簡易檢索 / 詳目顯示

研究生: 江沛璇
Pei-Hsuan Chiang
論文名稱: 金屬玻璃奈米管陣列材料用於傷口敷料之動物實驗研究
Animal experimental studies of metallic glass nanotube array as a wound dressing
指導教授: 朱瑾
Jinn Chu
口試委員: 張世宗
Shih-Chung Chang
鄭詠馨
Yung-Hsin Cheng
姚栢文
Pak-Man Yiu
白孟宜
Meng-Yi Bai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 91
中文關鍵詞: 金屬玻璃薄膜金屬玻璃奈米管陣列傷口敷料玻尿酸玻尿酸/奈米金複合物
外文關鍵詞: thin film metallic glass (TFMG), metallic glass nanotube arrays (MeNTA), wound dressing, hyaluronic acid (HA), hyaluronic acid/gold nanoparticles (HA/AuNPs) composite
相關次數: 點閱:361下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 致謝 摘要 Abstract Contents List of Figures List of Table Chapter 1. Introduction 1.1 Motivation and Overview 1.2 Objectives of Study Chapter 2. Literature review 2.1 Materials in Cutaneous Wound Healing 2.2 Wound Dressing 2.3 Nanomaterials in Wound Dressing 2.4 Hyaluronic Acid 2.5 Metallic Glasses (MGs) and Thin Film Metallic Glasses (TFMGs) 2.6 Metallic Glass Nanotube Arrays (MeNTA) Chapter 3. Experimental Procedure 3.1 Metallic Glass Nanotube Arrays(MeNTA) Fabrication 3.2 TFMGs Characterizations 3.3 MeNTA Characterizations 3.4 HA and HA/AuNPs Composite Loaded MeNTA 3.5 FTIR Analysis 36 Animal Test Chapter 4. Results and Discussion 4.1 Characterizations of TFMGs 4.2 Characterizations of MeNTA 4.3 Characterizations of HA and HA/AuNPs Composite Loaded MeNTA 4.4 Animal Tests 4.5 Discussion Chapter 5. Conclusions Chapter 6. Appendix 6.1 Pig test Reference

    [1] Daunton, C., S. Kothari, L. Smith, and D. Steele, A history of materials and practices for wound management. Wound Practice and Research, 2012. 20(4): p. 174-186.
    [2] Sarabahi, S., Recent advances in topical wound care. Indian Journal of Plastic Surgery, 2012. 45(2): p. 379-387.
    [3] Boateng, J.S., K.H. Matthews, H.N.E. Stevens, and G.M. Eccleston, Wound healing dressings and drug delivery systems: A review. Journal of Pharmaceutical Sciences, 2008. 97(8): p. 2892-2923.
    [4] S., T., Alginate dressings in surgery and wound management--Part 1. Journal of wound care, 2000. 9: p. 56-60.
    [5] Li, H.F. and Y.F. Zheng, Recent advances in bulk metallic glasses for biomedical applications. Acta Biomaterialia, 2016. 36: p. 1-20.
    [6] Chang, C.H., C.L. Li, C.C. Yu, Y.L. Chen, S. Chyntara, J.P. Chu, M.J. Chen, and S.H. Chang, Beneficial effects of thin film metallic glass coating in reducing adhesion of platelet and cancer cells: Clinical testing. Surface & Coatings Technology, 2018. 344: p. 312-321.
    [7] Ghomi, E.R., S. Khalili, S.N. Khorasani, R.E. Neisiany, and S. Ramakrishna, Wound dressings: Current advances and future directions. Journal of Applied Polymer Science, 2019. 136(27).
    [8] Gallo, R.L., Human Skin Is the Largest Epithelial Surface for Interaction with Microbes. Journal of Investigative Dermatology, 2017. 137(6): p. 1213-1214.
    [9] Yildirimer, L., N.T.K. Thanh, and A.M. Seifalian, Skin regeneration scaffolds: a multimodal bottom-up approach. Trends in Biotechnology, 2012. 30(12): p. 638-648.
    [10] Bottcher-Haberzeth, S., T. Biedermann, and E. Reichmann, Tissue engineering of skin. Burns, 2010. 36(4): p. 450-460.
    [11] Singer, A.J. and R.A.F. Clark, Mechanisms of disease - Cutaneous wound healing. New England Journal of Medicine, 1999. 341(10): p. 738-746.
    [12] Demidova-Rice, T.N., M.R. Hamblin, and I.M. Herman, Acute and Impaired Wound Healing: Pathophysiology and Current Methods for Drug Delivery, Part 1: Normal and Chronic Wounds: Biology, Causes, and Approaches to Care. Advances in Skin & Wound Care, 2012. 25(7): p. 304-314.
    [13] Harding, K.G., H.L. Morris, and G.K. Patel, Science, medicine, and the future - Healing chronic wounds. British Medical Journal, 2002. 324(7330): p. 160-163.
    [14] Lazarus, G.S., D.M. Cooper, D.R. Knighton, D.J. Margolis, R.E. Pecoraro, G. Rodeheaver, and M.C. Robson, DEFINITIONS AND GUIDELINES FOR ASSESSMENT OF WOUNDS AND EVALUATION OF HEALING. Archives of Dermatology, 1994. 130(4): p. 489-493.
    [15] Robson, M.C., D.L. Steed, and M.G. Franz, Wound healing: Biologic features and approaches to maximize healing trajectories - In brief. Current Problems in Surgery, 2001. 38(2): p. 65-140. [16] Singh, N., D.G. Armstrong, and B.A. Lipsky, Preventing foot ulcers in patients with diabetes. Jama-Journal of the American Medical Association, 2005. 293(2): p. 217-228.
    [17] Saghazadeh, S., C. Rinoldi, M. Schot, S.S. Kashaf, F. Sharifi, E. Jalilian, K. Nuutila, G. Giatsidis,P. Mostafalu, H. Derakhshandeh, K. Yue, W. Swieszkowski, A. Memic, A. Tamayol, and A. Khademhosseini, Drug delivery systems and materials for wound healing applications. Advanced Drug Delivery Reviews, 2018. 127: p. 138-166.
    [18] Dhivya, S., V.V. Padma, and E. Santhini, Wound dressings - a review. Biomedicine-Taiwan, 2015. 5(4): p. 24-28.
    [19] Jones, V.J., The use of gauze: will it ever change? International Wound Journal, 2006. 3(2): p. 79-88.
    [20] Annabi, N., A. Tamayol, J.A. Uquillas, M. Akbari, L.E. Bertassoni, C. Cha, G. Camci-Unal, M.R. Dokmeci, N.A. Peppas, and A. Khademhosseini, 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine. Advanced Materials, 2014. 26(1): p. 85-124. [21] Kumar, P.T.S., V.K. Lakshmanan, T.V. Anilkumar, C. Ramya, P. Reshmi, A.G. Unnikrishnan, S.V. Nair, and R. Jayakumar, Flexible and Microporous Chitosan Hydrogel/Nano ZnO Composite Bandages for Wound Dressing: In Vitro and In Vivo Evaluation. Acs Applied Materials & Interfaces, 2012. 4(5): p. 2618-2629.
    [22] Ge, L.M., Y.B. Xu, X.Y. Li, L. Yuan, H. Tan, D.F. Li, and C.D. Mu, Fabrication of Antibacterial Collagen-Based Composite Wound Dressing. Acs Sustainable Chemistry & Engineering, 2018. 6(7): p. 9153-9166.
    [23] Vigani, B., S. Rossi, G. Sandri, M.C. Bonferoni, C.M. Caramella, and F. Ferrari, Hyaluronic acid and chitosan-based nanosystems: a new dressing generation for wound care. Expert Opinion on Drug Delivery, 2019. 16(7): p. 715-740.
    [24] Li, Q., F. Lu, G.F. Zhou, K. Yu, B.T. Lu, Y. Xiao, F.Y. Dai, D.Y. Wu, and G.Q. Lan, Silver Inlaid with Gold Nanoparticle/Chitosan Wound Dressing Enhances Antibacterial Activity and Porosity, and Promotes Wound Healing. Biomacromolecules, 2017. 18(11): p. 3766-3775.
    [25] Nethi, S.K., S. Das, C.R. Patra, and S. Mukherjee, Recent advances in inorganic nanomaterials for wound-healing applications. Biomaterials Science, 2019. 7(7): p. 2652-2674.
    [26] Lee, H. and Y.H. Kim, Nanobiomaterials for pharmaceutical and medical applications. Archives of Pharmacal Research, 2014. 37(1): p. 1-3.
    [27] Chakrabarti, S., P. Chattopadhyay, J. Islam, S. Ray, P.S. Raju, and B. Mazumder, Aspects of Nanomaterials in Wound Healing. Current Drug Delivery, 2019. 16(1): p. 26-41.
    [28] Akturk, O., K. Kismet, A.C. Yasti, S. Kuru, M.E. Duymus, F. Kaya, M. Caydere, S. Hucumenoglu, and D. Keskin, Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial. Journal of Biomaterials Applications, 2016. 31(2): p. 283-301.
    [29] Paliwal, R., S.R. Paliwal, R. Kenwat, B.D. Kurmi, and M.K. Sahu, Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opinion on Therapeutic Patents, 2020. 30(3): p. 179-194.
    [30] Chen, X., L.H. Peng, Y.H. Shan, N. Li, W. Wei, L. Yu, Q.M. Li, W.Q. Liang, and J.Q. Gao, Astragaloside IV-loaded nanoparticle-enriched hydrogel induces wound healing and anti-scar activity through topical delivery. International Journal of Pharmaceutics, 2013. 447(1-2): p. 171-181.
    [31] Yukuyama, M.N., E.T.M. Kato, R. Lobenberg, and N.A. Bou-Chacra, Challenges and Future Prospects of Nanoemulsion as a Drug Delivery System. Current Pharmaceutical Design, 2017. 23(3):p. 495-508.
    [32] Sugumar, S., V. Ghosh, M.J. Nirmala, A. Mukherjee, and N. Chandrasekaran, Ultrasonic emulsification of eucalyptus oil nanoemulsion: Antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrasonics Sonochemistry, 2014. 21(3): p. 1044-1049. [33] Anumolu, S.S., A.R. Menjoge, M. Deshmukh, D. Gerecke, S. Stein, J. Laskin, and P.J. Sinko, Doxycycline hydrogels with reversible disulfide crosslinks for dermal wound healing of mustard injuries. Biomaterials, 2011. 32(4): p. 1204-1217.
    [34] Moritz, S., C. Wiegand, F. Wesarg, N. Hessler, F.A. Muller, D. Kralisch, U.C. Hipler, and D. Fischer, Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. International Journal of Pharmaceutics, 2014. 471(1-2): p. 45-55.
    [35] Li, X.Y., S. Chen, B.J. Zhang, M. Li, K. Diao, Z.L. Zhang, J. Li, Y. Xu, X.H. Wang, and H. Chen, In situ injectable nano-composite hydrogel composed of curcumin, N,O-carboxymethyl chitosan and oxidized alginate for wound healing application. International Journal of Pharmaceutics, 2012. 437(1- 2): p. 110-119.
    [36] Choi, J.S., H.S. Kim, and H.S. Yoo, Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Delivery and Translational Research, 2015. 5(2): p. 137-145.
    [37] Fu, S.Z., X.H. Meng, J. Fan, L.L. Yang, Q.L. Wen, S.J. Ye, S. Lin, B.Q. Wang, L.L. Chen, J.B. Wu, Y. Chen, J.M. Fan, and Z. Li, Acceleration of dermal wound healing by using electrospun curcumin-loaded poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) fibrous mats. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2014. 102(3): p. 533-542.
    [38] Gainza, G., S. Villullas, J.L. Pedraz, R.M. Hernandez, and M. Igartua, Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine- Nanotechnology Biology and Medicine, 2015. 11(6): p. 1551-1573.
    [39] Chu, Y.J., D.M. Yu, P.H. Wang, J. Xu, D.Q. Li, and M. Ding, Nanotechnology promotes the full- thickness diabetic wound healing effect of recombinant human epidermal growth factor in diabetic rats. Wound Repair and Regeneration, 2010. 18(5): p. 499-505.
    [40] Sugahara, K., N.B. Schwartz, and A. Dorfman, BIOSYNTHESIS OF HYALURONIC-ACID BY STREPTOCOCCUS. Journal of Biological Chemistry, 1979. 254(14): p. 6252-6261.
    [41] Liu, L., Y.F. Liu, J.H. Li, G.C. Du, and J. Chen, Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microbial Cell Factories, 2011. 10.
    [42] Fraser, J.R.E., T.C. Laurent, and U.B.G. Laurent, Hyaluronan: Its nature, distribution, functions and turnover. Journal of Internal Medicine, 1997. 242(1): p. 27-33.
    [43] Laurent, T.C. and J.R.E. Fraser, HYALURONAN. Faseb Journal, 1992. 6(7): p. 2397-2404. [44] Naseri-Nosar, M. and Z.M. Ziora, Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites. Carbohydrate Polymers, 2018. 189: p. 379-398. [45] Reesi, F., M. Minaiyan, and A. Taheri, A novel lignin-based nanofibrous dressing containing arginine for wound-healing applications. Drug Delivery and Translational Research, 2018. 8(1): p. 111-122.
    [46] Katas, H., C.Y. Wen, M.I. Siddique, Z. Hussain, and F.H.M. Fadhil, Thermoresponsive curcumin/DsiRNA nanoparticle gels for the treatment of diabetic wounds: synthesis and drug release. Therapeutic Delivery, 2017. 8(3): p. 137-150.
    [47] Fouda, M.M.G., A.M. Abdel-Mohsen, H. Ebaid, I. Hassan, J. Al-Tamimi, R.M. Abdel-Rahman, A. Metwalli, I. Alhazza, A. Rady, A. El-Faham, and J. Jancar, Wound healing of different molecular weight of hyaluronan; in-vivo study. International Journal of Biological Macromolecules, 2016. 89: p. 582-591.
    [48] Qiao, J.W., H.L. Jia, and P.K. Liaw, Metallic glass matrix composites. Materials Science & Engineering R-Reports, 2016. 100: p. 1-69.
    [49] Park, E.S. and D.H. Kim, Design of bulk metallic glasses with high glass forming ability and enhancement of plasticity in metallic glass matrix composites: A review. Metals and Materials International, 2005. 11(1): p. 19-27.
    [50] Wang, W.H., C. Dong, and C.H. Shek, Bulk metallic glasses. Materials Science & Engineering R-Reports, 2004. 44(2-3): p. 45-89.
    [51] Liu, Y.H., T. Fujita, A. Hirata, S. Li, H.W. Liu, W. Zhang, A. Inoue, and M.W. Chen, Deposition of multicomponent metallic glass films by single-target magnetron sputtering. Intermetallics, 2012. 21(1): p. 105-114.
    [52] Kassa, S.T., C.C. Hu, Y.C. Liao, J.K. Chen, and J.P. Chu, Thin film metallic glass as an effective coating for enhancing oil/water separation of electrospun polyacrylonitrile membrane. Surface & Coatings Technology, 2019. 368: p. 33-41.
    [53] Yiu, P., W. Diyatmika, N. Bonninghoff, Y.C. Lu, B.Z. Lai, and J.P. Chu, Thin film metallic glasses: Properties, applications and future. Journal of Applied Physics, 2020. 127(3).
    [54] Inoue, A. and A. Takeuchi, Recent development and application products of bulk glassy alloys. Acta Materialia, 2011. 59(6): p. 2243-2267.
    [55] Ashby, M.F. and A.L. Greer, Metallic glasses as structural materials. Scripta Materialia, 2006. 54(3): p. 321-326.
    [56] Inoue, A., Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia, 2000. 48(1): p. 279-306.
    [57] Liu, Y., Y.M. Wang, H.F. Pang, Q. Zhao, and L. Liu, A Ni-free ZrCuFeAlAg bulk metallic glass with potential for biomedical applications. Acta Biomaterialia, 2013. 9(6): p. 7043-7053.
    [58] Chu, J.P., J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, and C. Rullyani, Thin film metallic glasses: Unique properties and potential applications. Thin Solid Films, 2012. 520(16): p. 5097-5122.
    [59] Chang, C.H., C.M. Lee, J.P. Chu, P.K. Liaw, and S.C.J. Jang, Fatigue property improvements of ZK60 magnesium alloy: Effects of thin film metallic glass. Thin Solid Films, 2016. 616: p. 431-436.
    [60] Chu, J.P., C.M. Lee, R.T. Huang, and P.K. Liaw, Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects. Surface & Coatings Technology, 2011. 205(16): p. 4030-4034.
    [61] C. Suryanarayana, A.I., Bulk Metallic Glasses. 2017.
    [62] Liu, F.X., F.Q. Yang, Y.F. Gao, W.H. Jiang, Y.F. Guan, P.D. Rack, O. Sergic, and P.K. Liaw, Micro-scratch study of a magnetron-sputtered Zr-based metallic-glass film. Surface & Coatings Technology, 2009. 203(22): p. 3480-3484.
    [63] Zberg, B., P.J. Uggowitzer, and J.F. Loffler, MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials, 2009. 8(11): p. 887-891.
    [64] Chen, H.W., K.C. Hsu, Y.C. Chan, J.G. Duh, J.W. Lee, J.S.C. Jang, and G.J. Chen, Antimicrobial properties of Zr-Cu-Al-Ag thin film metallic glass. Thin Solid Films, 2014. 561: p. 98-101.
    [65] Chen, J.K., W.T. Chen, C.C. Cheng, C.C. Yu, and J.P. Chu, Metallic glass nanotube arrays: Preparation and surface characterizations. Materials Today, 2018. 21(2): p. 178-185.
    [66] Chen, W.T., K. Manivannan, C.C. Yu, J.P. Chu, and J.K. Chen, Fabrication of an artificial nanosucker device with a large area nanotube array of metallic glass. Nanoscale, 2018. 10(3): p. 1366- 1375.
    [67] Avila-Salas, F., A. Marican, S. Pinochet, G. Carreno, O. Valdes, B. Venegas, W. Donoso, G. Cabrera-Barjas, S. Vijayakumar, and E.F. Duran-Lara, Film Dressings Based on Hydrogels: Simultaneous and Sustained-Release of Bioactive Compounds with Wound Healing Properties. Pharmaceutics, 2019. 11(9).
    [68] Zuber, A., M. Purdey, E. Schartner, C. Forbes, B. van der Hoek, D. Giles, A. Abell, T. Monro, and H. Ebendorff-Heidepriem, Detection of gold nanoparticles with different sizes using absorption and fluorescence based method. Sensors and Actuators B-Chemical, 2016. 227: p. 117-127.
    [69] Xiao-Fen Hoo, K.A.R., Nur Syafinaz Ridhuan, Noorhashimah Mohamad Nor, Nor Dyana Zakaria. Synthesis of tunable size gold nanoparticles using seeding growth method and its application in glucose sensor. in AIP Conference Proceddings. 2017.
    [70] Hong, S.S., J. Chen, L.R. Teng, Q.F. Meng, J.G. Zhang, and L.Y. Liu, Purification and structure characterization of the hyaluronic acid produced by a streptococcus zooepidemicus mutation strain. Chemical Journal of Chinese Universities-Chinese, 2004. 25(5): p. 853-857.
    [71] Wang, C.G., Y.T. Lou, M.J. Tong, L.L. Zhang, Z.J. Zhang, Y.Z. Feng, S. Li, H.Z. Xu, and C. Mao, Asperosaponin VI promotes angiogenesis and accelerates wound healing in rats via up- regulating HIF-1 alpha/VEGF signaling. Acta Pharmacologica Sinica, 2018. 39(3): p. 393-404.

    無法下載圖示 全文公開日期 2025/08/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE