簡易檢索 / 詳目顯示

研究生: 阮海燈
Nguyen - Hai Dang
論文名稱: 使用磨料流拋光在中心加工機上對金屬玻璃表面進行精加工之研究
Surface finish of the bulk metallic glass using abrasive jet polishing process on the machining center
指導教授: 修芳仲
Fang- Jung Shiou
口試委員: 鄧昭瑞
Geo-Ry Tang
許巍耀
Wei-Yao Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 81
中文關鍵詞: Abrasive jet polishingbulk metallic glassTaguchi methodorthogonal arrayANOVA
外文關鍵詞: Abrasive jet polishing, bulk metallic glass, Taguchi method, orthogonal array, ANOVA
相關次數: 點閱:210下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This thesis aims to investigate the optimal abrasive jet polishing parameters for Zr-based bulk metallic glass (BMG) material by using the Taguchi method. An abrasive jet polishing (AJP) system has been newly designed and installed on a machining center. In order to determine the optimal polishing parameters for the BMG sample, four polishing parameters, namely the hydraulic pressure, the impact angle, the stand-off distance, and the polishing time were chosen as the factors of experiments. The optimal AJP parameters have been determined after carrying out the experiments based on the Taguchi’s L9 orthogonal array experimental results. These optimal parameters are the combination of the hydraulic pressure of 2 kg/cm2, the impact angle of 50o, the stand-off distance of 15 mm, and the polishing time of 60 minutes. The surface roughness can be improved from about Ra 0.13 μm to 0.044 μm by using the AJP optimal parameters. Besides, an analysis of variation (ANOVA) of the experimental data indicated that the polishing time and hydraulic pressure was the dominant parameters of the AJP process for the BMG material.


    This thesis aims to investigate the optimal abrasive jet polishing parameters for Zr-based bulk metallic glass (BMG) material by using the Taguchi method. An abrasive jet polishing (AJP) system has been newly designed and installed on a machining center. In order to determine the optimal polishing parameters for the BMG sample, four polishing parameters, namely the hydraulic pressure, the impact angle, the stand-off distance, and the polishing time were chosen as the factors of experiments. The optimal AJP parameters have been determined after carrying out the experiments based on the Taguchi’s L9 orthogonal array experimental results. These optimal parameters are the combination of the hydraulic pressure of 2 kg/cm2, the impact angle of 50o, the stand-off distance of 15 mm, and the polishing time of 60 minutes. The surface roughness can be improved from about Ra 0.13 μm to 0.044 μm by using the AJP optimal parameters. Besides, an analysis of variation (ANOVA) of the experimental data indicated that the polishing time and hydraulic pressure was the dominant parameters of the AJP process for the BMG material.

    Abstract i Acknowledgements ii Table of Contents iii List of Figures vi List of Tables ix Chapter 1 INTRODUCTION 10 1.1 Research motivation 10 1.2 Literature review 10 1.2.1 BMG properties and machining ability of BMGs 10 1.2.2 Ball burnishing process 11 1.2.3 Abrasive jet polishing (AJP) process 13 1.3 Thesis objectives 14 1.4 Outline of thesis 15 Chapter 2 BACKGROUND INFORMATION 16 2.1 Milling process and milling parameters 16 2.1.1 Milling process 16 2.1.2 Milling parameters 18 2.2 Ball burnishing process 19 2.2.1 The simplified theory of ball burnishing deformation 20 2.2.2 Effect of burnishing force on surface roughness 22 2.2.3 Effect of feed on surface roughness 23 2.2.4 Effect of ball material on surface roughness 23 2.2.5 Effect of burnishing speed on surface roughness 24 2.3 AJP process 24 2.3.1 AJP system 26 2.3.2 Model for the ductile and brittle mode material removal 28 2.3.3 Parameters of the AJP process 30 2.3.4 Footprint on the workpiece after AJP process 33 2.4 Surface roughness measurement 34 Chapter 3 TAGUCHI METHOD AND ANOVA ANALYSIS 38 3.1 Introduction 38 3.2 Control factors and noise factors 39 3.3 Orthogonal array 39 3.4 ANOVA and S/N Analysis 40 Chapter 4 EXPERIMENTAL WORK 43 4.1 Introduction 43 4.2 BMG sample 44 4.3 Sample preparation 44 4.3.1 Milling process 44 4.3.2 Ball burnishing process 46 4.4 AJP process 50 4.4.1 System setup 50 4.4.2 Procedure to conduct the experiments 58 Chapter 5 EXPRIMENTAL RESULT AND DISCUSSION 66 5.1 Experimental result and analysis 66 5.2 Discussion 69 Chapter 6 CONCLUSION AND RECOMMENDATION 73 6.1 Conclusion 73 6.2 Recommendation for future work 73 Appendix A 77 Appendix B 79 Appendix C 80 Appendix D 81

    [1] C. Suryanarayana, A. Inoue, Bulk metallic glasses, CRC Press, New York, 2011.
    [2] M. Miller, P. Liaw, Bulk metallic glasses: an overview, Springer, New York, 2008
    [3] M. M. Trexler, N. N. Thadhani, Mechanical properties of bulk metallic glasses, Progress in Materials Science 55 (2010) 759–839.
    [4] M. Bakkal, A. J. Shih, R. O. Scattergood, C. T. Liu, Chip formation, cutting forces, and tool wear in turning of Zr-based bulk metallic glass, International Journal of Machine Tools & Manufacture 44 (2004) 915–925.
    [5] M. Bakkal, V. Nakşiler, B. Derin, Machinability of bulk metallic glass materials on milling and drilling, Advanced Materials Research Vols. 83-86 (2010) pp 335-341.
    [6] M. Q. Jiang, L. H. Dai, Formation mechanism of lamellar chips during machining of bulk metallic glasses, Acta Materialia 57 (2009) 2730–2738.
    [7] N. H. Loh, S. C. Tam, Effects of ball burnishing parameters on surface finish – A literature survey and discussion, Precision engineering October 1988 Vol 10 No 4.
    [8] N. H. Loh, S. C. Tam, S. Miyazawa, A study of the effects of ball-burnishing parameters on surface roughness using factorial design, Journal of Mechanical Working Technology, 18 (1989) 53-61.
    [9] N. H. Loh, S. C. Tam, S. Miyazawa, Ball burnishing of tool steel, Precision Engineering
    Volume 15, Issue 2, April 1993, Pages 100-105.
    [10] L. Luca, S. N. Ventzel, I. Marinescu, Effects of working parameters on surface finish in ball-burnishing of hardened steels, Precision Engineering 29 (2005) 253–256.
    [11] F. J. Shiou, C. H. Chen, Determination of optimal ball-burnishing parameters for Plastic injection moulding steel, International Journal of Advanced Manufacture Technology (2003) 3:177–185.
    [12] F. J. Shiou, C. C. Hsu, Surface finishing of hardened and tempered stainless tool steel using sequential ball grinding, ball burnishing and ball polishing processes on a machining centre, Journal of Materials Processing Technology 2 0 5 ( 2 0 0 8 ) 249–258.
    [13] F. J. Shiou, C. H. Cheng, Ultra-precision surface finish of NAK80 mould tool steel using sequential ball burnishing and ball polishing processes, Journal of Materials Processing Technology 2 0 1 ( 2 0 0 8 ) 554–559.
    [14] F. J. Shiou, C. H. Chuang, Precision surface finish of the mold steel PDS5 using an innovative ball burnishing tool embedded with a load cell, Precision Engineering 34 (2010) 76–84.
    [15] H. Liu, J. Wang, Abrasive liquid jet as a flexible polishing tool, International Journal of Materials and Product Technology, Vol. 31, No. 1, 2008.
    [16] F. Li, Experimental and numerical investigation of abrasive waterjet polishing technology, Dissertation, The New Jersey Institute of Technology, 1996.
    [17] S. M. Booji, Fluid Jet Polishing possibilities and limitations of a new fabrication technique, Dissertation, Technische Universiteit Delft, 2003.
    [18] H. Liu, C. Z. Huang, J. Wang, Abrasive liquid jet as a flexible polishing tool, International Journal of Materials and Product Technology, Vol. 31, No. 1, 2008.
    [19] B. H. Yan, F. C. Tsai, L. W. Sun, R. T. Hsu, Abrasive jet polishing on SKD61 mold steel using SiC coated with Wax, Journal of Materials Processing Technology 2 0 8 ( 2 0 0 8 ) 318–329.
    [20] H. T. Zhu, C. Z. Huang, J. Wang, Q. L. Lia, C. L. Che, Experimental study on abrasive waterjet polishing for hard–brittle materials, International Journal of Machine Tools & Manufacture 49 (2009) 569–578.
    [21] http://www.mfg.mtu.edu/marc/primers/milling/
    [22] http://www.kanabco.com/vms/glossary/m/mill_parts.html
    [23] S. Kalpakjian, S. R. Schmid, Manufacturing, Engineering & Technology, Fifth Edition, ISBN 0-13-148965-8. c 2006 Pearson Education, Inc., Upper Saddle River, NJ.
    [24] http://www.uddeholm.com/
    [25] 陳建樺,塑膠模壓鑄用鋼之球擠光加工研究, 國立台灣科技大學, 機械工程學系碩士論文,2001。
    [26] http://www.ferroceramic.com/
    [27] H. Fang, P. Guo, J. Yu, Surface roughness and material removal in fluid jet polishing, Applied Optics, Vol. 45, No. 17, 10 June 2006.
    [28] ASME B46.1-1995, Surface texture (surface roughness, waviness, and lay): an American national standard, American Society of Mechanical Engineers, New York, 1996.
    [29] R. K. Roy, Design of experiments using the Taguchi approach: 16 Steps to product and process improvement, John Wiley & Sons, Inc., New York, 2001.
    [30] J. S. C. Jang, S. R. Jian , C. F. Chang, L. J. Chang, Y. C. Huang, T. H. Li, J. C. Huang, C. T. Liu, Thermal and mechanical properties of the Zr53Cu30Ni9Al8 base d bulk metallic glass microalloyed with silicon, Journal of Alloys and Compounds 478 (20 09) 215–219.
    [31] http://lubricants.petro-canada.ca/en/products/516.aspx

    QR CODE