聚合度為35、60和98)的共聚物,利用凝膠滲透層析儀(GPC)對共聚物進行分子量的分析。使用翻轉試管法觀察不同疏水長度共聚物在水中的水溶性並測量臨界成膠濃度,利用流變儀量測共聚物不同濃度下之凝膠溶體相變化溫度,將相變化之實驗數據加上Flory-Huggins均場理論模型建立預測的相圖。使用螢光探針法量測臨界微胞濃度,證明在本研究共聚物濃度範圍內有微胞相的存在,並以動態光散射儀(DLS)測量共聚物在水中不同濃度、溫度下的相關長度變化,討論標準焓對相變化行為的影響。實驗結果發現當共聚物的親水段聚合度與疏水段聚合度之比值小於1.15時,在水中無法溶解而沉澱,不形成凝膠態,當疏水鏈段上升時,臨界成膠濃度愈低。以均場理論計算共聚物在水中之交互作用參數值隨疏水鏈段聚合度上升而增加,表示疏水段長度上升時共聚物與水之作用力下降。將古典的交互作用參數進一步考慮溶液混合前後的比熱差及θ溫度所造成的影響,預測之相圖都能與兩性團聯共聚物之實驗數據相符。流變法及翻轉試管法以力學方法觀測到在大尺度下共聚物高濃度時之相變化,均場理論預測到在相圖低濃度時仍有相變化的發生,但無法預測到共聚物在高溫時的沉澱相。利用螢光激發光譜量測臨界微胞濃度,發現在極低濃度下時已有微胞相形成,以動態光散射觀察濃度與溫度對相行為的影響,發現在相圖高濃度時,相關長度隨共聚物濃度上升而增加,隨溫度上升而下降。在相圖低濃度時,則隨共聚物濃度上升而下降,隨溫度上升而下降。綜合以上結果,推論共聚物在小尺度下存在著以力學方法觀測不到的相,相圖低濃度為以微胞聚集行為為主的相,相圖高濃度則為以膠體粒子聚集為主的相。


    Monomethoxy Poly(ethyl glycol)-Poly(L-lactic acid)(mPEG-PLLA) diblock copolymers with fixed mPEG length with degree of polymerization 113 and various PLLA with degree of polymerization from 35 to 98 were synthesized. The molecular weights were determined by gel permeation chromatography (GPC). The critical gelation concentration (CGC) was measured by tube-inverting method. We calculated the power-law exponents for the CGC versus the degree of polymerization. The phase transition temperatures were determined by rheological measurement. We used Flory-Huggins mean field theory and phase transition data to predict the phase diagrams. The exponent n of power relationship of degree of polymerization can be calculated according to the critical gel temperatures on the phase diagrams. The critical micelle concentration (CMC) of diblock copolymer can be measured by fluorescent probe to assess the existence of the micelle phase and we used dynamic light scattering (DLS) to analyze the phase behavior in water solutions.
    The experimental results showed that when the degree of polymerization ratio of hydrophilic chain to hydrophobic chain was less than 1.15, the diblock polymer couldn’t exist a gel state but precipitated. There was an exponential relationship, with a negative exponent, between the critical gel concentration and degree of polymerization. It meant the critical gel concentration decreased with increasing the hydrophilic length. We used mean field theory to calculate the interaction parameters between copolymers and water. The values increased with increasing hydrophobic segment length. It meant the interaction of copolymers and water decreased with increasing hydrophobic segment length. We found the experimental results were fit well with the predicted phase diagrams. When it was applied on some higher ratio of the hydrophobic segment length to the hydrophilic segment length copolymers, the predicted phase boundary fit poorly for the experimental data around the critical point.
    Rheological measurement and tube-inverting method couldn’t be used to measure the phase transition at low copolymer concentrations. We used mean field theory to predict the phase boundary even if at low concentrations, but couldn’t predict the precipitated state at high temperatures. This work found that the micelle phase formed at extremely low concentrations. We observed the effect of concentrations and temperatures on the phase behavior by DLS. The correlation length at high concentrations increased with increasing concentrations and decreased with increasing temperatures. By contrast, the correlation length at low concentrations decreased with increasing concentrations and decreased with increasing temperatures. We calculated the enthalpy of phase transition and the enthalpy decreased with increasing the degree of polymerization of hydrophobic segment. In conclusion, we suggest that the phase behavior at low concentrations was controlled by micelles aggregation and the phase behavior at high concentrations was controlled by colloidal particle clusters.

    目錄 中文摘要 I 英文摘要 IV 誌謝 VII 目錄 VIII 圖表索引 XI 一、 前言 1 二、 實驗方法 7 2.1 mPEG-PLLA雙團聯共聚物製備 7 2.2 凝膠滲透層析儀分析 8 2.3 翻轉試管法量測 9 2.4 流變法量測 9 2.5 測量水溶液中臨界微胞濃度 10 2.5.1. 配製待測臨界微胞濃度之共聚物溶液 10 2.5.2. 螢光光譜測量臨界微胞濃度 10 2.6 粒徑分析 11 2.7 Flory-Huggins均場理論建立相平衡關係式 11 2.8 Flory-Huggins均場理論之熱力學參數的物理意義 14 三、 結果與討論 16 3.1 mPEG-PLLA雙團聯共聚物之聚合反應 16 3.2 流變法與翻轉試管法測量相變化溫度與臨界成膠濃度 16 3.2.1 以翻轉試管法觀察水溶性及臨界成膠濃度 16 3.2.2 臨界成膠濃度與聚合度之冪次關係 17 3.2.3 以流變法量測儲存模數及損失模數 17 3.3 以均場理論預測兩性雙團聯共聚物之實驗相圖 18 3.3.1. mPEG-PLLA雙團聯共聚物之實驗相圖計算方程式 18 3.3.2. mPEG-PLLA雙團聯共聚物之實驗相圖計算流程 19 3.3.3. mPEG-PLLA雙團聯共聚物之實驗數據與預測相圖 20 3.3.4. 利用文獻數據與模型預測相圖 21 3.4 聚合度對臨界成膠溫度之影響 23 3.5 微胞相的螢光激發光譜 24 3.6 不同濃度及溫度下之動態光散射 26 3.6.1. 成膠濃度下之濃度對相關長度的效應 26 3.6.2. 成膠濃度下之溫度對相關長度的效應 28 3.6.3. 動態光散射之雙團聯共聚物的相行為 29 3.6.4. 低濃度下之濃度對相關長度的效應 29 3.6.5. 低濃度下之溫度對相關長度的效應 30 3.7 凝膠溶體相變化熱力學性質探討 31 四、 結論 32 五、 參考文獻 35

    1. K. Nagahama, M. Hashizume, H. Yamamoto, T. Ouchi, Y. Ohya, Hydrophobically modified biodegradable poly(ethylene glycol) copolymers that form temperature-responsive nanogels, Langmuir, 25, 9734 (2009)
    2. M. J. Song, D. S. Lee, J. H. Ahn, D. J. Kim, S. C. Kim, Thermosensitive sol-gel transition behaviors of poly(ethylene oxide)/aliphatic polyester/poly (ethylene oxide) aqueous solutions, Journal of Polymer Science Part a-Polymer Chemistry, 42, 772 (2004)
    3. S. J. Bae, J. M. Suh, Y. S. Sohn, Y. H. Bae, S. W. Kim, B. Jeong, Thermogelling poly(caprolactone-b-ethylene glycol-b-caprolactone) aqueous solutions, Macromolecules, 38, 5260 (2005)
    4. M. S. Kim, H. Hyun, K. S. Seo, Y. H. Cho, J. W. Lee, C. R. Lee, G. Khang, H. B. Lee, Preparation and characterization of MPEG-PCL diblock copolymers with thermo-responsive sol-gel-sol phase transition, Journal of Polymer Science Part a-Polymer Chemistry, 44, 5413 (2006)
    5. D. S. Lee, M. S. Shim, S. W. Kim, H. Lee, I. Park, T. Y. Chang, Novel thermoreversible gelation of biodegradable PLGA-block-PEO-block-PLGA triblock copolymers in aqueous solution, Macromolecular Rapid Communications, 22, 587 (2001)
    6. S. J. Lee, B. R. Han, S. Y. Park, D. K. Han, S. C. Kim, Sol-gel transition behavior of biodegradable three-arm and four-arm star-shaped PLGA-PEG block copolymer aqueous solution, Journal of Polymer Science Part a-Polymer Chemistry, 44, 888 (2006)
    7. J. Byeongmoon, L. D. Sung, S. Jeong-In, B. Y. Han, K. S. Wan, Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers, Journal of Polymer Science Part A: Polymer Chemistry, 37, 751 (1999)
    8. A. Chenite, C. Chaput, D. Wang, C. Combes, M. D. Buschmann, C. D. Hoemann, J. C. Leroux, B. L. Atkinson, F. Binette, A. Selmani, Novel injectable neutral solutions of chitosan form biodegradable gels in situ, Biomaterials, 21, 2155 (2000)
    9. J. Wang, D. D. N. Sun, Y. Shin-ya, K. W. Leong, Stimuli-responsive hydrogel based on poly(propylene phosphate), Macromolecules, 37, 670 (2004)
    10. Y. Takeuchi, H. Uyama, N. Tomoshige, E. Watanabe, Y. Tachibana, S. Kobayasi, Injectable thermoreversible hydrogels based on amphiphilic poly(amino acid)s, Journal of Polymer Science Part a-Polymer Chemistry, 44, 671 (2006)
    11. K. S. Yeon, K. J. Heung, K. Dukjoon, A. J. Ho, L. D. Sung, K. S. Chul, Drug-releasing kinetics of MPEG/PLLA block copolymer micelles with different PLLA block lengths, Journal of Applied Polymer Science, 82, 2599 (2001)
    12. E. S. Lee, K. Na, Y. H. Bae, Polymeric micelle for tumor pH and folate-mediated targeting, Journal of Controlled Release, 91, 103 (2003)
    13. Z. Chao, L. Liqiong, G. Shaoqin, Microwave-Assisted Synthesis of PLLA-PEG-PLLA Triblock Copolymers, Macromolecular Rapid Communications, 28, 422 (2007)
    14. Z. S. Gao, A. Eisenberg, A model of micellization for block copolymers in solutions, Macromolecules, 26, 7353 (1993)
    15. A. Lavasanifar, J. Samuel, G. S. Kwon, Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery, Advanced Drug Delivery Reviews, 54, 169 (2002)
    16. N. Kausalya Reddy, A. Foster, M. G. Styring, C. Booth, Micellization and surface properties of poly(oxyethylene) methyl n-alkyl ethers, Journal of Colloid and Interface Science, 136, 588 (1990)
    17. J. Ding, D. Attwood, C. Price, C. Booth, Use of crown ether in the anionic polymerization of propylene oxide—3. Preparation and micellization of diblock-copoly(oxypropylene/oxyethylene), European Polymer Journal, 27, 901 (1991)
    18. H. Arimura, Y. Ohya, T. Ouchi, Formation of Core−Shell Type Biodegradable Polymeric Micelles from Amphiphilic Poly(aspartic acid)-block-Polylactide Diblock Copolymer, Biomacromolecules, 6, 720 (2005)
    19. K. Mortensen, J. S. Pedersen, Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution, Macromolecules, 26, 805 (1993)
    20. G. Wanka, H. Hoffmann, W. Ulbricht, The aggregation behavior of poly-(oxyethylene)-poly-(oxypropylene)-poly-(oxyethylene)-block-copolymers in aqueous solution, Colloid and Polymer Science, 268, 101 (1990)
    21. K. Mortensen, W. Brown, B. Nordén, Inverse melting transition and evidence of three-dimensional cubatic structure in a block-copolymer micellar system, Physical Review Letters, 68, 2340 (1992)
    22. M. Malmsten, B. Lindman, Self-assembly in aqueous block copolymer solutions, Macromolecules, 25, 5440 (1992)
    23. G. Wanka, H. Hoffmann, W. Ulbricht, Phase Diagrams and Aggregation Behavior of Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Triblock Copolymers in Aqueous Solutions, Macromolecules, 27, 4145 (1994)
    24. M. J. Park, K. Char, H. D. Kim, C.-H. Lee, B.-S. Seong, Y.-S. Han, Phase behavior of a PEO-PPO-PEO triblock copolymer in aqueous solutions: Two gelation mechanisms, Macromolecular Research, 10, 325 (2002)
    25. B. Jeong, Y. H. Bae, S. W. Kim, Thermoreversible Gelation of PEG−PLGA−PEG Triblock Copolymer Aqueous Solutions, Macromolecules, 32, 7064 (1999)
    26. F. Li, S. Li, A. E. Ghzaoui, H. Nouailhas, R. Zhuo, Synthesis and gelation properties of PEG-PLA-PEG triblock copolymers obtained by coupling monohydroxylated PEG-PLA with adipoyl chloride, Langmuir, 23, 2778 (2007)
    27. S. Li, M. Vert, Synthesis, Characterization, and Stereocomplex-Induced Gelation of Block Copolymers Prepared by Ring-Opening Polymerization ofl(d)-Lactide in the Presence of Poly(ethylene glycol), Macromolecules, 36, 8008 (2003)
    28. A. R. Shultz, P. J. Flory, Phase Equilibria in Polymer—Solvent Systems1,2, Journal of the American Chemical Society, 74, 4760 (1952)
    29. M. L. Huggins, Solutions of Long Chain Compounds, The Journal of Chemical Physics, 9, 440 (1941)
    30. C. Qian, S. J. Mumby, B. E. Eichinger, Phase diagrams of binary polymer solutions and blends, Macromolecules, 24, 1655 (1991)
    31. M. Taylor, P. Tomlins, T. Sahota, Thermoresponsive Gels, Gels, 3, 4 (2017)
    32. R. H. Boyd, P. J. Phillips, The Science of Polymer Molecules. Cambridge University Press. pp.345 (1993)
    33. B. Jeong, Y. H. Bae, S. W. Kim, Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions, Macromolecules, 32, 7064 (1999)
    34. R. H. Boyd, P. J. Phillips, The Science of Polymer Molecules. Cambridge University Press. 213 (1993)
    35. B. Jeong, M. R. Kibbey, J. C. Birnbaum, Y.-Y. Won, A. Gutowska, Thermogelling Biodegradable Polymers with Hydrophilic Backbones:  PEG-g-PLGA, Macromolecules, 33, 8317 (2000)

    QR CODE