簡易檢索 / 詳目顯示

研究生: 曾永喆
Yong-Jhe Tseng
論文名稱: 探討金屬玻璃鍍膜對取皮刀皮膚移植手術的影響
Effects of thin film metallic glass coating on skin grafting using a dermatome blade
指導教授: 朱 瑾
Jinn P. Chu
口試委員: 王丞浩
Chen-Hao Wang
張世幸
Shih-Hsin Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 118
中文關鍵詞: 皮膚移植手術取皮刀金屬玻璃薄膜傷口復原動物實驗
外文關鍵詞: skin grafting, dermatome blade, thin film metallic glasses, wound healing, animal test
相關次數: 點閱:280下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 皮膚移植手術通常用於處理燒燙傷或特殊手術造成的傷口,而手術使用的取皮刀需具備良好的銳利度和耐久度,才能降低傷口不必要的撕裂產生。根據我們團隊之前的研究,金屬玻璃薄膜(TFMGs)能有效地提升刀具銳利度與耐久度,使傷口撕扯的情形減少並加快傷口復原速率。之前研究設定的取皮條件為取皮距離30公分以及完全除毛。然而,在一些實際案例中,常超出之前所設定的取皮條件。例如,在一些嚴重燒燙傷的傷患上,需要更長以及更大範圍的取皮條件,並且部分案例中,取皮部位的皮膚無法進行除毛處理。
    在此次研究中,我們使用磁控濺鍍系統,將200 nm厚的鋯基、鎢基、鐵基金屬玻璃薄膜沉積在取皮刀上。動物實驗的取皮條件為完全除毛後取皮30公分與50公分,以及殘留毛髮後取皮10公分。藉此不同的取皮條件,進一步探討金屬玻璃薄膜在不同取皮狀況下,是否仍能發揮功用。
    動物實驗後,在鍍膜後的取皮刀上,發現其銳利度與耐磨度皆有提升。而在50公分長距離以及殘留毛髮的動物實驗中,更為顯著。證明在毛髮殘留及大範圍取皮手術時,仍舊能保護取皮刀在動物實驗中不受磨損並提升其銳利度。依照實驗結果及文獻推測,實驗體的健康狀況不一以及生物組織的分析變因太大是導致此一狀況的原因。


    Skin grafting is usually used to treat extensive wounding, scald, severe skin loss area and specific surgeries, which require for skin healing. A dermatome blade is typically used for skin grafting and then to obtain a good quality of dermatome blade is necessary. Based on previous research in our group, the wound surface roughness is found to be influenced by the sharpness and durability of dermatome blade. As a result, the sharper blade is expected to help reduce skin damages and accelerate the wound healing.
    Coating is one of promising approaches to enhance the sharpness and durability of dermatome blades. Thin film metallic glasses (TFMGs) would be a good candidate for enhancing the surgical performance of dermatome due to their excellent mechanical properties. In this study, 200nm-thick Zr-based, W-based and Fe-based TFMGs are deposited on dermatome blades by using magnetron sputtering. The wear resistance and sharpness of the dermatome blade are found to be enhanced after coating. It is suggested that the unique properties of TFMG such as high strength, good wear-resistances play roles in protecting dermatome blade during animal test. However, there is no obvious reduction of surface roughness examined on TFMG-coated dermatome blade. In addition, compared with the bare dermatome blade, wound healing and biopsy morphology, performed by the TFMG-coated one, exhibit no apparent improvements. This result might be attributed to the inhomogeneous nature of animal as well as the healthy condition of animal.

