簡易檢索 / 詳目顯示

研究生: 王琬瑄
Wan-Hsuan Wang
論文名稱: 以奈米壓印微影技術研製氮化鎵分佈回饋式雷射
Process development on fabricating GaN-based distributed feedback lasers using nanoimprint lithography
指導教授: 葉秉慧
Pinghui Sophia Yeh
口試委員: 徐世祥
Shih-Hsiang Hsu
何清華
Ching-Hwa Ho
柯正浩
Kevin Cheng-Hao Ko
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 98
中文關鍵詞: 分佈回饋式雷射奈米壓印微影
外文關鍵詞: distributed feedback lasers, DFB laser, nanoimprint lithography
相關次數: 點閱:194下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鎵材料生長在藍寶石基板難以劈裂,本論文研究以非劈裂式方法製作邊射型雷射共振腔反射面,用黃光微影與乾式蝕刻定義出共振腔的區域,並以奈米壓印微影技術取代電子束微影技術製作氮化鎵分佈回饋式雷射的光柵結構,由於奈米壓印微影技術僅需先使用電子束微影技術製作出模具,即可以複製壓印的方式多次且快速地製作出奈米等級的結構,降低所需的時間與成本。
    本實驗的奈米壓印尚未成功製作出氮化鎵分佈回饋式雷射的光柵結構,由掃描式電子顯微鏡結果來看,約有二種週期性的排列,研判大週期性的排列是由空氣產生的,由於本實驗使用的奈米壓印機台操作環境為非高真空環境,介面空氣在壓印過程難以排出,導致出現大週期性的非光柵壓印痕跡的排列,但在大週期之間,有成功壓印出光柵週期,但對比於空氣造成的大週期壓印痕跡過於淺,以至於後續蝕刻無法有效達到所需的光柵週期。
    雖然本實驗沒有成功製作出氮化鎵分佈回饋式雷射的光柵結構,但透過I-V&L-I量測系統,並配合CCD作影像觀察,元件的電性量測結果皆在合理的範圍內,寬度愈小的元件相同電流下出光功率愈大。


    GaN-based material grown on sapphire substrate is hard to cleave a laser facet. This study used non-cleaving approach to produce reflectors for edge-emitting laser. Photolithography and dry etching were used to define the area of a resonator. And nanoimprint lithography (NIL) instead of traditional electron beam lithography was utilized to produce a grating structure on top of a gallium nitride epitaxial wafer for making a distributed feedback laser. NIL manufacturing only require a previously made mold by using electron beam lithography and use the mold to imprint repeatedly and quickly to produce nano-level structure, reducing time and cost.

    The nanoimprint experiment did not successfully produce a grating structure for gallium nitride based distributed feedback laser. From the results of scanning electron microscope imaging, we observed two kinds of periodic structures of which the one with an unwanted period was likely generated by the interface air between the mold and imprinted material. Because the nanoimprint machine was not operated in a high vacuum environment, it was difficult to exile the interface air during imprinting. In between the unwanted periodic structure, there appeared a grating with a correct period but of shallow depth, so that subsequent etching can not be performed.

    Although this study has not yet successfully fabricated a grating structure for gallium nitride based distributed feedback laser, the devices’ electro-luminance characteristics such as I-V & L-I curves and CCD images were reasonably good. Moreover, diodes with smaller width exhibited larger optical power under the same injection current as expected.

    摘要 I Abstract II 致謝 III 目錄 IV 圖片目錄 VII 表格目錄 X 第一章 導論 1 1.1 研究動機 1 1.2 氮化鎵材料之簡介 2 1.3 氮化鎵分佈回饋式雷射文獻回顧 6 第二章 分佈回饋式雷射原理[18] 8 2.1 半導體雷射基本操作原理 8 2.2 分佈回饋式雷射 10 2.2.1 微擾理論 12 2.2.2 耦合模態理論 14 2.2.3 分佈回饋式雷射之特性 20 第三章 元件製程與儀器介紹 28 3.1 氮化鎵邊射型雷射元件製程 28 3.2 製程儀器介紹 36 3.2.1 感應耦合電漿式離子蝕刻機(ICP-RIE) 36 3.2.2 電子束蒸鍍機(E-beam evaporator) 39 3.2.3 射頻濺鍍機(RF sputter) 40 3.3 量測儀器介紹 41 3.3.1 光激發螢光(Photoluminescence,PL)量測系統 41 3.3.2 掃描式電子顯微鏡(scanning electron microscope, SEM) 42 3.3.3 L-I與I-V量測系統 45 3.4 元件I-V與L-I量測結果 48 3.4.1 P型電極完成後量測 48 3.4.2 銀反射鏡完成後量測 51 第四章 奈米壓印微影技術製作光柵 54 4.1 奈米壓印微影技術 54 4.1.1 奈米壓印微影技術概述 54 4.1.2 奈米壓印微影技術的種類 55 4.2 光柵製程與儀器介紹 61 4.2.1 模具製作與脫模劑塗佈 61 4.2.2 奈米壓印製程 66 4.2.3 製程儀器介紹 69 4.3 實驗結果與討論 69 4.3.1 室溫脫模與100 nm mr-I-7010R 69 4.3.2 Tg點脫模與150 nm光阻 72 第五章 結論與未來展望 78 5.1 結論 78 5.2 未來展望 79 參考文獻 81

    [1] G. Bhuiyan, K. Sugita, K. Kasashima, A. Hashimoto, A. Yamamoto, and V. Y. Davydov, " Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown using different techniques and evidence of the actual band gap energy," Applied Physics Letters, vol. 84, pp. 452, 2004.
    [2] E. Fred. Schubert, "Light emitting diode," Cambridge University Press, New York, 2006.
    [3] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, "P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)," Japanese Journal of Applied Physics, vol. 28, pp. L2112-L2114, 1989.
    [4] I. Akasaki, H.Amano, K. Koide, and K. Manabe, "GaN based UV/blue light-emitting devices," Inst. Phys. Conf. Ser., vol.129, pp.851-856, 1992.
    [5] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, "Thermal Annealing Effects on P-Type Mg-Doped GaN Films," Japanese Journal of Applied Physics, vol. 31, pp. L139-L142, 1992.
    [6] S. Nakamura, M. Senoh, and T. Mukai, "High‐power InGaN/GaN double‐heterostructure violet light emitting diodes," Japanese Journal of Applied Physics, vol. 62, pp.2390-2392, 1993.
    [7] I. Akasaki, H. Amano, S. Sota, H. Sakai, T. Tanaka and M. Koike, "Stimulated Emission by Current Injection from an AlGaN/GaN/GaInN Quantum Well Device," Japanese Journal of Applied Physics, 34 L1517, 1995.
    [8] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, "InGaN-Based Multi-Quantum-Well-Structure Laser Diodes," Japanese Journal of Applied Physics, 35 L74, 1996.

    [9] S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, "Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime," Appl. Phys. Lett, 69, 4056, 1996.
    [10] S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T.Kozaki, H. Umemoto, M. Sano, K. Chocho, "InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate," Appl. Phys. Lett, 72, 211, 1998.
    [11] R. Hofmann, V. Wagner, H.-P. Gauggel, F. Adler, P. Ernst, H. Bolay, A. Sohmer, F. Scholz, and H. C. Schweizer, "Realization and Characterization of Optically Pumped GaInN–GaN DFB Lasers," IEEE Journal of Selected Topics in Quantum Electponics, vol.3, No.2, April 1997.
    [12] R. Hofmann , V. Wagner, M. Neuner, J. Off, F. Scholz, H. Schweizer, "Optically pumped GaInN:GaN-DFB lasers: overgrown lasers and vertical modes," Materials Science and Engineering, B59, 386–389, 1999.
    [13] D. Hofstetter, R.L. Thornton, L.T. Romano, D.P. Bour, M. Kneissl, R.M. Donaldson and C. Dunnrowicz, "Characterization of InGaN/GaN-based multi-quantum well distributed feedback lasers," Materials Research Society, Volume 537, 1999.
    [14] R. Werner, M. Reinhardt, M. Emmerling, A. Forchel, V. Härle, A. Bazhenov, "High-resolution patterning and characterization of optically pumped first-order GaN DFB lasers," Physica E: Low-dimensional Systems and Nanostructures, Volume 7, Issues 3–4, Pages 915–918, May 2000.
    [15] S. Masui, K. Tsukayama, T. Yanamoto, T. Kozaki, S.-I. Nagahama and T. Mukai, "First-Order AlInGaN 405 nm Distributed Feedback Laser Diodes by Current Injection," Japanese Journal of Applied Physics, 45 L749, 2006.

    [16] S. Masui, K. Tsukayama, T. Yanamoto, T. Kozaki, S.-I. Nagahama and T. Mukai, "CW operation of the first-order AlInGaN 405 nm distributed feedback laser diodes," Japanese Journal of Applied Physics, 45 L1223, 2006.
    [17] S. Masui, K. Tsukayama, T. Yanamoto, T. Kozaki, S.-I. Nagahama and T. Mukai, "Characterization of AlInGaN-based 405nm distributed feedback laser diodes," SPIE 6909, Novel In-Plane Semiconductor Lasers VII, 69090G, January 29, 2008.
    [18] 盧廷昌、王興宗,半導體雷射技術,五南圖書,台北,2010。
    [19] 葉秉慧、余孟純、林家煥、黃景勤,“一種以矽擴散型電流阻擋層製作氮化鎵垂直共振腔面射型發光元件的方法”,中華民國與美國發明專利申請中。
    [20] A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, and S. N. Mohammad, "Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN," Journal of Applied Physics, vol. 93, pp. 1087-1094, 2003.
    [21] Z. Z. Chen, Z. X. Qin, C. Y. Hu, X. D. Hu, T. J. Yu, Y. Z. Tong, et al., "Ohmic contact formation of Ti/Al/Ni/Au to n-GaN by two-step annealing method," Materials Science and Engineering: B, vol. 111, pp. 36-39, 2004.
    [22] 甯榮椿,「使用感應耦合店將反應式離子蝕刻系統蝕刻氮化矽與氮化鈦:選擇比研究SC1溶液對氮化鈦濕蝕刻速率研究」,國立清華大學材料科學與工程學系碩士學位論文,新竹,2010。
    [23] T. Mattila and R. M. Nieminen, "Point-defect complexes and broadband luminescence in GaN and AlN," Physical Review B, vol. 55, pp. 9571-9576, 1997.
    [24] 林智仁, 場發式掃描式電子顯微鏡簡介, 工業材料雜誌, 181 期

    [25] S. Y. Chou, P. R. Krauss1 and P. J. Renstrom1, "Imprint of sub‐25 nm vias and trenches in polymers, " Appl. Phys. Lett, 67, 3114, 1995.
    [26] S. Y. Chou, P. R. Krauss1 and P. J. Renstrom1, "Nanoimprint lithography, " J. Vac. Sci. Technol. B 14, 4129, 1996.
    [27] S. Y. Chou, P. R. Krauss1 and P. J. Renstrom1, "Imprint Lithography with 25-Nanometer Resolution," Science, New Series, Volume272, Issue 5258, 85-87, April 5 1996.
    [28] S. Y. Chou, P. R. Krauss1 and P. J. Renstrom1, "Sub-10 nm imprint lithography and applications," J. Vac. Sci. Technol. B 15, 2897, 1997.
    [29] C. Perret, C. Gourgon, F. Lazzarino, J. Tallal, S. Landis, R. Pelzer, "Characterization of 8-in. wafers printed by nanoimprint lithography," Microelectronic Engineering, 73–74, 172–177, 2004.
    [30] Li, L. Chen, W. Zhang, S. Y. Chou, "Pattern transfer fidelity of nanoimprint lithography on six-inch wafers," Nanotechnology, 14, 33, 2003.
    [31] "10 Emerging Technologies That Will Change the World," MIT Technology Review, February 2003.
    [32] J. Haisma, M. Verheijen, K. V. D. Heuvel, J. V. D. Berg, "Mold-assisted nanolithography: A process for reliable pattern replication," Journal of Vacuum Science and Technology B, 14, 412-4128, 1996.
    [33] M. Colburn, S. C. Johnson, M. D. Stewart, S. Damle, T. C. Bailey, B. Choi, M. Wedlake, T. B. Michaelson, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, "Step-and-flash imprint lithography: A new approach to high resolution patterning," Proc. Of SPIE, 379-389, 3676, 1999.
    [34] S. Y. Chou, C. Keimel, J. Gu, "Ultrafast and direct imprint of nano-structures in silicon," Nature, 835-837, 417, 2002.
    [35] A. Kumar, G. M. Whitesides, "Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘ink’ followed by chemical etching," Applied Physics Letters, 2002-2004, 63, 1996.
    [36] 余孟純,「氮化鎵垂直共振腔面射型光源之製造與特性量測」,國立台灣科技大學電子工程所碩士學位論文,台北,2014。

    QR CODE