簡易檢索 / 詳目顯示

研究生: 陳華偉
Hua-Wei Chen
論文名稱: 以紫外光發光二極體/光觸媒程序處理含甲酚水溶液之研究
Decomposition of o-Cresol in Aqueous Solution by UV-LED/TiO2 Process
指導教授: 顧洋
Young Ku
口試委員: 劉志成
Jhy-Chern Liu
李嘉平
Chia-Pyng Lee
李明哲
Ming-Jer Lee
張慶源
Ching-Yuan Chang
蔣本基
Pen-Chi Chiang
曾迪華
Dyi-Hwa Tseng
張祖恩
Juu-En Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 192
中文關鍵詞: 甲酚光觸媒催化發光二極體二氧化鈦
外文關鍵詞: o-Cresol, Periodic illumination, Photocatalysis, Platinum, Silver, UV-LED
相關次數: 點閱:331下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用紫外光發光二極體為光源,在泥漿反應器進行甲酚水溶液光催化分解,並探討各種實驗操作因子(光強度、二氧化鈦添加量、酸鹼度、初始甲酚濃度和週期性照射)對光利用率及甲酚分解行為的影響。由實驗結果發現,較高的紫外線光強度、溶氧量及酸鹼度都有促進甲酚降解的效果,而初始濃度效應大致符合Langmuir-Hinshelwood模式。此外,以紫外光發光二極體週期性照射光觸媒,能有效降解甲酚及提升光利用率,達到節能的目的。
    以光還原法將鉑和銀與二氧化鈦結合,製備鉑/二氧化鈦和銀/二氧化鈦兩種光觸媒。觸媒之物化特性分析項目包括:BET、XRD、 XPS、SEM、DRS、PL。結果發現鉑/二氧化鈦和銀/二氧化鈦皆能有效提高光觸媒之可見光的吸收。在薄膜反應器以鉑/二氧化鈦和銀/二氧化鈦進行甲酚水溶液光催化分解,並探討各種實驗操作因子(鉑和銀添加量、鍛燒溫度、酸鹼度、初始甲酚濃度)對光利用率及甲酚分解行為的影響。由結果顯示,不論在可見光或紫外光的照射下,以0.5%重量百分比的鉑和銀添加量之光觸媒有最佳的光活性。


    UV-LED was used in this investigation as the light source for the photocatalytic decomposition of o-cresol in aqueous solution. The effect of various experimental parameters (light intensity, catalyst loading, pH level, initial o-cresol concentration and controlled periodic illumination) on the quantum yield and temporal decomposition behavior of o-cresol were investigated by UV-LED/TiO2 process in a slurry reactor. The photocatalytic decomposition of o-cresol with the UV-light emitting diodes light could be well modeled by the Langmuir-Hinshelwood kinetic equation.
    Platinum and silver deposited TiO2 films were prepared on quartz substrates for the photodecomposition of o-cresol. Platinum and silver deposited on TiO2 photocatalysts were characterized by Brunauer-Emmett-Teller surface area measurement (BET), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), diffuse reflectance UV-Vis spectra (DRS) and photoluminescence (PL) emission spectra. The results indicated that the deposition of Ag/TiO2 and Pt/TiO2 promoted the optical absorption in the visible region and made it possible to be excited by visible light. The characteristics of Ag/TiO2 and Pt/TiO2 and the temporal behavior of o-cresol decomposition by Ag/TiO2 and Pt/TiO2 photocatalysis under visible light irradiation were investigated. The study on the influence of content of platinum, silver, pH values, calcination temperature, the characteristics of Ag/TiO2 and Pt/TiO2 and temporal decomposition behavior of o-cresol under visible light irradiation have been investigated.

    Table of Contents Page Chinese Abstract...……………………………………………………………………………...I English Abstract………………………………………...………………...………………….. II Acknowledgment...…………………………………………….……………………………. III Table of Contents…………………………………………………………..………………….V List of Figures……………………………………………………………….………………..IX List of Tables………………………………………………………………………….….....XIV List of symbols……………………………………………………………….……………...XV Chapter 1 Introduction………………………………...……………………………………………1 1.1 Background……………………………………….…………………………….1 1.2 Objectives and scope…………………………….……………………………..2 2 Literature Review……………………………………………………………………….4 2.1 Photolysis and photocatalysis………………………...………………………...4 2.1.1 Basic properties of TiO2………………….…………………………………..4 2.1.2 Applications of photocatalysts…………...…………………….…………….8 2.1.3 Background of photolysis and photocatalytic………………………………..9 2.1.4 Reaction mechanisms and kinetics………………..………………………..11 2.2 Factors affecting photocatalysis……………………...……………………….19 2.2.1 Type of reactor…………………………………….………………………..19 2.2.2 Effect of solution pH……………..……………….………………………..23 2.2.3 Effect of light intensity…………………………………………………..…30 2.2.4 Effect of dissolved oxygen……………………………….………………...32 2.2.5 Effect of initial concentration…………………………….………………...34 2.2.6 Effect of catalyst loading………………………...………….………………...36 2.2.7 Effect of temperature and anions………………...………….………………...39 2.2.8 Effect of pollutants…………………………...…….……….………………...40 2.2.9 Effect of metals dosage………………………….…….………………............41 2.2.10 Effect of controlled periodic illumination……...………….………………...43 2.3 Theoretical background and application of LEDs……………………………….45 2.3.1 Theoretical background of LEDs………..……………...…………………..45 2.3.2 Characteristics and develop of LEDs………...…………………………….48 2.3.3 Application of LEDs………………………………………………………..53 2.3.4 Application of short wavelength LEDs on UV/TiO2 process………..……..55 3 Experimental…………………………………………………………………….……..59 3.1 Materials………………………………………………………………………59 3.2 Apparatus and reactor design………………………………………...………..60 3.3 Procedures…………………………………………………………….……….72 3.3.1 Preparation and coating of TiO2, Pt/TiO2, and Ag/TiO2……………….…...72 3.3.2 Background experiments…………………………………….……………..76 3.3.3 Periodic illumination of LEDs……………………………………………...78 3.3.4 Photocatalytic process in slurry reactor…..………………………………...78 3.3.5 Photocatalytic process in fixed film reactor.………………………...……...79 3.4 Experimental conditions and structure…………………………….………….82 4 Results and Discussion………………………..……………………………………….83 4.1 Surface characterization of photocatalysts…………………..………………..83 4.1.1 Brunauer-Emmett-Teller surface area measurements (BET)…….....………83 4.1.2 XRD results of photocatalysts……………….…..…………...………….....85 4.1.3 SEM-EDS analysis of photocatalysts………..……………………………..90 4.1.4 XPS results of photocatalysts………………………………...…………….93 4.1.5 Diffuse reflectance UV-Vis spectra of the photocatalysts……………….....98 4.1.6 PL emission spectra of the photocatalysts……………….………………..101 4.2 Application of Pt/TiO2 and Ag/TiO2 catalysts on the o-cresol decomposition by visible light induced photocatalysis…………………………………………105 4.2.1 Temporal behavior of o-cresol decomposition and reaction intermediates with Pt/TiO2………………………………………………….………...…105 4.2.2 Enhancement mechanisms of Pt/TiO2 under visible light irradiation…......111 4.2.3 Effect of solution pH on o-cresol decomposition with Pt/TiO2……….…..116 4.2.4 Effect of calcinations temperature on o-cresol decomposition………...….118 4.2.5 Temporal behavior of o-cresol decomposition with Ag/TiO2………...…..120 4.3 Effect of Pt/TiO2 and Ag/TiO2 characteristics on o-cresol decomposition by UV/TiO2 process…………………………………….........…………………122 4.3.1 Temporal behavior of o-cresol decomposition with Ag/TiO2 and Pt/TiO2..122 4.3.2 Effect of UV light intensity on decomposition rate and photonic efficiency with Ag/TiO2 photocatalysts………………….………………………......128 4.4 Decomposition of o-cresol by UV-LED/TiO2 process………………………131 4.4.1 Effect of UV-LEDs light intensity……………………………..………….131 4.4.2 Effect of TiO2 loading………………………………………….…….……134 4.4.3 Effect of solution pH…………………………………………..………….137 4.4.4 Effect of dissolved oxygen…………………………………….………….141 4.4.5 Effect of solution temperature………………………………...…………..143 4.4.6 Effect of initial concentration of o-cresol………………..………………..146 4.4.7 Reaction kinetics……………………...…...………………………………149 4.5 Effect of LED light source on o-cresol decomposition………………...……154 4.5.1 LED light intensity distribution………...…………………………………154 4.5.2 Effect of dark period for periodic illumination……………………………157 4.5.3 Effect of duty cycle for periodic illumination…………………………….160 4.5.4 Effect of light intensity for periodic and continuous illumination………...167 4.5.5 Reaction kinetics for periodic illumination…………………………...…..171 4.5.6 Electric energy consumption for continuous and periodic illumination…..175 5 Conclusions and Recommendations………………………………………………….177 Reference……………………………………………………………………………………181 Appendix……………………………….……………………………………………………191 Vita………………………………………….……………………………………………….192

    Agrios, A. G., Gray, K. A. and Weitz, E., “Photocatalytic transformation of 2,4,5-trichlorophenol on TiO2 under sub-band-gap illumination,” Langmuir, Vol. 19, pp. 1402-1409 (2003)
    Bolton, J. R. G., Bircher, K. G., Tumas, W., Tolman C. A.,, McKinney, B. and Rouse, M., “Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven system,” Pure Appl. Chem., Vol. 73, pp. 627-637 (2001)
    Byrne, J. A., Eggins, B. R., Brown, N. M. D., McKinney, B. and Rouse, M., “Immobilisation of TiO2 powder for the treatment of polluted water,” Appl. Catal. B: Environ., Vol. 17, pp. 25-36 (1998)
    Bhatkhande, D. S., Pangarkar, V. G. and Beenackers A. A. C. M., “Photocatalytic degradation for environmental applications – a review,” J. Chem. Technol. Biotechnol., Vol. 77, pp. 102-116 (2001)
    Bhatkhande, D. S., Pangarkar, V. G. and Beenackers A. A. C. M., “Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation: Chemical effects and scaleup,” Water Res., Vol. 37, pp. 1223-1230 (2003)
    Blake, D. M., Webb, J., Turchi, C. and Magrini, K., “Kinetic and mechanistic overview of TiO2-photocatalyzed oxidation reactions in aqueous-solution,” Sol. Energy Mater., Vol. 24, pp. 584-593 (1991)
    Buechler, K. J., Nam, C. H., Zawistowski, T. M., Noble, R. D. and Koval, C. A., “Design and evaluation of a novel-controlled periodic illumination reactor to study photocatalysis,” Ind. Eng. Chem. Res ., Vol. 38, pp. 1258-1263 (1999)
    Cornu, C. J. G.., Colussi, A. J. and Hoffmann, M. R., “Quantum yields of the photocatalytic oxidation of formate in aqueous TiO2 suspensions under continuous and periodic illumination,” J. Phys. Chem. B, Vol. 10, pp. 1351-1354 (2001)
    Cornu, C. J. G.., Colussi, A. J. and Hoffmann, M. R., “Time scales and pH dependences of the redox processes determining the photocatalytic efficiency of TiO2 nanoparticles from periodic illumination experiments in the stochastic regime,” J. Phys. Chem. B, Vol. 107, pp. 3156-3160 (2003)
    Chen, J. N., Chan, Y. C. and Lu, M. C., “Photocatalytic oxidation of chlorophenols in the presence of manganese ions,” Water Sci Technol., Vol. 39, pp. 225-230 (1999)
    Cho, S. P., Hong, S. C. and Hong, S. I., “Photocatalytic degradation of the landfill leachate containing refractory matters and nitrogen compounds,” Appl. Cata. B, Vol. 39, pp. 125-133 (2002)
    Chakrabarti, S. and Dutta, B. K., “Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst,” J. Hazard. Mater., Vol. B112, pp. 269-278 (2004)
    Chen, D., and Ray, A. K., “Photodegradation kinetics of 4-nitrophenol in TiO2 suspension,” Water Res., Vol. 32, pp. 3223-3234 (1998)
    Daniel, D. and Gutz, I. G. R., “Microfluidic cell with a TiO2-modified gold electrode irradiated by an UV-LED for in situ photocatalytic decomposition of organic matter and its potentiality for voltammetric analysis of metal ions,” Electrochem. Commun., Vol. 9, pp. 522-528 (2007)
    Emeline, A. V., Ryabchuk, V. K. and Serpone, N., “Dogmas and misconceptions in heterogeneous photocatalysis,” J. Phys. Chem. A, Vol. 109, pp. 18515-18521 (2005)
    EPA US, “Reregistration eligibility document (RED) m-cresol and xylenol,” EPA-738-F-94-002, US (1994)
    Fu, X., Zeltner, W. A., Yang, Q. and Anderson, M. A., “Catalytic hydrolysis of dichlorodifluoromethane (CFC-12) on sol-gel-derived titania unmodified and modified with H2SO4,” J. Cata., Vol. 168, pp. 482-490 (1997)
    Fujishima, A., Hashoimoto, K. and Watanabe, T., “TiO2 Photocatalysis Fundamentals and Application,” BKC, Inc., Tokyo (1999)
    Fukuda, M., “Reliability and Degradation of Semiconductor Lasers and LEDs,” Artech House, MA, US (1991)
    Fernandes MacHado, N. R. C. and Santana, V. S., “Influence of thermal treatment on the structure and photocatalytic activity of TiO2 P25,” Cata. Today, 107-108, pp. 595-601 (2005)
    Goswami, D. Y. and Blake, D. M., “Cleaning up with sunshine,”Mech. Eng., Vol. 118, pp. 56-59 (1996)
    Galindo, C., Jacques, P. and Kalt, A., “Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor,” Chemosphere, Vol. 45, pp. 997-1005 (2001).
    Grahn, H. T., “Introduction to Semiconductor Physics,” World Scientific, Singapore (1999)
    Grela, M. A., and Colussi, A. J., “Kinetics of stochastic charge transfer and recombination events in semiconductor colloid relevance to photocatalysis efficiency,” J. Phys. Chem., Vol. 100, pp. 18214-18221 (1996)
    Hoffman, A. J., Carraway, E. R. and Hoffmann, M. R., “Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids,” Environ. Sci. Technol., Vol. 28, pp. 776-785 (1994)
    Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C. and Herrmann, J. M., “Photocatalytic degradation pathway of methylene blue in water,” Appl. Catal. B: Environ., Vol. 31, pp. 145-157 (2001)
    Jorge, S. M. A., Sene, J. J. and Florentino, A.O., “Photoelectrocatalytic treatment of p-nitrophenol using Ti/TiO2 thin-film electrode,” J. Photochem. Photobio. A:Chem., Vol. 174, pp. 71-75 (2005)
    Jiang, D., Zhao, H., Zhang, S., John, R. and Will, G. D., “Photoelectrochemical measurement of phthalic acid adsorptionon porous TiO2 film electrodes,” J. Photochem. Photobio. A:Chem., Vol. 156, pp. 201-206 (2003)
    Kabra, K., Chaudhary, R. and Sawhney, R. L., “Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review,” Ind. Eng. Chem. Res., Vol. 43, pp. 7683-7696 (2004)
    Kumar, P. M., Badrinarayanan, S. and Sastry, M., “Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: Correlation to presence of surface states,” Thin Solid Films., Vol. 358, pp. 122-130 (2000)
    Kim, S. and Choi, W., “Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: Demonstrating the existence of a surface-complex-mediated path,” J. Phys. Chem. B, Vol. 109, pp. 5143-5149 (2005)
    Kormann, C., Bahnemann, D. W. and Hoffmann, M. R., “Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions,” Environ. Sci. Technol., Vol. 25, pp. 494- 500 (1991)
    Kesselman, J. M., Shreve, G. A., Hoffmann, M. R., Lewis, N. S., “Flux-matching conditions at TiO2 photoelectrodes: is interfacial electron transfer to O2 rate-limiting in the TiO2 catalyzed photochemical degradation of organics,” Chemosphere, Vol. 98, pp. 13385- 13395 (1994)
    Kawaguchi, H. and Furuya, M., “Photodegradation of monochlorobenzene in titanium dioxide aqueous suspensions,” Chemosphere, Vol. 21, pp. 1435- 1440 (1990)
    Kumazawa, H., Inoue, M. and Kasuya, T., “Photocatalytic degradation of volatile and nonvolatile organic compounds on titanium dioxide particles using fluidized beds,” Ind. Eng. Chem. Res., Vol. 42, pp. 3237-3244 (2003)
    Ku, Y. and Hsieh, C. B., “Photocatalytic degradation of 2,4-dichlorophenol in aqueous TiO2 suspension,” Water Res., Vol. 26, pp. 1451-1456 1992)
    Ku, Y., Tseng, K. Y. and Wang, W. Y., “Decomposition of gaseous acetone in an annular photoreactor coated with TiO2 thin film,” Water Air Soil Pollut., Vol. 168, pp. 313-323 (2005)
    Lakshmi, S., Renganathan, R. and Fujita, S., “Study on TiO2-mediate photocatalytic degradation of methylene blue,” J. Photochem. Photobio. A:Chem., Vol. 88, pp. 163-167 (1995)
    Li, X. Z. and Li, F. B., “Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment,” Environ. Sci. Technol., Vol. 35, pp. 2381-2387 (2001)
    Li, X. Z., Li, F. B., Fan, C. M. and Sun, Y.P., “Photoelectrocatalytic degradation of humic acid in aqueous solutionusing a Ti/TiO2 mesh photoelectrode,” Water Res., Vol. 36, pp. 2215-2224 (2002)
    Linsebigler, A., Rusu, C. and Yates, J. T., “Absence of platinum enhancement of a photoreaction on TiO2-CO photooxidation on Pt/TiO2 (110),” JACS., Vol. 118, pp. 5284-5289 (1996)
    Leng, W., Liu, H., Cheng, S., Zhang, J. and Cao, C., “Kinetics of photocatalytic degradation of aniline in water over TiO2 supported on porous nickel,” J. Photochem. Photobio. A: Chem., Vol. 131, pp.125-132 (2000)
    Leng, W. H., Zhu, W. C., Ni, J., Zhang, Z., Zhang, J. Q. and Cao, C. N., “Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode,” Appl. Catal. A: Gen., Vol. 300, pp. 24-35 (2006)
    Lakshmi, S., Renganathan, R. and Fujita, S., “Study on TiO2-mediate photocatalytic degradation of methylene blue,” J. Photochem. Photobio. A: Chem., Vol. 88, pp. 163-167 (1995)
    Lim, T. H. and Kim, S. D., “Trichloroethylene degradation by photocatalysis in annular flow and annulus fluidized bed photoreactors,” Chemosphere, Vol. 54, pp. 305-312 (2004)
    Ling, C. M., Mohamed, A. R. and Bhatia, S., “Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream,” Chemosphere, Vol. 57, pp. 547-554 (2004)
    Malato, S., Blanco, J., Richter, C., Milow, B. and Maldonado, M. I., “Solar photocatalytic mineralization of commercial pesticides: methamidophos,” Chemosphere, Vol. 38, pp. 1145-1156 (1999)
    Matthews R. W., “Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide,” J. Catal., Vol. 111, pp. 264-272 (1988)
    Marc, P. T., Veronica, G. M., Miguel, A. B., Jaime, G. and Santiago, E., “Degradation of chlorophenols by means of advanced oxidation processes: a general review,” Appl. Catal. B: Environ., Vol. 47, pp. 219-256 (2004)
    McMurray T. A., Byrne, J. A., Dunlop, P. S. M., Winkelman, J. G. M., Eggins, B. R. and McAdams, E. T., “Intrinsic kinetics of photocatalytic oxidation of formic and oxalic acid on immobilised TiO2 films,” Appl Catal A: Gen., Vol. 1, pp. 105-110 (2004)
    Mizushima, K., Tanaka, M., Asai, A. and Iida, S., “Impurity levels of iron-group ions in TiO2(II),” J. Phys. Chem. Solids, Vol. 40, pp. 1129-1140 (1979)
    Mills, A. and Wang, J., “Photobleaching of methylene blue sensitised by TiO2: an ambiguous system, ” J. Photochem. Photobio. A: Chem., Vol.127, pp. 123-134 (1999)
    Moon, J., Yun, C. Y., Chung, K. W., Kang, M. S. and Yi, J., “Photocatalytic activation of TiO2 under visible light using Acid Red 44,” Catal. Today, Vol. 89, pp. 77-86 (2003)
    Muruganandham, M. and Swaminathan, M., “Solar Photocatalytic degradation of a reactive azo dye in TiO2-suspension,” Sol. Energy Mater. Sol. Cells., Vol. 81, pp. 439-457 (2004)
    Nakajima, H., Mori, T. and Watanabe, M., “Influence of platinum loading on photoluminescence of TiO2 powder,” J. Appl. Phys., Vol. 96, pp. 925-927 (2004)
    Nishida, K. and Ohgaki, S., “TiO2 photocatalysis for indoor air applications. Effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene,” Water Sci. Technol., Vol. 29, pp. 1223-1231 (1995)
    Obee, T. N. and Brown, R. T., “Photolysis of aromatic chemical compounds in aqueous TiO2 suspensions,” Water Sci. Technol., Vol. 30, pp. 39-46 (1994)
    Okamoto, K., Yamamoto, Y., Tanaka, H. and Itaya, A., “Kinetics of heterogeneous photocatalytic decomposition of phenol over anatase TiO2 powder,” Bull. Chem. Soc. Jpn., Vol. 58, pp. 2023-2027 (1985)
    Ollis, D. F., Pelizzetti, E. and Serpone, N., “Photocatalyzed destruction of water contaminants,” Environ. Sci. Technol., Vol. 25, pp.1523-1529 (1991)
    Ollis, D. F. and Peral, J., “Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation,” J. Catal., Vol. 136, pp. 554-565 (1992)
    Pal, B., Hata, T., Goto, K. and Nogami, G., “Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation: Chemical effects and scaleup,” J. Mol. Catal. A: Chem., Vol. 169, pp. 147-155 (2001).
    Peill, N. J. and Hoffmann, M. R., “Development and optimization of a TiO2-coated fiber-optic cable reactor: Photocatalytic degradation of 4-chlorophenol,” Environ Sci Technol., Vol.29, pp. 2974-2981 (1995).
    Plummer, J. D., M. Deal, D. and Griffin, P. B., “Silicon VLSI Technology,” Prentice Hall, New Jersey, US (2000)
    Prairie, M. R., Evans, L. R., Stange, B. M. and Martinez, S. L., “An investigation of TiO2 photocatalysis for the treatment of water contaminated with metals and organic chemicals,” Environ. Sci. Technol., Vol. 27, pp. 1776-1782 (1993)
    Roselin, L. S., Rajarajeswari, G. R., Selvin, R., Sadasivam, V., Sivasankar, B. and Rengaraj, K., “Sunlight/ZnO-mediated photocatalytic degradation of reactive red 22 using thin film flat bed flow photoreactor,” Sol. Energy, Vol.73, pp.281-285 (2002)
    Rahman, M. M., Krishna, K. M., Soga, T., Jimbo, T. and Umeno, M., “Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films,” J. Phys. Chem., Vol.60, pp. 201-210 (1999)
    Rudra, A., Thacker, N. P. and Pande, S. P., “Hydrogen peroxide and ultraviolet irradiations in water treatment,” Environ. Monit. Assess., Vol. 109, pp. 189-197 (2005)
    Serpone, N. and Emeline, A. V., “Suggested terms and definitions in photocatalysis and radiocatalysis,” Int. J. Photoenergy, Vol. 4, pp. 91-131 (2002)
    Sun, C. C. and Chou, T. C., “ Electrochemically promoted photocatalytic oxidation of nitrite ion by using rutile form of TiO2/Ti electrode,” J. Mol. Catal. A: Chem., Vol. 151, pp. 133-145 (2000)
    Sun, B., Vorontsov, A. V. and Smirniotis, P. G., “Role of platinum deposited on TiO2 in phenol photocatalytic oxidation,” Langmuir, Vol. 19, pp. 3151-3156 (2003)
    Sun, B., Panagiotis, G. and Boolchand, P., “Visible light photocatalysis with platinized rutile TiO2 for aqueous organic oxidation,” Langmuir, Vol. 21, pp. 11397-11403 (2005)
    Sabate, J., Anderson M. A., Aguado, M. A., Gimenez, J., March S. C. and Hill, C. G.., “Comparision of TiO2 powder suspensions and TiO2 ceramic membranes supported on glass as photocatalytic systems in the reduction of chromium (VI),” J. Mol. Catal., Vol. 71, pp. 57-68 (1992)
    Sze, S. M., “Physics of Semiconductor Divices,” John Wiley & Sons, Inc., New York, US (1991)
    Sauer, T., Neto, G. C., José, H. J. and Moreira R. F. P. M.,“Kinetics of Photocatalytic Degradation of Reactive Dyes in a TiO2 Slurry Reactor,” J. Photochem. Photobio. A., Vol. 149, pp.147-154 (2002).
    Sun, L. and Bolton, J. R., “Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions,” J. Phys. Chem., Vol. 100, pp. 4127-4134 (1996)
    Selcuk, H., Sene, J. J. and Anderson, M. A., “Photoelectrocatalytic humic acid segradation kinetics and effect of pH, applied potential and inorganic ions,” J. Chem. Technol. Biotechnol., Vol. 78, pp. 979-984 (2003)
    Senthilkumaar, S., Porkodi, K., Gomathi, R., Maheswari, A. G. and Manonmani, N., “Sol-gel derived silver doped nanocrystalline titania catalysed photodegradation of methylene blue from aqueous solution,” Dyes. Pigm., Vol. 69, pp. 22-32 (2006)
    Sakthivel, S., Shankarb, M. V., Palanichamyb, M., Arabindoob, B., Bahnemanna, D. M. and Murugesanb, V., “Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst,” Water Res., Vol. 38, pp. 3001-3008 (2004)
    Sczechowski, J. G., Koval, C. A. and Noble, R. D., “Evidence of critical illumination and dark recovery times for increasing photoefficiency of aqueous heterogeneous photocatalysis,” J. Photochem. Photobiol. A: Chem., Vol. 74, pp. 273-278 (1993)
    Sczechowski, J. G., Koval, C. A. and Noble, R. D., “Taylor vortex reactor for heterogeneous photocatalysis,” Chem. Eng. Sci., Vol. 50, pp. 3163-3173 (1995)
    Stewart, G. and Fox, M. A., “The effect of dark recovery time on the photoefficiency of heterogeneous photocatalysis by TiO2 suspended in nonaqueous media,” Res. Chem. Intermed., Vol. 21, pp. 933-938 (1995)
    Subramanian, V., Kamat, P. V. and Wolf, E. E., “Mass-transfer and kinetic studies during the photocatalytic degradation of an azo dye on optically transparent electrode thin film,” Ind. Eng. Chem. Res., Vol.42, pp. 2131-2138 (2003)
    Sreethawong, T., Suzuki, Y. and Yoshikawa, S., “Synthesis, characterization, and photocatalytic activity for hydrogen evolution of nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol-gel process,” J. Solid State Chem., Vol. 178, pp. 329-338 (2005)
    Tanaka, K. and Reddy, K. S. N., “Photodegradation of phenoxyacetic acid and carbamate pesticides on TiO2,” Appl. Catal. B: Environ., Vol. 39, pp. 305-310 (2002)
    Torimoto, T., Ito, S., Kuwabata, S. and Yoneyama, H., “Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of Propyzamide,” Environ. Sci. Technol., Vol. 30, pp. 1275-1281 (1996)
    Tseng, Y. H., Kuo, C. S., Huang, C. H., Li, Y. Y., Chou, P. W., Cheng, C. L. and Wong, M. S., “Visible-light-responsive nano-TiO2 with mixed crystal lattice and its photocatalytic activity,” Nanotechnology, Vol. 17, 2490-2497 (2006).
    Villacres, R., Ikeda, S., Torimoto, T. and Ohtani, B., “Development of a novel photocatalytic reaction system for oxidative decomposition of volatile organic compounds in water with enhanced aeration,” J. Photochem. Photobio. A: Chem., Vol. 160, pp. 121-126 (2003)
    Vamathevan, V., Amal, R., Beydoun D., Low, G. and McEvoy, S., “Silver metallisation of titania particles: effects on photoactivity for the oxidation of organics,” Chem. Eng. J., Vol. 198, pp. 127-139 (2004)
    Vamathevan, V., Amal, R., Beydoun D., Low, G. and McEvoy, S., “Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles,” J. Photochem. Photobiol. A: Chem., Vol. 148, pp. 233-245 (2002)
    Villasenor, J., Reyes, P. and Pecchi, G., “Catalytic and photocatalytic ozonation of phenol on MnO2 supported catalysts,” Cata. Today, Vol. 76, pp. 121-131 (2002)
    Wang, W. Y. and Ku, Y., “Photocatalytic degradation of Reactive Red 22 in aqueous solution by UV-LED radiation” Water Res., Vol. 40, pp. 2249-2258 (2006).
    Wang, K. H., Tsai, H. H. and Hsieh, Y. H., “Study of photocatalytic degradation of trichloroethylene in vapor phase on TiO2 photocatalys,” Chemosphere, Vol. 36, pp. 2763-2773 (1998)
    Wang, W. and Ku, Y., “The light transmission and distribution in an optical fiber coated with TiO2 particles,” Chemosphere, Vol. 50, pp. 999-1006 (2003)
    Wang, C. Y., Rabani, J., Bahnemann, D. W. and Dohrmann, J. K., “Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts,” J. Photochem. Photobiol. A: Chem., Vol. 148, pp. 169-176 (2002)
    Warren, B. E., “X-ray Diffraction,” Dover Publications Inc., New York, US (1990)
    Wu, C. G., Chao, C. C. and Kuo, F. T., “Enhancement of the photocatalytic performance of TiO2 catalysts via transition metal modification,” Cata. Today, Vol. 97, pp. 103-112 (2004)
    Zukauskas, A., Shur, A. S. and Caska, R., “Introduction to Solid-State Lighting,” John Wiley & Sons, Inc., New York, US (2002)
    Zhang, T., Oyama, T., Aoshima, A., Hidaka, H., Zhao, J. and Serpone, N., “Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation,” J. Photochem. Photobio. A: Chem., Vol. 140, pp. 163-172 (2001)
    Zaidi, A. H. and Goswami, D. Y., “Solar photocatalytic post-treatment of anaerobically digested distillery effluent,” Proceedings of the American Solar Energy Society Annual Conference, Minneapolis, US (1995)

    QR CODE