    摘要 Abstract Content List of Figures List of Tables Chapter 1 Introduction Chapter 2 Background 2.1 Medical Blades 2.1.1 Conventional Medical Blades 2.1.2 Surface Modification of Medical Blades 2.1.3 Surgical Wound Healing 2.1.4 Dermatome Blade 2.2 Skin Grafts 2.2.1 Split Thickness Skin Grafting 2.2.2 Technique 2.2.3 Donor site 2.3 Coating Technology in Biomedical Devices 2.3.1 Minimally Invasive Medical Devices 2.3.2 Dental drill 2.4 Metallic Glasses 2.4.1 Development of Metallic Glasses 2.4.2 Metallic Glasses for Biomedical Application 2.5 Thin Film Metallic Glasses (TFMGs) 2.5.1 Mechanical Properties 2.5.2 Biocompatibility 2.5.3 Antibacterial Properties 2.6 Magnetron Sputter Deposition Chapter 3 Experimental Procedures 3.1 Sample Preparation 3.1.1 Dermatome Blade Preparations 3.1.2 Thin Film Metallic Glass Deposition 3.1.3 Description of samples 3.2 Characterizations of TFMG 3.2.1 Crystallographic Analysis 3.2.2 Chemical Composition Analysis 3.2.3 Thermal Analysis 3.2.4 Adhesion Test 3.2.5 Contact Angle Test 3.3 Animal Test 3.3.1 Surface Roughness Analysis 3.3.2 Surface Morphology Analysis 3.3.3 Sharpness Test 3.3.4 Surgical Biopsy 3.3.5 Wound Healing Observation Chapter 4 Results and Discussion 4.1 Characterizations of TFMG 4.1.1 Crystallography Analysis 4.1.2 Chemical Composition Analysis 4.1.3 Thermal Analysis 4.1.4 Adhesion Test 4.1.5 Contact Angle Test 4.2 Animal Test 4.2.1 Surface Roughness Analysis 4.2.2 Microstructural Analysis 4.2.3 Surgical Biopsy 4.2.4 Wound Healing Observation 4.2.5 Effects of longer cutting length and cutting skin with hairs 4.2.6 Sharpness Test Chapter 5 Conclusions References

    [1] A.R. Yavari, J.J. Lewandowski, J. Eckert, MRS Bulletin, 32 (2007) 635-638.
    [2] P.H. Tsai, Y.Z. Lin, J.B. Li, S.R. Jian, J.S.C. Jang, C. Li, J.P. Chu, J.C. Huang, Intermetallics, 31 (2012) 127-131.
    [3] C.W. Chu, J.S.C. Jang, S.M. Chiu, J.P. Chu, Thin Solid Films, 517 (2009) 4930-4933.
    [4] C.W. Chu, J.S.C. Jang, G.J. Chen, S.M. Chiu, Surface and Coatings Technology, 202 (2008) 5564-5566.
    [5] J.C. Huang, J.P. Chu, J.S.C. Jang, Intermetallics, 17 (2009) 973-987.
    [6] S. Pini., R. Groppetti., ClaudioMucchino., V. Geretto., ISRN Ceramics, (2013).
    [7] C.T. McCarthy, M. Hussey, M.D. Gilchrist, Eng Fract Mech, 74 (2007) 2205-2224.
    [8] J.P. Chu, T.Y. Liu, C.L. Li, C.H. Wang, J.S.C. Jang, M.J. Chen, S.H. Chang, W.C. Huang, Thin Solid Films, 561 (2014) 102-107.
    [9] P. Martin, Science, 276 (1997) 75-81.
    [10] R. Clark, The Molecular and Cellular Biology of Wound Repair, 1996.
    [11] http://commons.wikimedia.org/wiki/File%3AWound_healing_phases.png.
    [12] F. McDowell, The Source Book of Plastic Surgery, 1977.
    [13] C. Johnson, H. Preuss, E. Eriksson, The Biologic Basis of Modern Surgical Practice, 2001.
    [14] R. Miraliakbari, D.R. Mackay, Operative Techniques in General Surgery, 8 (2006) 197-206.
    [15] C. Paletta, J. Pokorny, P. Rumbolo, Skin grafts, 2006.
    [16] R. Hierner, H. Degreef, J.J. Vranckx, M. Garmyn, P. Massage, M. van Brussel, Clin Dermatol, 23 (2005) 343-352.
    [17] K.J. McAlpine, Harvard University.
    [18] K.A. Kazmierska, T. Ciach, Recent Patents on Biomedical Engineering, 2 (2009) 1-14.
    [19] http://zgnkj.com/uploadfile/2012/1025/20121025061904612.jpg.
    [20] F. Hollstein, D. Kitta, P. Louda, F. Pacal, J. Meinhardt, Surface and Coatings Technology, 142-144 (2001) 1063-1068.
    [21] K.L. Ou, J.S. Chu, H. Hosseinkhani, J.F. Chiou, C.H. Yu, Surgical Endoscopy and Other Interventional Techniques, 28 (2014) 2174-2188.
    [22] H. Sein, W. Ahmed, C. Rego, Diamond and Related Materials, 11 (2002) 731-735.
    [23] http://www.infodentis.com/images-eng/diamond_dental_burs.jpg.
    [24] E. Salgueiredo, F.A. Almeida, M. Amaral, A.J.S. Fernandes, F.M. Costa, R.F. Silva, F.J. Oliveira, Diam Relat Mater, 18 (2009) 264-270.
    [25] W. Klement, R.H. Willens, P.O.L. Duwez, Nature, 187 (1960) 869-870.
    [26] A. Inoue, Acta Materialia, 48 (2000) 279-306.
    [27] H.S. Chen, Acta Metallurgica, 22 (1974) 1505-1511.
    [28] W.H. Wang, C. Dong, C.H. Shek, Materials Science and Engineering: R: Reports, 44 (2004) 45-89.
    [29] D. Turnbull, Contemporary Physics, 10 (1969) 473-488.
    [30] D. Turnbull, J.C. Fisher, The Journal of Chemical Physics, 17 (1949) 71-73.
    [31] C. Suryanarayana, A. Inoue, Bulk metallic glasses, CRC Press, 2011.
    [32] J.F. Löffler, Intermetallics, 11 (2003) 529-540.
    [33] C. Homer, A. Eberhardt, Scripta Metallurgica, 14 (1980).
    [34] U.S. Mani, C.T. Sabatino, S. Sabharwal, D.J. Svach, A. Suslak, F.F. Behrens, Journal of Pediatric Orthopaedics, 26 (2006) 182-187.
    [35] K.J. Wilkens, S. Curtiss, M.A. Lee, Journal of Orthopaedic Trauma, 22 (2008) 624-628.
    [36] K. Meinert, C. Uerpmann, J. Matschullat, G. Wolf, Surface and Coatings Technology, 103 (1998) 58-65.
    [37] S. Yilmaz, M. Ipek, G.F. Celebi, C. Bindal, Vacuum, 77 (2005) 315-321.
    [38] M. Balaceanu, T. Petreus, V. Braic, C. Zoita, A. Vladescu, C. Cotrutz, M. Braic, Surface and Coatings Technology, 204 (2010) 2046-2050.
    [39] A.P. Serro, C. Completo, R. Colaço, F. dos Santos, C.L. da Silva, J.M.S. Cabral, H. Araújo, E. Pires, B. Saramago, Surface and Coatings Technology, 203 (2009) 3701-3707.
    [40] F. Hollstein, D. Kitta, P. Louda, F. Pacal, J. Meinhardt, Surf Coat Tech, 142 (2001) 1063-1068.
    [41] R. Koerner, L. Butterworth, I. Mayer, R. Dasbach, H. Busscher, Biomaterials, 23 (2002) 2835-2840.
    [42] J. Probst, U. Gbureck, R. Thull, Surface and Coatings Technology, 148 (2001) 226-233.
    [43] C.C. Chien, K.T. Liu, J.G. Duh, K.W. Chang, K.H. Chung, Dental Materials, 24 (2008) 986-993.
    [44] A. Naji, M.-F. Harmand, Biomaterials, 12 (1991) 690-694.
    [45] Y. Yang, S. Park, Y. Liu, K. Lee, H.-S. Kim, J.-T. Koh, X. Meng, K. Kim, H. Ji, X. Wang, Vacuum, 83 (2008) 569-574.
    [46] D. Shtansky, N. Gloushankova, A. Sheveiko, M. Kharitonova, T. Moizhess, E. Levashov, F. Rossi, Biomaterials, 26 (2005) 2909-2924.
    [47] M. Brama, N. Rhodes, J. Hunt, A. Ricci, R. Teghil, S. Migliaccio, C.D. Rocca, S. Leccisotti, A. Lioi, M. Scandurra, Biomaterials, 28 (2007) 595-608.
    [48] Y. Kawamura, T. Shibata, A. Inoue, T. Masumoto, Applied Physics Letters, 69 (1996) 1208-1210.
    [49] J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, C. Rullyani, Thin Solid Films, 520 (2012) 5097-5122.
    [50] A. Inoue, H.M. Kimura, K. Sasamori, T. Masumoto, Materials Transactions, JIM, 35 (1994) 85-94.
    [51] A.L. Greer, Science, 267 (1995) 1947-1953.
    [52] B. Zberg, P.J. Uggowitzer, J.F. Löffler, Nature Materials, 8 (2009) 887-891.
    [53] Y.B. Wang, X.H. Xie, H.F. Li, X.L. Wang, M.Z. Zhao, E.W. Zhang, Y.J. Bai, Y.F. Zheng, L. Qin, Acta Biomaterialia, 7 (2011) 3196-3208.
    [54] P. Erne, M. Schier, T.J. Resink, CardioVascular and Interventional Radiology, 29 (2006) 11-16.
    [55] L. Huang, Z. Cao, H.M. Meyer, P.K. Liaw, E. Garlea, J.R. Dunlap, T. Zhang, W. He, Acta Biomaterialia, 7 (2011) 395-405.
    [56] C. Chen, J. Huang, H. Chou, Y. Lai, L. Chang, X. Du, J. Chu, T. Nieh, Journal of Alloys and Compounds, 483 (2009) 337-340.
    [57] Y.H. Liu, T. Fujita, A. Hirata, S. Li, H.W. Liu, W. Zhang, A. Inoue, M.W. Chen, Intermetallics, 21 (2012) 105-114.
    [58] J.P. Chu, J. Jang, J. Huang, H. Chou, Y. Yang, J. Ye, Y. Wang, J. Lee, F. Liu, P. Liaw, Thin Solid Films, 520 (2012) 5097-5122.
    [59] Y. Liu, S. Hata, K. Wada, A. Shimokohbe, Japanese Journal of Applied Physics, 40 (2001) 5382.
    [60] A.T. Negussie, W. Diyatmika, J.P. Chu, Y.L. Shen, J.S.C. Jang, C.H. Hsueh, Journal of Alloys and Compounds, 613 (2014) 157-163.
    [61] C.C. Yu, J.P. Chu, C.M. Lee, W. Diyatmika, M.H. Chang, J.Y. Jeng, Y. Yokoyama, Materials Science and Engineering A, 633 (2015) 69-75.
    [62] F. López-Huerta, B. Cervantes, O. González, J. Hernández-Torres, L. García-González, R. Vega, A.L. Herrera-May, E. Soto, Materials, 7 (2014) 4105-4117.
    [63] N. Kaushik, P. Sharma, S. Ahadian, A. Khademhosseini, M. Takahashi, A. Makino, S. Tanaka, M. Esashi, Journal of Biomedical Materials Research - Part B Applied Biomaterials, 102 (2014) 1544-1552.
    [64] J.L. Ke, C.H. Huang, Y.H. Chen, W.Y. Tsai, T.Y. Wei, J.C. Huang, Applied Surface Science, 322 (2014) 41-46.
    [65] C.J. Chung, H.I. Lin, J.L. He, Surface and Coatings Technology, 202 (2007) 1302-1307.
    [66] D.H. Song, S.H. Uhm, S.B. Lee, J.G. Han, K.N. Kim, Thin Solid Films, 519 (2011) 7079-7085.
    [67] J. Fu, A. Ji, D. Fan, J. Shen, Journal of Biomedical Materials Research - Part A, 79 (2006) 665-674.
    [68] E.M. Hetrick, M.H. Schoenfisch, Chemical Society Reviews, 35 (2006) 780-789.
    [69] X. Zhang, X. Huang, L. Jiang, Y. Ma, A. Fan, B. Tang, Applied Surface Science, 258 (2011) 1399-1404.
    [70] P.T. Chiang, G.J. Chen, S.R. Jian, Y.H. Shih, J.S.C. Jang, C.H. Lai, Fooyin Journal of Health Sciences, 2 (2010) 12-20.
    [71] J.H. Chu, J. Lee, C.C. Chang, Y.C. Chan, M.L. Liou, J.W. Lee, J.S.C. Jang, J.G. Duh, Surface and Coatings Technology, 259 (2014) 87-93.
    [72] Y.Y. Chu, Y.S. Lin, C.M. Chang, J.K. Liu, C.H. Chen, J.C. Huang, Materials Science and Engineering: C, 36 (2014) 221-225.
    [73] M. Balaceanu, T. Petreus, V. Braic, C.N. Zoita, A. Vladescu, C.E. Cotrutz, M. Braic, Surface and Coatings Technology, 204 (2010) 2046-2050.
    [74] W. Kaplonek, C. Lukianowicz, Coherence Correlation Interferometry in Surface Topography Measurements, in: D.I. Padron (Ed.) Recent Interferometry Applications in Topography and Astronomy, 2012.
    [75] D.T. Nguyen, D.P. Orgill, G.F. Murphy, The pathophysiologic basis for wound healing and cutaneous regeneration, Biomaterials for Treating Skin Loss, 2009, pp. 25-57.
    [76] S. Madge, A. Caron, R. Gralla, G. Wilde, S.K. Mishra, Intermetallics, 47 (2014) 6-10.
    [77] J.P. Chu, C.T. Lo, Y.K. Fang, B.S. Han, Applied Physics Letters, 88 (2006).
    [78] http://www.burtonsveterinary.com/media/catalog/category/suture_needles.jpg.

    無法下載圖示 全文公開日期 2020/06/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE