簡易檢索 / 詳目顯示

研究生: 林耘緯
Lin - Yun Wei
論文名稱: 快速熱壓轉印製程模擬及實驗研究
Simulation and experimental study of fast hot embossing process
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 鍾俊輝
Chun-hui Chung
郭俞麟
Yu-Lin Kuo
張天立
Tien-Li Chang
劉家銘
Chia-Ming Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 103
中文關鍵詞: 微奈米轉印高分子流變學有限元素法
外文關鍵詞: micro/nano imprint, polymer rheology, finite element method
相關次數: 點閱:213下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微/奈米轉印技術是目前被廣泛注目的新興技術。因其具奈米尺度的解析度、成形三維結構的能力及高生產效率等優點,被認可能成為新世代大量生產微奈米結構及其應用的新製造技術。但由於其熱壓轉印製程流程包括加熱、加壓與冷卻,造成製程時間仍過長,還需要改善製程以縮短製程時間,才能達到高效能量產的需求。
    本研究延續本實驗室之前開發之快速熱壓轉印製程,利用理論模擬探討在預熱、加壓、保壓及降溫等製程階段,實驗參數的影響及模穴填充過程,以進一步縮短製程之時間。本研究使用商用Computational fluid dynamics (CFD),以有限元素法(Finite element method, FEM)建立一2D對稱之模型,模擬其填充行為,並以牛頓流體簡化高分子材料於微/奈米轉印製程的流動行為,以分段等溫的方式描述非等溫製程條件;其中模擬預測與實驗量測得到相符的趨勢。
    根據模擬的結果,並以實驗加以驗証,當製程以150℃為轉印溫度、105℃為脫模溫度,其結果可達94%的填充率並可縮短一半的製程時間(約為120秒)。本研究結果將有助於未來微/奈米轉印技術的應用。


    Micro/nano imprint technology is a commonly expected technique nowadays. It is very promising in the future because the technology has several advantages, such as having nano-scale resolution, forming three dimension structures and high throughput. This technology may be used to create the micro/nano structure for the next generation.However, a few steps of the whole process take a long time, including heating, pressing, and cooling. Only if the time for the process is reduced can the need for efficient mass-production be met.
    This is a study followed by previous research on “continuous sub-station synchronization process”, which is supplemented by a specially designed “holding pressure device”. In addition, this research also uses a theoretical simulation and improves the process and the parameters of the simulation results, so that it can shorten the time for the process. This study, based on the finite element method, uses commercial computational fluid dynamics software to create a 2D axis-symmetry model in order to simulate the filling behavior. Moreover, the Newtonian fluid is used to simplify the flowing pattern of the polymer materials in micro/nano imprint process, and the method of segmented isothermal is used to describe the non-isothermal process, so that the results of the present simulation can match with those of previous research.
    According to the results of the simulation along with another experiment added to it, when 150 Celsius degree is used as the transferring temperature and 105 Celsius degree is used as de-molding temperature, that filling rate can reach up to 94% and reduce half of the time spent in process (around 120 seconds), which can be helpful with the micro/nano imprint application in the future.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 符號說明 X 第一章 緒論 1 1.1前言 1 1.2連續性分站同步製程與保壓模具 2 1.3文獻回顧 3 1.3.1熱壓製程 3 1.3.2本質方程式的發展 5 1.3.3微/奈米壓印數值模擬 6 1.4 研究動機與目的 10 1.5論文架構 11 第二章 高分子流變特性 12 2.1玻璃轉移溫度與熔點 13 2.2自由體積理論 14 2.3高分子材料的機械性質 16 2.4潛變(creep)與應力鬆弛(relaxation) 17 2.5溫度移動因子 20 2.6高分子的熔液的流動性質 21 2.7重要的無因次群 23 第三章 分段式熱壓模擬 24 3.1研究設備 24 3.2數值模擬流程 27 3.3模擬步驟 27 3.4基本假設 28 3.5統御方程式 29 3.5.1連續方程式(equation of continuity) 29 3.5.2動量方程式(equation of motion) 30 3.5.3牛頓流體(Navier-Stokes equation) 30 3.6模擬模型設置 32 3.6.1邊界條件 33 3.6.2網格條件 33 3.6.3模具動量設定 35 3.7數值模擬之材料設定 36 3.7.1本質方程式 36 3.7.2黏度量測 37 3.7.3實驗製程的溫度量測 38 3.7.4高分子黏度的假設 39 3.8填充率的計算方式 39 3.9連續性分站同步製程之修正參數 40 第四章 連續性分站同步製程規劃 41 4.1研究設備 41 4.2連續性分站同步製程之流程 42 4.3連續性分站同步製程之參數設計 44 4.4量測儀器 45 第五章 結果與討論 46 5.1牛頓流體簡化的合理性 46 5.2製程溫度與高分子材料黏度對填充率的影響 46 5.3高分子黏度的修正 48 5.4代入修正參數後的模擬結果 49 5.5實驗結果 49 第六章 結論及未來展望 51 6.1結論 51 6.2未來展望 52 參考文獻 53 圖、表附錄 55 附錄A 示差掃描熱分析儀(DSC) 95 附錄B 分子量量測 96 附錄C 黏度內差表 97 附錄D 原實驗參數列表 101 附錄E 雷射共焦拍攝圖 102

    [1]張志聖,「快速微奈米熱壓轉印製程研究」,國立台灣科技大學」, 2010。
    [2] S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Nanoimprint lithography”, Journal of Vacuum Science and Technology B, Vol. 14, pp. 4129–4133, 1997.
    [3] M. Heckele, W. Bacher, K. D. Muller, “Hot embossing - The molding technique for plastic micro structures” , Microsystem Technologies, Vol.4, pp. 122-124, 1998.
    [4]M. Mooney, “A Theory of large elastic deformation” , Journal of Applied Physics ,Vol. 11, pp. 582, 1940.
    [5]R.S. Philos, “Large elastic deformation of isotropic materials” , Further Results in the Theory of Torsion, Vol. 242, pp. 173, 1949.
    [6]L. R. G Tredoar, “ The physics of rubber elasticity” , Oxford University Press, 1958.
    [7]R. W. Ogden, “Large deformation isotropic elasticity on the correlation of theory and experiment for compressible rubberlike solids” , Proceedings of the Royal Society of London, Vol. 328, pp. 567-583, 1972.
    [8]J. M. Maerker, and W. R. Schowalter, “Biaxial extension of an elastic liquid” , Rheological Acta, Vol. 13, pp.627-638, 1974.
    [9]林明俊,「高分子微流道熱壓成型模擬與實驗驗證之研究」,中原大學,2009。
    [10]劉士榮,高分子加工,滄海書局,2010。
    [11]Y. Hirai, M. Fujiwara, T. Okuno, and Y. Tanaka, “Study of resist deformation in nanoimprint lithography” , Journal of Vacuum Science and Technology B, Vol. 19, pp.2811-2815, 2001.
    [12]Y. Hirai, S. Yoshida, and N. Takagi, “Defect analysis on thermal nanoimprint lithography” , Journal of Vacuum Science Technology B, Vol. 21, pp. 2765-2770, 2003.
    [13]Y. Hirai, T. Yoshikawa, S. Yoshida, “Simulation and experimental study of polymer deformation in nanoimprint lithography” , Journal of Vacuum Science and Technology B, Vol. 22, pp. 3288-3293, 2004.
    [14]Y. Hirai, Y. Onishi, T. Tanabe, M. Shibata, T. Iwasaki and Y. Iriye, “Pressure and resist thickness dependency of resist time evolutions profiles in nanoimprint lithography” , Microelectronic Engineering, Vol. 85, pp. 842-845, 2008.
    [15]Y. J. Juang, L. J. Lee, and K. W. Koelling, “Hot embossing in micro fabrication, Part II: Rheological characterization and process analysis” , Polymer Engineering Science, Vol. 42, pp. 551-566, 2004.
    [16]N. W. Kim, K. W. Kim, H. C. Sin “Finite element analysis of low temperature thermal nanoimprint lithography using a viscoelastic model” , Microelectronic Engineering, Vol. 85, pp. 1858-1865, 2008.
    [17]H. Takagi, M. Takahashi, R. Maeda, Y. Onishi, Y. Iriye, T. Iwasaki, Y. Hirai.“Analysis of time dependent polymer deformation based on a viscoelastic model in thermal imprint process” , Microelectronic Engineering, Vol. 85, pp. 902-906, 2008.
    [18]鄭志偉,「MSC.Marc於熱壓性奈米壓印模擬之研究」,國家高速網路與計算中心,2005。
    [19]林垂勳,「數值模擬等溫模口膨脹與等溫熔融紡絲」,成功大學,2001。
    [20]H. C. Scheer, N. Bogdanski, M. Wissen, S. Mollenbeck “Imprintability of polymers for thermal nanoimprint” , Microelectronic Engineering, Vol. 85, pp. 890-896, 2008.

    QR CODE