簡易檢索 / 詳目顯示

研究生: 林怡珊
Yi-Shan Lin
論文名稱: 田口方法製備TiO2/Al2O3複合鍍層於陽極氧化鋁之性能探討
Taguchi Method to Optimize the Parameter of TiO2/Al2O3 Composite Coatings on Anodic Aluminum Oxide
指導教授: 王朝正
Chaur-Jeng Wang
王宜達
Yi-Ta Wang
口試委員: 王朝正
Chaur-Jeng Wang
王宜達
Yi-Ta Wang
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 86
中文關鍵詞: 電化學拋光陽極氧化鋁二氧化鈦三氧化二鋁田口實驗方法
外文關鍵詞: Electro-Chemical Polishing, Anodic Aluminum Oxide, Titanium Dioxide, Aluminium Oxide, Taguchi Method
相關次數: 點閱:230下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 反射率及耗損率對於太陽反射板之聚光效果有極大相關性,進一步影響太陽能板之光電轉換效率。本研究以電化學拋光及陽極處理法製備具高反射率及高吸附性之陽極氧化鋁(Anodic Aluminum Oxide, AAO)基板,並於陽極氧化鋁表面製備二氧化鈦複合三氧化二鋁鍍層,佐以田口實驗法(Taguchi Method)針對二氧化鈦鍛燒溫度、二氧化鈦與三氧化二鋁複合比例及電泳沉積時間進行最佳化參數研究。冀提供反射基板之抗腐蝕性及自潔性能優化,同時不犧牲基板之反射效果。
    實驗包含:(1) X光繞射儀進行晶格結構分析;(2) 動電位極化法評估基板之抗腐蝕性;(3) 掃描式電子顯微鏡觀察基板表面織構,佐以能量散射X射線光譜儀進行元素成分鑑定;(4) 接觸角量測儀測定基板表面親/疏水性;(5) 多通道光催化系統檢驗基板之自潔性能;(6) 紫外/可見光分光光譜儀進行基板反射率量測;(7) 鹽霧試驗儀加速模擬基板於天然環境下之耐候性。
    結果顯示,具混相之二氧化鈦與三氧化二鋁以莫耳比1:1進行複合,並電泳沉積20秒於陽極氧化鋁表面之基板擁有最低腐蝕速率0.012 mpy;相較於未處理鋁基板之腐蝕速率0.709 mpy,腐蝕速率獲得有效抑制。基板之反射率及光催化降解率分別為87.0 %及81.7 %;亦即,經二氧化鈦及三氧化二鋁複合鍍層進行表面修飾之陽極氧化鋁基板兼具高反射率及自潔性能,極具未來應用於太陽能反射板之發展價值。


    Solar conversion efficiency depends on the concentrated effect of solar reflectors, and the concentrated effect has a lot to do with its reflectance and depletion rate. In this study, an anodic aluminum oxide (AAO) substrate with high reflectivity was prepared by electro-chemical polishing method and anodizing method. Besides these surface treatments, a composite coating comprises titanium dioxide (TiO2) and aluminum oxide (Al2O3) was deposited on the surface of AAO substrates. This research would be performed by Taguchi method which centered about the parameters of calcining temperature of TiO2, the compound proportion between TiO2 and Al2O3 and deposition time. These treatments not only improved the efficiency of corrosion resistance and self-cleaning property but also maintained the reflectance of the substrates.
    The following are experiments of this research: (1) XRD for lattice structure analysis;(2) Dynamic polarization curves for corrosion resistance measurement;(3) SEM for surface morphology observation, and Energy-dispersive X-ray spectroscopy for appraising elemental composition;(4) Contact angle measuring instrument for evaluating the surface hydrophilicity;(5) Photocatalytic system for testing self-cleaning property of substrates;(6) UV-Vis to measure reflectivity;(7) Salt spray test simulates the natural environment to test the weathering resistance of the substrates.
    The results showed that the AAO substrate which was deposited by molar proportion of heterogeneous phase TiO2 to Al2O3 which was 1:1 by 20 seconds got the best corrosion resistance, and its corrosion rate was 0.012 mpy. Compare with the corrosion rate of untreated substrate was 0.709 mpy, the corrosion rate was inhibited successfully. Additionally, the reflectivity and the degradation rate of Rh B dye of the AAO substrate was 87.0 % and 81.7 %. In summary, not only did the AAO substrate have high reflectivity and self-cleaning property, but it also had excellent corrosion resistance. Therefore, AAO substrates with TiO2/Al2O3 coating have a great developmental potential in the application of solar reflector systems.

    摘要 I Abstract II 謝誌 IV 目錄 V 圖目錄 VIII 表目錄 X 第一章 前言 1 第二章 文獻回顧 3 2.1 太陽能 3 2.2 太陽能反射板之光學特性 5 2.2.1 反射現象 5 2.2.2 太陽能反射板材料選擇 6 2.3 電化學拋光 8 2.4 陽極氧化鋁形成機制 11 2.4.1 陽極處理反應機制 12 2.4.2 陽極處理控制變因 13 2.5 二氧化鈦 16 2.6 三氧化二鋁 18 2.7 電泳沉積 19 2.8 田口實驗方法 21 2.8.1 田口設計 21 2.8.2 影響因子 22 2.8.3 品質特性 23 2.8.4 直交表 23 2.8.5 田口數據分析 24 2.9 實驗儀器 25 2.9.1 X光繞射儀(X-ray Diffraction) 25 2.9.2 動電位極化法(Potentiodynamic) 26 2.9.3 掃描式電子顯微鏡(Scanning Electron Microscope) 26 2.9.4 接觸角量測儀(Contact Angle Measuring Instrument) 27 2.9.5 紫外/可見光分光光譜儀(UV-Vis Spectrophotometry) 28 2.9.6 鹽霧試驗(Salt Spray Test) 29 第三章 實驗方法 30 3.1 研究架構 30 3.2 實驗材料 31 3.2.1 實驗材料及藥品 31 3.2.2 實驗儀器及設備 32 3.3 田口方法實驗設計 33 3.4 基板製備 34 3.4.1 AA1050鋁基材前處理 34 3.4.2 陽極氧化鋁之表面處理 35 3.5 基板性能分析 36 3.5.1 材料特性檢測 36 3.5.2 自潔性能檢測 37 3.5.3 腐蝕性能檢測 39 第四章 結果與討論 41 4.1 晶格結構分析 41 4.2 田口方法參數最佳化分析 43 4.2.1 L9直交表之極化曲線量測 43 4.2.2 田口參數分析 45 4.2.3 田口確認實驗 48 4.3 表面性質分析 50 4.3.1 表面織構觀察 50 4.3.2 表面親水性分析 54 4.3.3 光催化降解檢測 55 4.4 基板特性分析 58 4.4.1 反射性能量測 58 4.4.2 耐候性測試 60 第五章 結論 63 第六章 未來研究方向 65 參考文獻 66

    [1] B. V. Mathiesen, H. Lund, and K. Karlsson, "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, vol. 88, no. 2, pp. 488-501, 2011.
    [2] F. Jia, H. Sun, and L. Koh, "Global solar photovoltaic industry: an overview and national competitiveness of Taiwan," Journal of Cleaner Production, vol. 126, pp. 550-562, 2016.
    [3] M. Pickard, "Global investment in renewable energy projects: How the whole world is jumping on the renewables bandwagon," Renewable Energy Focus, vol. 17, no. 6, pp. 229-230, 2016.
    [4] E. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, and K. H. Kim, "Solar energy: Potential and future prospects," Renewable and Sustainable Energy Reviews, vol. 82, pp. 894-900, 2018.
    [5] F. r. Ren, Z. Tian, J. Liu, and Y. t. Shen, "Analysis of CO2 emission reduction contribution and efficiency of China’s solar photovoltaic industry: Based on Input-output perspective," Energy, vol. 199, p. 117493, 2020.
    [6] A. Yushchenko, A. de Bono, B. Chatenoux, M. Kumar Patel, and N. Ray, "GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa," Renewable and Sustainable Energy Reviews, vol. 81, pp. 2088-2103, 2018.
    [7] M. F. Peintinger, M. J. Kratz, and T. Bredow, "Quantum-chemical study of stable, meta-stable and high-pressure alumina polymorphs and aluminum hydroxides," Journal of Materials Chemistry A, vol. 2, no. 32, pp. 13143-13158, 2014.
    [8] D. Malwad and V. Tungikar, "Development and performance testing of reflector materials for concentrated solar power: A review," Materials Today: Proceedings, 2020.
    [9] W. Han and F. Fang, "Fundamental aspects and recent developments in electropolishing," International Journal of Machine Tools and Manufacture, vol. 139, pp. 1-23, 2019.
    [10] W. Lee and S. J. Park, "Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures," Chemical Reviews, vol. 114, no. 15, pp. 7487-7556, 2014.
    [11] G. D. Sulka and W. J. Stępniowski, "Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures," Electrochimica Acta, vol. 54, no. 14, pp. 3683-3691, 2009.
    [12] A. Berardinelli and F. Parisi, "TiO2 in the food industry and cosmetics," in Titanium Dioxide (TiO2) and Its Applications: Elsevier, pp. 353-371, 2021.
    [13] R. Katal, S. Masudy-Panah, M. Tanhaei, M. H. D. A. Farahani, and H. Jiangyong, "A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis," Chemical Engineering Journal, vol. 384, p. 123384, 2020.
    [14] W. Wang, W. Mu, F. Ye, S. Trevisan, J. Dutta, and B. Laumert, "Solar selective reflector materials: Another option for enhancing the efficiency of the high-temperature solar receivers/reactors," Solar Energy Materials and Solar Cells, vol. 224, p. 110995, 2021.
    [15] X. M. Hu, J. R. Ma, J. Ying, M. Cai, and Y. Q. Kong, "Inferring future warming in the Arctic from the observed global warming trend and CMIP6 simulations," Advances in Climate Change Research, 2021.
    [16] Y. Yao, J. H. Xu, and D. Q. Sun, "Untangling global levelised cost of electricity based on multi-factor learning curve for renewable energy: Wind, solar, geothermal, hydropower and bioenergy," Journal of Cleaner Production, vol. 285, p. 124827, 2021.
    [17] A. Ejaz, H. Babar, H. M. Ali, F. Jamil, M. M. Janjua, I. M. R. Fattah, Z. Said, and C. Li, "Concentrated photovoltaics as light harvesters: Outlook, recent progress, and challenges," Sustainable Energy Technologies and Assessments, vol. 46, p. 101199, 2021.
    [18] S. Preet, "A review on the outlook of thermal management of photovoltaic panel using phase change material," Energy and Climate Change, vol. 2, p. 100033, 2021.
    [19] S. A. Kalogirou, "Solar thermal collectors and applications," Progress in Energy and Combustion Science, vol. 30, no. 3, pp. 231-295, 2004.
    [20] S. Ziuku, L. Seyitini, B. Mapurisa, D. Chikodzi, and K. van Kuijk, "Potential of Concentrated Solar Power (CSP) in Zimbabwe," Energy for Sustainable Development, vol. 23, pp. 220-227, 2014.
    [21] M. Shahabuddin, M. A. Alim, T. Alam, M. Mofijur, S. F. Ahmed, and G. Perkins, "A critical review on the development and challenges of concentrated solar power technologies," Sustainable Energy Technologies and Assessments, vol. 47, p. 101434, 2021.
    [22] A. N. Geisler, E. Austin, J. Nguyen, I. Hamzavi, J. Jagdeo, and H. W. Lim, "Visible light. Part II: Photoprotection against visible and ultraviolet light," Journal of the American Academy of Dermatology, vol. 84, no. 5, pp. 1233-1244, 2021.
    [23] E. Austin, A. N. Geisler, J. Nguyen, I. Kohli, I. Hamzavi, H. W. Lim, and J. Jagdeo, "Visible light. Part I: Properties and cutaneous effects of visible light," Journal of the American Academy of Dermatology, vol. 84, no. 5, pp. 1219-1231, 2021.
    [24] J. M. Palmer, "The measurement of transmission, absorption, emission, and reflection," Handbook of optics, vol. 2, pp. 25.1-25.25, 1995.
    [25] U. Rivera-Ortega, C. R. Hernández-Gómez, G. Vega-Torres, and M. E. Lopez-Medina, "Simple apparatus to calculate the refractive index of liquids based on Snell’s law," Measurement, vol. 134, pp. 658-661, 2019.
    [26] P. R. Bhattacharjee, "Refinement of the definitions of angles of incidence, reflection, refraction, and critical angle in ray optics," Optik, vol. 172, pp. 1187-1192, 2018.
    [27] J. B. Kim, S. Lee, K. Lee, I. Lee, and B. J. Lee, "Determination of absorption coefficient of nanofluids with unknown refractive index from reflection and transmission spectra," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 213, pp. 107-112, 2018.
    [28] A. Aditya, G. Balaji, B. C. Chengappa, K. Chethan Kumar, and S. A. Mohankrishna, "Design and development of Solar Stirling Engine for power generation," IOP Conference Series: Materials Science and Engineering, vol. 376, p. 012022, 2018.
    [29] Z. Song, J. Liu, and H. Yang, "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, vol. 298, p. 117247, 2021.
    [30] A. Heimsath and P. Nitz, "Scattering and specular reflection of solar reflector materials – Measurements and method to determine solar weighted specular reflectance," Solar Energy Materials and Solar Cells, vol. 203, p. 110191, 2019.
    [31] H. Adelkhani, S. Nasoodi, and A. Jafari, "A study of the morphology and optical properties of electropolished aluminum in the Vis-IR region," International Journal of Electrochemical Science vol. 4, pp. 238-246, 2009.
    [32] A. Yabuki, Y. Nagayama, and I. W. Fathona, "Porous anodic oxide film with self-healing ability for corrosion protection of aluminum," Electrochimica Acta, vol. 296, pp. 662-668, 2019.
    [33] A. M. Md Jani, D. Losic, and N. H. Voelcker, "Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications," Progress in Materials Science, vol. 58, no. 5, pp. 636-704, 2013.
    [34] M. R. Dowlapalli, P. Atanassov, J. Xie, and G. Rice, "Electrochemical oxidation resistance of carbonaceous materials," ECS Transactions, vol. 1, no. 8, p. 41, 2006.
    [35] M. Chen, S. Xie, G. Zhou, D. Wei, H. Wu, S. Takahashi, H. Matsumoto, and K. Takamasu, "Absolute distance measurement based on spectral interferometer using the effect of the FSR of a Fabry–Perot etalon," Optics and Lasers in Engineering, vol. 123, pp. 20-27, 2019.
    [36] A. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, "Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina," Journal of Applied Physics, vol. 84, no. 11, pp. 6023-6026, 1998.
    [37] F. Li, L. Zhang, and R. M. Metzger, "On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide," Chemistry of Materials, vol. 10, no. 9, pp. 2470-2480, 1998.
    [38] V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, and S. C. Pillai, "Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 25, pp. 1-29, 2015.
    [39] A. Abram and G. Dražić, "Structural and photocatalytic properties of hydrothermally-prepared boehmite/TiO2 coatings," Open Ceramics, p. 100153, 2021.
    [40] A. Fujishima, X. Zhang, and D. A. Tryk, "TiO2 photocatalysis and related surface phenomena," Surface Science Reports, vol. 63, no. 12, pp. 515-582, 2008.
    [41] J. Y. Hwang, G. h. Moon, B. Kim, T. Tachikawa, T. Majima, S. Hong, K. Cho, W. Kim, and W. Choi, "Crystal phase-dependent generation of mobile OH radicals on TiO2: Revisiting the photocatalytic oxidation mechanism of anatase and rutile," Applied Catalysis B: Environmental, vol. 286, p. 119905, 2021.
    [42] W. Wang, M. Wang, X. Feng, W. Zhao, C. Luan, and J. Ma, "Effects of deposition temperature on the structural and optical properties of single crystalline rutile TiO2 films," Materials Chemistry and Physics, vol. 211, pp. 172-176, 2018.
    [43] A. Jamwal, U. K. Vates, P. Gupta, A. Aggarwal, and B. P. Sharma, "Fabrication and Characterization of Al2O3–TiC-Reinforced Aluminum Matrix Composites," in Advances in Industrial and Production Engineering, Singapore, pp. 349-356, 2019.
    [44] P. Garg, A. Jamwal, D. Kumar, K. K. Sadasivuni, C. M. Hussain, and P. Gupta, "Advance research progresses in aluminium matrix composites: manufacturing & applications," Journal of Materials Research and Technology, vol. 8, no. 5, pp. 4924-4939, 2019.
    [45] V. Chauhan and R. Kumar, "Electronic excitation induced modifications in surface morphological, optical and physico-chemical properties of ALD grown nanocrystalline Al2O3 thin films," Superlattices and Microstructures, vol. 141, p. 106389, 2020.
    [46] M. Sinha and M. H. Modi, "Depth resolved compositional analysis of aluminium oxide thin film using non-destructive soft x-ray reflectivity technique," Applied Surface Science, vol. 419, pp. 311-318, 2017.
    [47] L. Besra and M. Liu, "A review on fundamentals and applications of electrophoretic deposition (EPD)," Progress in Materials Science, vol. 52, no. 1, pp. 1-61, 2007.
    [48] S. Taguchi and D. Byrne, The Taguchi approach to parameter design. Management Roundtable, 1990.
    [49] 李輝煌, 田口方法: 品質設計的原理與實務第四版. 高立出版社, 2011.
    [50] A. Ahmad, M. Pervaiz, S. Ramzan, M. Z. Kiyani, A. Khan, I. Ahmad, and A. M. Asiri, "Role of XRD for nanomaterial analysis," in Nanomedicine Manufacturing and Applications: Elsevier, pp. 149-161, 2021.
    [51] G. Badea, A. Caraban, M. Sebesan, S. Dzitac, P. Cret, and A. Setel, "Polarisation measurements used for corrosion rates determination," Journal of sustenable energy, vol. 1, no. 1, pp. 1-4, 2010.
    [52] K. F. Al-Sultani, Z. T. Khulief, and A. A. Hasan, "Characterization of microbiological influence corrosion for API 5L X46 pipeline by sulphate-reducing bacteria (SRB)," Materials Today: Proceedings, vol. 42, pp. 2169-2176, 2021.
    [53] T. Řiháček, M. Horák, T. Schachinger, F. Mika, M. Matějka, S. Krátký, T. Fořt, T. Radlička, C. W. Johnson, L. Novák, B. Sed’a, B. J. McMorran, and I. Müllerová, "Beam shaping and probe characterization in the scanning electron microscope," Ultramicroscopy, vol. 225, p. 113268, 2021.
    [54] Y. Baek, J. Kang, P. Theato, and J. Yoon, "Measuring hydrophilicity of RO membranes by contact angles via sessile drop and captive bubble method: A comparative study," Desalination, vol. 303, pp. 23-28, 2012.
    [55] M. L. Passos and M. L. M. Saraiva, "Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies," Measurement, vol. 135, pp. 896-904, 2019.
    [56] 中華民國國家標準,CNS 8886,"鹽水噴霧試驗法",民國91年。
    [57] A. García-Segura, A. Fernández-García, M. J. Ariza, F. Sutter, P. Watermeyer, M. Schmücker, and L. Valenzuela, "Corrosion on silvered-glass solar reflectors exposed to accelerated aging tests with polluting gases: A microscopic study," Corrosion Science, vol. 176, p. 108928, 2020.
    [58] D. J. Lim, N. A. Marks, and M. R. Rowles, "Universal Scherrer equation for graphene fragments," Carbon, vol. 162, pp. 475-480, 2020.
    [59] M. Xia, Y. Wang, and S. Xu, "Study on surface characteristics and stochastic model of corroded steel in neutral salt spray environment," Construction and Building Materials, vol. 272, p. 121915, 2021.
    [60] D. A. H. Hanaor and C. C. Sorrell, "Review of the anatase to rutile phase transformation," Journal of Materials Science, vol. 46, no. 4, pp. 855-874, 2011.
    [61] Y. H. Zhang and A. Reller, "Phase transformation and grain growth of doped nanosized titania," Materials Science and Engineering: C, vol. 19, no. 1, pp. 323-326, 2002.
    [62] H. Niazi, S. Yari, F. Golestani-Fard, M. Shahmiri, W. Wang, A. Alfantazi, and R. Bayati, "How deposition parameters affect corrosion behavior of TiO2-Al2O3 nanocomposite coatings," Applied Surface Science, vol. 353, pp. 1242-1252, 2015.
    [63] Z. M. Yaremko, N. H. Tkachenko, C. Bellmann, and A. Pich, "Redispergation of TiO2 particles in aqueous solutions," Journal of Colloid and Interface Science, vol. 296, no. 2, pp. 565-571, 2006.
    [64] N. Veronovski, P. Andreozzi, C. La Mesa, and M. Sfiligoj-Smole, "Stable TiO2 dispersions for nanocoating preparation," Surface and Coatings Technology, vol. 204, no. 9, pp. 1445-1451, 2010.
    [65] F. C. Walsh, C. Ponce de León, C. Kerr, S. Court, and B. D. Barker, "Electrochemical characterisation of the porosity and corrosion resistance of electrochemically deposited metal coatings," Surface and Coatings Technology, vol. 202, no. 21, pp. 5092-5102, 2008.
    [66] J. Manríquez and L. A. Godínez, "Tuning the structural, electrical and optical properties of Ti(III)-doped nanocrystalline TiO2 films by electrophoretic deposition time," Thin Solid Films, vol. 515, no. 7, pp. 3402-3413, 2007.
    [67] M. Takeuchi, Y. Onozaki, Y. Matsumura, H. Uchida, and T. Kuji, "Photoinduced hydrophilicity of TiO2 thin film modified by Ar ion beam irradiation," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 206, pp. 259-263, 2003.
    [68] Q. Zhang, Y. Fan, and N. Xu, "Effect of the surface properties on filtration performance of Al2O3–TiO2 composite membrane," Separation and Purification Technology, vol. 66, no. 2, pp. 306-312, 2009.
    [69] A. S. Rad, A. Afshar, and M. Azadeh, "Anti-reflection and self-cleaning meso-porous TiO2 coatings as solar systems protective layer: Investigation of effect of porosity and roughness," Optical Materials, vol. 107, p. 110027, 2020.
    [70] Y. S. Li, T. T. Li, X. F. Song, J. Y. Yang, G. Liu, J. T. Qin, Z. B. Dong, H. G. Chen, and Y. Liu, "Enhanced adsorption-photocatalytic reduction removal for Cr (VI) based on functionalized TiO2 with hydrophilic monomers by pre-radiation induced grafting-ring opening method," Applied Surface Science, vol. 514, p. 145789, 2020.
    [71] H. Wang, X. Li, and L. Tang, "Synthesis of 3D hierarchical structure TiO2 and its photocatalytic activity," Physica B: Condensed Matter, vol. 556, pp. 31-35, 2019.
    [72] X. Zhang, Y. Lin, D. He, J. Zhang, Z. Fan, and T. Xie, "Interface junction at anatase/rutile in mixed-phase TiO2: Formation and photo-generated charge carriers properties," Chemical Physics Letters, vol. 504, no. 1, pp. 71-75, 2011.
    [73] E. Celik, I. Keskin, I. Kayatekin, F. Ak Azem, and E. Özkan, "Al2O3–TiO2 thin films on glass substrate by sol–gel technique," Materials Characterization, vol. 58, no. 4, pp. 349-357, 2007.
    [74] S. S. Madaeni and N. Ghaemi, "Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation," Journal of Membrane Science, vol. 303, no. 1, pp. 221-233, 2007.
    [75] D. H. Kuo and K. H. Tzeng, "Characterization and properties of r.f.-sputtered thin films of the alumina–titania system," Thin Solid Films, vol. 460, no. 1, pp. 327-334, 2004.
    [76] U. O. Akkaya Arıer and F. Z. Tepehan, "Influence of Al2O3:TiO2 ratio on the structural and optical properties of TiO2–Al2O3 nano-composite films produced by sol gel method," Composites Part B: Engineering, vol. 58, pp. 147-151, 2014.

    QR CODE