簡易檢索 / 詳目顯示

研究生: 鄭瑞杰
Ray - Jay Jeng
論文名稱: 鋯基金屬玻璃與非晶氧化鈧鈥之奈米多層薄膜之機械性質研究
A Mechanical Property Study on Zr-based Metallic Glass/Amorphous HoScOx Multilayered Thin Film
指導教授: 朱瑾
Jinn P. Chu
口試委員: 郭俞麟
Yu-Lin Kuo
鄭憲清
Shian-Ching Jang
黃何雄
Her-Hsiung Huang
張世幸
Shih-Hsin Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 98
中文關鍵詞: 非晶多層膜
外文關鍵詞: Amorphous, Multilayer
相關次數: 點閱:177下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於奈米科技與奈米材料的快速發展,多層薄膜毫無疑問的是重要的研究項目之一。本研究目的主要是製備良好機械性質的多層薄膜,非結晶態的氧化物陶瓷與金屬玻璃薄膜(TFMGs)個別具高強度與可撓性,因此結合陶瓷與金屬玻璃薄膜各別的優點,製備出陶瓷/金屬的多層薄膜,實驗中量測此多層薄膜的機械性質後,更進一步的利用它來改善316L不銹鋼的疲勞試驗壽命。
    本研究分別以直流/射頻脈衝磁控濺鍍法鍍製鋯基金屬玻璃薄膜(Zr58Cu24Al11Ni7, Zr-TFMG)與鈧酸鈥(HoScOx, HSO)之多層薄膜於矽基板與316L不銹鋼上,薄膜厚度主要為200 nm,而單層週期厚度為10 nm。利用X光射線儀(XRD)、雙束型聚焦離子束(DB-FIB)、穿透式電子顯微鏡(TEM)、原子力顯微鏡(AFM)等儀器設備量測鍍於矽基板上之單層與多層薄膜鍍的機械性質、結晶型態等。
    多層薄膜機械性質分析除楊氏係數有量測外,TEM結果顯示TFMGs與HSO不但皆為非結晶態,多層薄膜中之各個單層薄膜相互間有良好的附著性與光滑的表面。在疲勞壽命的實驗結果中,相對於未鍍膜之試片,鍍有多層薄膜的試片疲勞壽命有些許改善。多層薄膜增強疲勞壽命的實驗中並未如預期般的大提升,但陶瓷/金屬結合的多層薄膜其機械性質仍優於陶瓷與金屬單層薄膜,疲勞試驗後利用 SEM與TEM分析破壞試片,對於316L不銹鋼上的滑移帶、裂紋、剝落和拋光痕跡之相對關係也有進行研究。


    Due to the rapid developments of nanotechnology, nanomaterials such as nano-scale multilayer thin film are undoubtedly important. In order to have a good mechanical properties of multilayer thin film, a combination of amorphous ceramics and thin film metallic glasses (TFMGs) is probably worth trying. The present study investigates the mechanical properties of this new kind of multilayer and takes advantage of those properties to improve the fatigue life of 316L stainless steel.
    In this study, a multilayer consists of Zr58Cu24Al11Ni7 TFMG and holmium scandium oxide (HoScOx, HSO) were deposited by DC and RF magnetron sputtering system, respectively. A 200-nm-thick of TFMG/HSO multilayered films with a 10-nm-period was prepared. Silicon wafer and 316L stainless steel were used as the substrates. Multilayered and monolayered film were deposited on the silicon wafer to investigate the mechanical properties, crystal structure, and other properties of the films by using X-ray diffraction (XRD), dual beam-focused ion beam (FIB), transmission electron microscopy (TEM), atomic force microscopy (AFM), Rockwell-C hardness test.
    The Young’s modulus of the multilayered films has been investigated. It is found that both interlayer of TFMGs and HSO are in amorphous state and they exhibit a good adhesion and smooth surface. Compared with the samples without multilayer, the multilayer has a lower surface roughness and a little improvement of fatigue life. The relationships between slip bands, cracks, delamination, and polish marks on the 316L stainless steel substrate are also investigated.
    Based on the results, some properties of multilayer are found to be better than the monolayer, although the fatigue life is not significantly improved as expected. Further works have to be done to investigate other properties as well as to find out the suitable application of this unique multilayer.

    摘要......I Abstract......II Acknowledgements......III Contents......IV List of Figure......VI List of Table......X Chapter 1 Introduction......1 Chapter 2 Background......3 2.1 Metallic Glass......3 2.1.1 The Evolution of Metallic Glasses......4 2.1.2 Supercooled Liquid Region (SCLR)......6 2.1.3 Glasses Forming Ability (GFA)......9 2.1.4 Atomic Structure of Metallic Glasses......10 2.1.5 Thin Film Metallic Glasses (TFMGs)......12 2.1.5.1 Mechanical Properties......13 2.2 Sputter Deposition: A Physical Vapor Deposition (PVD) Method......14 2.2.1 Plasma......17 2.2.2 DC Power......18 2.2.3 RF Power......18 2.2.4 Magnetron Equipment......19 2.3 Multilayer Thin Film......20 2.3.1 Isostructural Multilayer......20 2.3.2 Non-Isostructural Multilayer......20 2.3.3 Mechanisms of Multilayer Enhancement......21 2. 3.4 Mechanisms of Enhanced Toughness......24 2.4 Fatigue......25 2.5 Fatigue Life Improvement by Coatings......27 Chapter 3 Experimental Procedure......32 3.1 Experimental Procedures......32 3.2 Preparing Thin Film Deposition......32 3.2.1 Target Preparation......32 3.2.1.1 Oxidized Target Preparation......33 3.2.1.2 Zr Alloy Target Preparation......34 3.2.2 Substrate Preparation......35 3.2.3 Deposition of Multilayer......35 3.3 Microstructure and Composition Analysis......37 3.3.1 Crystal Structure......37 3.3.2 Surface Morphology and Composition......38 3.3.3 Surface Roughness Measurement......40 3.4 Hardness and Young’s Modulus Measuremant......41 3.5 Adhesion Evaluation......42 3.5.1 Rockwell-C Hardness Test (HRC)......42 3.5.2 Image Analysis......44 3.6 Four-Point Fatigue Test......44 Chapter 4 Results and Discussion......47 4.1 TFMG/HSO Multilayer on Si Substrate......47 4.1.1 Chemical Compositions Analyses......47 4.1.2 Hardness Measurements......48 4.1.3 Crystallographic Analyses......50 4.1.4 Cross-Sectional TEM Observation......51 4.2 Multilayer on 316L Stainless Steel......56 4.1.1 Surface Roughness Analysis......56 4.2.3 Fatigue Property......57 4.2.3 Fractographic Analysis......59 4.2.3.1 SEM Observation......59 4.2.3.1.1 Coated Sample......59 4.2.3.1.2 Uncoated Sample......63 4.2.3.2 TEM Observation......65 4.2.4 Adhesion Evaluation......69 Chapter 5 Conclusions......76 Future Works......78 References......79

    1. A. Matthews, Developments in PVD tribological coatings (IUVSTA highlights seminar-vacuum metallurgy division). Vacuum, 2002. 65(2): p. 237-238.
    2. K. N. Andersen, E. J. Bienk, K. O. Schweitz, H. Reitz, J. Chevallier, P. Kringhoj, J. Bottiger, Deposition, microstructure and mechanical and tribological properties of magnetron sputtered TiN/TiAlN multilayers. Surface and Coatings Technology, 2000. 123(2): p. 219-226.
    3. J. L. He, W. Z. Li, H. D. Li, Hardness study of nanoscale TiNPt multilayers. Materials Letters, 1997. 30(1): p. 15-18.
    4. W. Zhang, X. Zhang, Q. Xue, D. Yang, Microstructure and tribological characteristics of multilayer films deposited by ion-beam mixing. Wear, 1996. 197(1): p. 266-270.
    5. T. Nakayama, K. Yamamoto, H. Satoh, T. J. Konno, B. M. Clemens, R. Sinclair, Structure and corrosion properties of Al/Si and Fe/Zr multilayers. Materials Science and Engineering: A, 1995. 198(1): p. 19-24.
    6. L. Knoblauch-Meyer, R. Hauert, Tribological properties of aC: H multilayer structures. Thin Solid Films, 1999. 338(1): p. 172-176.
    7. A. Pinyol, E. Bertran, C. Corbella, M. C. Polo, J. L. Andujar, Properties of W/aC nanometric multilayers produced by RF-pulsed magnetron sputtering. Diamond and Related Materials, 2002. 11(3): p. 1000-1004.
    8. J. Wang, W. Z. Li, H. D. Li, B. Shi, J. B. Luo, Nanoindentation study on the mechanical properties of TiC/Mo multilayers. Thin Solid Films, 2000. 366(1): p. 117-120.
    9. X. Gao, D. W. Glenn, J. A. Woollam, In situ ellipsometric diagnostics of multilayer thin film deposition during sputtering. Thin Solid Films, 1998. 313: p. 511-515.
    10. Z. Czigany, G. Radnoczi, Columnar growth structure and evolution of wavy interface morphology in amorphous and polycrystalline multilayered thin films. Thin Solid Films, 1999. 347(1): p. 133-145.
    11. S. Vepřek, P. Nesladek, A. Niederhofer, F. Glatz, M. Jılek, M. Šıma, Recent progress in the superhard nanocrystalline composites: towards their industrialization and understanding of the origin of the superhardness. Surface and Coatings Technology, 1998. 108: p. 138-147.
    12. H. D. Mannling, D. S. Patil, K. Moto, M. Jilek, S. Veprek, Thermal stability of superhard nanocomposite coatings consisting of immiscible nitrides. Surface and Coatings Technology, 2001. 146: p. 263-267.
    13. P. H. Mayrhofer, C. Mitterer, High-temperature properties of nanocomposite TiB xNy and TiBxCy coatings. Surface and Coatings Technology, 2000. 133: p. 131-137.
    14. M. Stuber, H. Leiste, S. Ulrich, H. Holleck, D. Schild, Microstructure and properties of low friction TiC/C nanocomposite coatings deposited by magnetron sputtering. Surface and Coatings Technology, 2002. 150(2): p. 218-226.
    15. T. Mattila, R. M. Nieminen, Direct antisite formation in electron irradiation of GaAs. Physical review letters, 1995. 74(14): p. 2721-2724.
    16. H. Hausmann, A. Pillukat, P. Ehrhart, Point defects and their reactions in electron-irradiated GaAs investigated by optical absorption spectroscopy. Physical Review B, 1996. 54(12): p. 8527.
    17. M. Telford, The case for bulk metallic glass. Materials today, 2004. 7(3): p. 36-43.
    18. J. Schroers, W. L. Johnson, Ductile bulk metallic glass. Physical Review Letters, 2004. 93(25): p. 255506.
    19. A. Inoue, Bulk amorphous and nanocrystalline alloys with high functional properties. Materials Science and Engineering: A, 2001. 304: p. 1-10.
    20. C. L. Chiang, J. P. Chu, F. X. Liu, P. K. Liaw, R. A. Buchanan, A 200 nm thick glass-forming metallic film for fatigue-property enhancements. Applied physics letters, 2006. 88: p. 131902.
    21. A. J. Drehman, A. L. Greer, D. Turnbull, Bulk formation of a metallic glass: PdNiP. Applied Physics Letters, 1982. 41: p. 716.
    22. H. Kui, A. L. Greer, D. Turnbull, Formation of bulk metallic glass by fluxing. Applied Physics Letters, 1984. 45: p. 615.
    23. W. L. Johnson, Metastable Phases. Intermetallic Compounds. Vol. 1. 1994: New York: Wiley. 687-709.
    24. W. H. Wang, C. Dong, C. H. Shek, Bulk metallic glasses. Materials Science and Engineering: R: Reports, 2004. 44(2): p. 45-89.
    25. D. Turnbull, Under what conditions can a glass be formed? Contemporary Physics, 1969. 10(5): p. 473-488.
    26. D. Turnbull, J. C. Fisher, Rate of nucleation in condensed systems. The Journal of chemical physics, 1949. 17: p. 71.
    27. W. H. Wang, C. Dong, C. H. Shek, Bulk metallic glasses. Materials Science and Engineering: R: Reports, 2004. 44(2): p. 45-89.
    28. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta materialia, 2000. 48(1): p. 279-306.
    29. A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto, Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method. Materials Transactions, JIM(Japan), 1992. 33(10): p. 937-945.
    30. J. F. Loffler, Bulk metallic glasses. Intermetallics, 2003. 11(6): p. 529-540.
    31. A. Inoue, T. Zhang, T. Masumoto, Glass-forming ability of alloys. Journal of Non-Crystalline Solids, 1993. 156: p. 473-480.
    32. H. W. Jeong, S. Hata and A. Shimokohbe, 15th IEEE International Conference on MEMS (Las Vegas). 2002.
    33. Z. Long, G. Xie, H. Wei, X. Su, J. Peng, P. Zhang, A. Inoue, On the new criterion to assess the glass-forming ability of metallic alloys. Materials Science and Engineering: A, 2009. 509(1): p. 23-30.
    34. Z. Long, G. Xie, H. Wei, Z. Su, J. Peng, P. Zhang, A. Inoue, On the new criterion to assess the glass-forming ability of metallic alloys. Materials Science and Engineering: A, 2009. 509(1): p. 23-30.
    35. F. Spaepen, D. Turnbull, Atomic transport and transformation behavior in metallic glasses. Interim Report Harvard Univ., Cambridge, MA. Div. of Engineering and Applied Physics., 1976. 1.
    36. F. Spaepen, A structural model for the solid-liquid interface in monatomic systems. Acta Metallurgica, 1975. 23(6): p. 729-743.
    37. F. Spaepen, R. B. Meyer, The surface tension in a structural model for the solid-liquid interface. Scripta Metallurgica, 1976. 10(1): p. 37-43.
    38. O. N. Senkov, D. B. Miracle, A topological model for metallic glass formation. Journal of non-crystalline solids, 2003. 317(1): p. 34-39.
    39. A. Inoue, T. Negishi, H. M. Kimura, T. Zhang,A. R. Yavari, High packing density of Zr-and Pd-based bulk amorphous alloys. Materials Transactions, JIM(Japan), 1998. 39(2): p. 318-321.
    40. M. W. Chen, I. Dutta, T. Zhang, A. Inoue, T. Sakurai, Kinetic evidence for the structural similarity between a supercooled liquid and an icosahedral phase in Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glass. Applied Physics Letters, 2001. 79(1): p. 42-44.
    41. D. B. Miracle, The efficient cluster packing model–An atomic structural model for metallic glasses. Acta materialia, 2006. 54(16): p. 4317-4336.
    42. J. P. Chu, J. C. Huang, J. S. C. Jang, Y. C. Wang, P. K. Liaw, Thin film metallic glasses: Preparations, properties, and applications. JOM, 2010. 62(4): p. 19-24.
    43. J. P. Chu, J. S. C. Jang, J. C. Huang, H. S. Chou, Y. Yang, J. C. Ye, Y. C. Wang, J. W. Lee, F. X. Liu, P. K. Liaw, Thin film metallic glasses: Unique properties and potential applications. Thin Solid Films, 2012.
    44. J. P. Chu, C. T. Liu, T. Mahalingam, S. F. Wang, M. J. O’Keefe, B. Johnson, C. H. Kuo, Annealing-induced full amorphization in a multicomponent metallic film. Physical Review B, 2004. 69(11): p. 113410.
    45. C. A. Schuh, T. C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys. Acta Materialia, 2007. 55(12): p. 4067-4109.
    46. A. Inoue, Bulk amorphous alloys. Pergamon Materials Series, 1999. 2: p. 375-415.
    47. A. F. Jankowski, M. A. Wall, A. W. Van Buuren, T. G. Nieh, J. Wadsworth, From nanocrystalline to amorphous structure in beryllium-based coatings. Acta materialia, 2002. 50(19): p. 4791-4800.
    48. http://www.alacritas-consulting.com/advice/sputter-deposition-for-thin-films/.
    49. P. Sharma, W. Zhang, K. Amiya, H. Kimura, A. Inoue, Nanoscale patterning of Zr-Al-Cu-Ni metallic glass thin films deposited by magnetron sputtering. Journal of nanoscience and nanotechnology, 2005. 5(3): p. 416-420.
    50. http://pl.m.wikipedia.org/wiki/Plik:DCplasmaSputtering.jpg.
    51. http://www.lihyuan.com.tw/product/ubm-sputter-ubm-sputter.html.
    52. P. C. Yashar, W. D. Sproul, Nanometer scale multilayered hard coatings. Vacuum, 1999. 55(3): p. 179-190.
    53. U. Helmersson, S. Todorova, S. A. Barnett, J. E. Sundgren, L. C. Markert, J. E. Greene, Growth of single‐crystal TiN/VN strained‐layer superlattices with extremely high mechanical hardness. Journal of Applied Physics, 1987. 62(2): p. 481-484.
    54. R. C. Cammarata, The supermodulus effect in compositionally modulated thin films. Scripta metallurgica, 1986. 20(4): p. 479-486.
    55. M. Shinn, S. A. Barnett, Effect of superlattice layer elastic moduli on hardness. Applied physics letters, 1994. 64(1): p. 61-63.
    56. J. O. Kim, J. D. Achenbach, M. Shinn, S. A. Barnett, Effective elastic constants and acoustic properties of single-crystal TiN/NbN superlattices. J. Mater. Res, 1992. 7(8): p. 2248.
    57. Y. P. Li, G. P. Zhang, On plasticity and fracture of nanostructured Cu/X (X= Au, Cr) multilayers: The effects of length scale and interface/boundary. Acta Materialia, 2010. 58(11): p. 3877-3887.
    58. X. Chu, S. A. Barnett, Model of superlattice yield stress and hardness enhancements. Journal of applied physics, 1995. 77(9): p. 4403-4411.
    59. Y. P. Li, G. P. Zhang, On plasticity and fracture of nanostructured Cu/X (X= Au, Cr) multilayers: The effects of length scale and interface/boundary. Acta Materialia, 2010. 58(11): p. 3877-3887.
    60. H, J. Pei, C. J. Lee, X. H. Du, Y. C. Chang, J. C. Huang, Tension behavior of metallic glass coating on Cu foil. Materials Science and Engineering: A, 2011. 528(24): p. 7317-7322.
    61. TriboScope User Manual. Hysitron Inc, 2002.
    62. J. S. Koehler, Attempt to design a strong solid. Physical Review B, 1970. 2(2): p. 547.
    63. S. Zhang, D. Sun, Y. Fu, H. Du, Toughening of hard nanostructural thin films: a critical review. Surface and Coatings Technology, 2005. 198(1): p. 2-8.
    64. Standard Definitions of Terms Relating to Fatigue Testing and Statistical Analysis of Data. ASTM Designation E206-84, 1984. 03.01: p. 342.
    65. Robert E. Reed-Hill Physical Metallurgy Principles. Third Edition.
    66. S. M. Wiederhorn, L. H. Bolz, Stress corrosion and static fatigue of glass. Journal of the American Ceramic Society, 1970. 53(10): p. 543-548.
    67. A. G. Evans, Slow crack growth in brittle materials under dynamic loading conditions. International Journal of Fracture, 1974. 10(2): p. 251-259.
    68. J. P. Chu, C. M. Lee, R. T. Huang, P. K. Liaw, Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects. Surface and Coatings Technology, 2011. 205(16): p. 4030-4034.
    69. W. Soboyejo, Mechanical Properties of Engineered Materials. 2002, New York,: Marcel Dekker, Inc.
    70. Robet E. Reed-Hill, Physical Metallurgy Principles. second edition, chapter 19.
    71. J. E. Ritter Jr, J. N. Humenik, Static and dynamic fatigue of polycrystalline alumina. Journal of Materials Science, 1979. 14(3): p. 626-632.
    72. F. X. Liu, P. K. Liaw, W. H. Jiang, C. L. Chiang, Y. F. Gao, Y .F. Guan, J. P. Chu, P D. Rack, Fatigue-resistance enhancements by glass-forming metallic films. Materials Science and Engineering: A, 2007. 468: p. 246-252.
    73. http://mse.ntust.edu.tw/ezfiles/29/1029/img/1047/D8.pdf.
    74. 洪伯賢, 碩士論文Bending Toughness and Ductility Improvements of Bulk Metallic Glass by a Zr-based Glass-forming Film. National Taiwan University of Science and Technology,2010: p. 63.
    75. W. C. Oliver, G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of materials research, 2004. 19(01): p. 3-20.
    76. C. Angelelis, M. Ducarroir, E. Felder,M. Ignat, S. Scordo, Comparison of coating failure induced by indentation and bending test. Surface engineering, 1997. 13(3): p. 207-212.
    77. A. J. Perry, Scratch adhesion testing of hard coatings. Thin Solid Films, 1983. 107(2): p. 167-180.
    78. N. Vidakis, A. Antoniadis, N. Bilalis, The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds. Journal of materials processing technology, 2003. 143: p. 481-485.
    79. J. P. Chu, T. N. Lin, Deposition, microstructure and properties of sputtered copper films containing insoluble molybdenum. Journal of Applied physics, 1999. 85(9): p. 6462-6469.

    無法下載圖示 全文公開日期 2018/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE