簡易檢索 / 詳目顯示

研究生: 王健同
Jian-Tong Wang
論文名稱: 以奈米轉印技術製作微奈米複合結構金屬玻璃模具
Fabrication of Bulk Metallic Glass Mold with Hybrid Micro/Nano Structures by Nanoimprint
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 郭俊良
Chun-Liang Kuo
林建宏
Chien-Hung Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 110
中文關鍵詞: 金屬玻璃奈米轉印微奈米複合結構
外文關鍵詞: bulk metallic glasses, nanoimprint, hybrid micro/nano structures
相關次數: 點閱:191下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬玻璃材料具有高強度、低表面能及優良的玻璃模造特性,因此被認為可用來複製各種微奈米應用所需的成形模具。本實驗目標以微奈米轉印技術配合金屬玻璃材料之應用,製作具毫米及微米、奈米複合結構的金屬玻璃模具。所製作之金屬玻璃模具,將可用來一次轉印成形具有微米及奈米複合結構的高分子元件,如具抗反射奈米結構的微米光柵或微透鏡陣列。
    在此研究中,Mg58Cu31Gd11金屬玻璃被應用於熱壓複合結構轉印製程,透過微電鑄技術製作的微、奈微結構作為模仁,使用熱壓轉印技術轉印至金屬玻璃上,並配合CNC立式中心機所加工之定位模座、下模具及上支撐架,二次轉印出金屬玻璃複合結構。在二次轉印金屬玻璃的過程中,發現一次轉印的微結構深度會受到影響,透過模擬預測與實驗量測得到相符的趨勢。這項研究中利用金屬玻璃可重複加工性、擁有良好複製性與精細的結構成形特性,成功利用較低成本的方式製作出複合結構金屬玻璃模具,未來將可作為微/奈米複合結構熱壓轉印上的應用。


    Bulk metallic glasses (BMGs) have exhibited high strength, low surface energy and superior glass-forming ability. Therefore, BMGs have been considered to replicate molds for micro/nano forming applications. The aim of this study is to apply micro/nano imprint technology and BMGs to fabricate hybrid micro and nano structure BMG molds. The mold can be used to form polymer devices with hybrid micro and nano structures, for examples micro grating and lens arrays with antireflective nanostructures on their surfaces, in single imprint process.
    In this research, Mg58Cu31Gd11 metallic glass was applied to thermal imprint process to fabricate hybrid structures. The forming characters and operating parameters were studied by using electroformed Ni molds to fabricate micro or nano structures on Mg-base BMG substrates. Then, a mm scale lens array mold fabricated by CNC machines was used to imprint the substrates twice to generate the hybrid structures. For fixing the mold and substrate to align the hybrid structures and prevent the sliding between the mold and substrate during the imprint process, a special holder, including the stamp align kit, lower mold and upper supporting frame, was designed and fabricated by CNC machines. It was found that the diameter and depth of the micro/nano structures fabricated in the first imprint could be changed after the second imprint. A theoretical simulation was performed and showed the same trend as the experimental results.
    The study proves bulk metallic glasses can be imprinted repeatedly to achieve work pieces with hybrid micro/nano structures. Using this process, bulk metallic glass molds with hybrid structures could be fabricated for thermal imprint process and used to manufacture special designed products with multi scale features in the future.

    摘要i Abstractii 目錄v 圖目錄x 表目錄xvi 第一章 、緒論1 1-1 前言1 1-2 研究動機與目的2 1-3 論文架構3 第二章 、文獻回顧4 2-1微奈米轉印技術4 2-2玻璃微熱壓成形技術5 2-3 塊狀金屬玻璃簡介8 2-4 金屬玻璃特性11 2-4-1 機械性質11 2-4-2 耐腐蝕性12 2-4-3 軟磁性13 2-5 玻璃形成能力(Glass Forming Ability, GFA)14 2-5-1 簡化玻璃轉換溫度(Trg=Tg/Tl)14 2-5-2 過冷液相溫度區(ΔTx=Tx-Tg)14 2-5-3 共晶點15 第三章 、實驗設備16 3-1真空微/奈米轉印設備16 3-2 微/奈米轉印機台19 3-3掃描式電子顯微鏡(SEM)20 3-4雷射共軛焦顯微鏡(Confocal)20 3-5 MV3A CNC立式切削中心機21 3-6 CNC線切割放電加工機22 第四章 、熱壓成形實驗規劃24 4-1 電鑄鎳質毫/微米微透鏡模具製作26 4-1-1 電鑄鎳金屬微米透鏡陣列模具製作26 4-1-2 電鑄鎳金屬SI奈米透鏡陣列模具製作31 4-1-3 電鑄鎳金屬模具製作結果與討論32 4-2 定位模座、模具設計35 4-2-1定位模座36 4-2-2 定位模具37 4-2-3 定位流程38 4-3 毫/微米複合結構熱壓轉印鋁片測試39 4-3-1 毫/微米鋁片複合結構製程39 4-3-2 一次壓印微米結構於鋁片材料41 4-3-3 二次壓印複合結構於鋁片材料製作42 4-3-4 轉寫率評估方式43 4-3-5 二次壓印複合結構於鋁片材料模擬43 4-4 毫/微米複合結構熱壓轉印金屬玻璃45 4-4-1 轉印材料45 4-4-2 熱壓轉印金屬玻璃複合結構實驗流程48 4-4-3 一次壓印微米結構於金屬玻璃52 4-4-4 二次壓印微米結構於金屬玻璃54 4-5 毫/奈米複合結構熱壓轉印金屬玻璃55 4-5-1 一次壓印奈米結構於金屬玻璃55 4-5-2 二次壓印奈米結構於金屬玻璃56 4-6熱壓轉印鋯基金屬玻璃56 第五章 、熱壓實驗結果分析與討論58 5-1毫/微米複合結構熱壓轉印鋁片分析58 5-1-1一次壓印鋁片微米結構結果分析58 5-1-2二次壓印鋁片微米結構轉寫率結果分析63 5-1-3二次壓印鋁片微米結構形貌變形結果分析67 5-1-4二次壓印複合結構於鋁片材料模擬結果69 5-2毫/微米複合結構熱壓轉印金屬玻璃分析70 5-2-1一次壓印金屬玻璃微米結構結果分析70 5-2-2二次壓印金屬玻璃微毫米結構結果分析74 5-2-3二次壓印金屬玻璃微米結構結果分析76 5-2-4二次壓印金屬玻璃微米結構形貌變形結果分析78 5-2-5二次壓印金屬玻璃微米結構模擬結果分析80 5-3毫/奈米複合結構熱壓轉印金屬玻璃分析81 5-3-1一次壓印金屬玻璃奈米結構結果分析81 5-3-2二次壓印金屬玻璃奈米結構結果分析83 5-4熱壓轉印鋯基金屬玻璃結果分析85 第六章 、結論與未來展望87 6-1 金屬玻璃製作複合結構製程結論87 6-2 未來展望88 參考文獻89

    [1].S. Chou, P. Krauss, P. Renstrom: “Nanoimprint lithography”, J. Vac. Sci. Technol. B, Vol.14, pp.4129 –4133, 1996
    [2].A. Shigeru, Y Tsukasa, “Planar microlens arrays using stumping replication method”, Proceedings of SPIE, Vol.3010, pp.11-17, 1997.
    [3].M. Takahashi, K. Sugimito, R. Maeda “Nanoimprint of glass materials with glassy carbon molds fabricated by focused-ion-beam etching” Japanese. Journal of Applied Physics, Vol.44, 2005.
    [4].T. Mori, K. Hasegawa, T. Hatano, H. Kasa, K. Kintaka, J. Nishii “Glass imprinting process for fabrication of sub-wavelength periodic structures“ Japanese Journal of Applied Physics, Vol.47, pp. 4746–4750, 2008.
    [5].Qiuping Chen, Qiuling Chen, Daniel Milanese, Monica Ferraris “Micro-structures fabrication on glasses for micro-fluidics by imprinting technique Microsyst“. Vol.15, pp. 1067–1071, 2009.
    [6].W. Klement, R.H. Wilens, P. Duwez, “Non-crystalline in Solidified Gold-Silicon Alloys“, Vol.187, pp.869-870, 1960.
    [7].H.S. Chen, J.T. Krause, E. Coleman, “Elastic constants, hardness and their implications to flow properties of metallic glasses”, Journal of Non-Crystalline Solids, Vol.18, pp.157-171, 1975.
    [8].A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”,Acta mater, Vol.48, pp.279-306, 2000.
    [9].A. Inoue, Mater. Trans. JIM, pp.36-81, 1995.
    [10].L. Xia, W.H. Li, S.S. Fang, B.C. Wei, Y.D. DongJ. Appl. Phys., pp. 99, 2006
    [11].J. P. Chu, C. L. Chiang, H. Wijaya, R. T. Huang, C. W. Wu, B. Zhang, W. H. Wang and T. G. Nieh,“Compressive deformation of a bulk Ce-based metallic glass,” Scripta Materialia, Vol.55, pp.227-230,2006.
    [12].J. Schroers, T. Nguyena, S. O’Keeffe and A. Desai, “Thermoplastic forming of bulk metallicglass—Applications for MEMS and microstructure fabrication”, Materials Science and Engineering:A, Vol.449-451, pp.898-902, 2007.
    [13].G. Kumar, H.X. Tang, J. Schroers, “Nanomoulding with amorphous metals”, Nature, Vol.457, pp869-872, 2009.
    [14].J. Schroers, N. Paton, “Amorphous metal alloys form like plastics”, Adv. Mater. Process., Vol.164, pp61–63, 2006.
    [15].J. Schroers, “The superplastic forming of bulk metallic glasses”, J. Miner. Met. Mater., Vol.57, pp35–39 ,2005.
    [16].G. Kumar, A. Desai, J. Schroers, “Bulk metallic glass: the smaller the better”, Adv. Mater., Vol.23, pp461–476, 2011.
    [17].G. Kumar, J. Schroers, “Write and erase mechanisms for bulk metallic glass”, Appl. Phys. Lett., Vol.92, pp.031901-031906, 2008.
    [18].A. Inoue, A. TakeuchiActa Mater., Vol.59, pp. 2243, 2011.
    [19].A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta mater, Vol.48, pp.279-306, 2000.
    [20].A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, “Mg-Cu-Y Bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method”, Mater. Trans. JIM, Vol.33, pp.937-945, 1992.
    [21].A. Inoue, X.M. Wang, W. Zhang, “Developments and applications of metallic glasses”, Rev. Adv.Mater. Sci. , Vol.18, pp. 1-9, 2008.
    [22].鄭振東, 非晶質金屬漫談. 建宏出版社. 台北1998.
    [23].Y. Yoshizawa, S. Oguma, K. Yamauchi, “Influence of Cu and Nb on relaxationand crystallization of amorphous FeSiB(CuNb) wires, “ Journal of Applied Physics, Vol.64, pp.6044-6046, 1988.
    [24].. Yoshizawa, K. Yamauchi, T. Yamane, “New Febased soft magnetic alloys composed of ultrafine grain structure, “ Journal of Applied Physics, Vol.64, pp.6047-6049, 1988.
    [25].M.E. McHenry, M.A. Willard, D.E. Laughlin, “Amorphous and nanocrystalline materials for applications as soft magnets, “ Prog. in Mater. Sci, Vol.44, p.291, 1999.
    [26].D.Turnbull, “Under what conditions can a glass be formed, “Contemp. Phys., Vol.10, pp.473-488, 1969.
    [27].Z.P.Lu, Y.Li, S.C.Ng, “Reduced glass transition temperature and glass forming alloys, “ J. Non-Cryst. Solids, Vol.270, pp.103-114, 2000.
    [28].A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta mater, Vol.48, pp.279-306, 2000.
    [29].T. Zhang, Masumoto T. J. Non-Cryst, Vol.473, pp.156-158, 1993.
    [30].Tanner LE, Ray R. Acta Metall, Vol.27, pp.1727, 1979.
    [31].A. Peker, W.L Johnson, “A highly processale metallic glass:Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Appl. Phys. Lett, Vol.63, pp.2342-2345, 1993.

    無法下載圖示 全文公開日期 2020/08/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE