簡易檢索 / 詳目顯示

研究生: 謝曜聰
Yao-tsung Hsieh
論文名稱: 氮化鎵元件p型接觸微影製程研發
P-contact Photolithography Process Development for GaN-based Devices
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 趙良君
Liang -Chiun Chao
胡能忠
Neng-Chung Hu
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 83
中文關鍵詞: 發光二極體微影製程蕭基接觸氮化鎵太陽能電池
外文關鍵詞: Solar cell, Photolithography, Schottky contact, LED, GaN
相關次數: 點閱:274下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鎵是製作發光二極體最主要的材料之一,而氮化鎵的直接能隙(3.4eV)與氮化銦直接能隙(0.7eV)所混合的三元化合物氮化銦鎵(InGaN)可做為發光二極體以及太陽能電池元件。
    由於p型氮化鎵之功函數(7.5eV)大於常使用的金屬(6eV),使得在電極接面處產生了蕭基接觸現象,進而影響了元件的特性。本論文為了改善p型電極的接觸特性,我們製作了傳輸線實驗,並分別量測在不同退火氣體包括氮氣(N2)、氧氣(O2)、潔淨乾燥空氣(Clean Dry Air, CDA)時的I-V特性曲線。我們從CDA這一組實驗數據中得到最低的特徵接觸電阻,且其I-V曲線最接近歐姆特性,而採用此參數的發光二極體會比以氮氣為退火氣體的有顯著較低的啟動電壓。
    在製作過程中,我們發現製作p型電極微影製程時,負光阻會因高台邊緣的高低落差過大,造成旋轉塗佈不均勻,使得將光阻移除並帶走光阻上的金屬(lift-off) 的製程出現瑕疵而造成漏電流現象,為了改善漏電流現象,我們調整了製程參數,使得負光阻可以有效的反轉成所要的圖型,去除了漏電流現象,使得太陽能電池元件可得到2V高開路電壓。


    GaN is one of the major materials for fabricating light-emitting diodes (LED). The ternary compound semiconductor InxGa1−xN having a direct band gap from about 0.7eV to 3.4 eV is applicable in the fields of light-emitting diodes and solar cells.
    Because p-GaN has a larger work function(7.5 eV) than metals (under 6eV), p-GaN metal contact often behaves like Schottky contact that deteriorates the performance of the devices.
    In order to solve this problem, this study is aiming at fabricating ohmic p-type contacts. Based on the principle of transmission line model, experiments under different annealing gases including N2, O2 and Clean Dry Air (CDA) were performed. I-V curves and specific contact resistances were measured and compared.
    We obtained the lowest specific contact resistance while using CDA annealing gas, and its IV characteristic is the most near ohmic. As a result, the turn-on voltage of our LED has been significantly reduced. Moreover, in the photolithography process, we observed nonuniform negative photoresist spreading due to large mesa height. That caused incomplete photoresist reversal and lift-off leading to short circuit between p and n electrodes. We adjusted parameters of the photolithography process and eliminated leakage current. As a result, the open-circuit voltage of our solar cell has been increased to 2V.

    口試委員會審定書# 誌謝ii 中文摘要iii ABSTRACTiv 目錄v 圖片目錄viii 表格目錄xi 第一章緒論1 1.1研究動機3 1.2氮化鎵材料的發展與介紹4 1.3氮化鎵太陽能電池的發展與介紹8 第二章發光二極體及太陽能電池原理與介紹10 2.1發光二極體原理與介紹10 2.1.1發光二極體原理10 2.1.2發光二極體的等效電路13 2.2太陽能電池原理與構造19 2.2.1太陽光源19 2.2.2太陽能電池原理21 2.2.3太陽能電池的電流電壓特性與轉換效率23 2.2.4太陽能電池的等效電路24 2.3金屬與半導體接觸25 2.3.1蕭基接觸(Schottky contact)27 2.3.2歐姆接觸(Ohmic contact)29 2.3.3矩形傳輸線模型 (Rectangular transmission line model, RTLM) 理論30 第三章元件製程及量測儀器介紹35 3.1量測儀器介紹35 3.1.1L-I&I-V 量測系統35 3.1.2光激發螢光(Photoluminescence, PL)量測系統36 3.1.3太陽光源模擬器及電性量測系統37 3.2晶圓檢測37 3.2.1PL量測37 3.2.2霍爾量測39 3.3元件製程42 3.3.1太陽能電池元件及發光二極體製程設計42 3.3.2霍爾量測用之元件製作51 3.3.3傳輸線模型量測元件製作51 第四章氮化鎵元件製程問題及改善方法53 4.1降低高啟動電壓53 4.1.1在p型氮化鎵因蕭基接觸所導致的高啟動電壓問題53 4.1.2分別以乾燥空氣CDA及氮氣做為p型電極的退火氣體影響53 4.1.3以傳輸線實驗驗證接觸電阻的I-V曲線線性程度56 4.2解決漏電流問題57 4.2.1製程引發的元件漏電流現象57 4.2.2調整曝光時間改善微影製程60 4.2.3製程改善結果60 第五章發光二極體及太陽能電池元件的量測與討論65 5.1元件量測結果65 5.2LED量測結果討論66 5.2.1漏電流改善66 5.2.2製程改善蕭基接觸67 5.3太陽能電池元件量測結果討論73 5.3.1短路電流結果討論73 5.3.2漏電流與開路電壓結果討論73 5.4結論及未來展望75 參考文獻77

    [1]Nakamura, S., Senoh, M. and Mukia, T. (1993). P-GaN/n-InGaN/GaN Double-heterostructure Blue-light-emitting Diodes. Jpn. J. Appl. Phys., Vol. 32, pp. L8-L11.

    [2]林明獻(2008)。太陽電池技術入門。台北縣土城市:全華圖書股份有限公司。

    [3]Solar cell. (n.d.). Retrieved May 18, 2010, from http://en.wikipedia.org/wiki/Solar_cell

    [4]黃鶴,2009,氮化鎵發光二極體與太陽能電池積體化的可行性研究。國立台灣科技大學光電工程所碩士論文。

    [5]張凱彥,2009,GaN/InGaN多重量子井之太陽電池模擬研究。國立台灣科技大學光電工程所碩士論文。

    [6]Wurtzite crystal structure. (n.d.). Retrieved April 26, 2010, from http://en.wikipedia.org/wiki/Wurtzite_crystal_structure

    [7]Davydov, V. Yu., Klochikhin, A.A., Seisyan, R.P., Emtsev, V.V., Ivanov, S.V., Bechstedt, F., et al. (2002). Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap. Phys. Stat. Solidi (b), p. 229, R1.

    [8]Matsuoka, T., Okamoto H., Nakao M., Harima H., and Kurimoto E. (2002). Optical bandgap energy of wurtzite InN. Appl. Phys. Lett., Vol. 81, p. 1246.

    [9]Johnson, W. C., Parsons, J. B., Crew, M. C. (1932). J. Phys. Chem., Vol. 36, p. 2561.

    [10]Maruska, H. P. and Tietjen, J. J. (1969). The preparation and properties of vapor-deposited single-crystalline GaN. Appl. Phys. Lett., Vol. 15, p. 327.

    [11]Pankove, J. I., Miller E. A. and Berkeyheiser, J. E. (1971). GaN Electroluminescence Diodes. RCA Review, Vol. 32, p. 383.

    [12]Patrick, M. (2009). LEDs for Light Applications. UK and USA: ISTE and John Wiley & Sons.

    [13]Yoshida, S., Misawa, S. and Gonda, S. (1983). Epitaxial growth of GaN/AlN heterostructures. J. Vac. Sci. Tech., Vol. B1, p. 250.

    [14]Hiroshi, A., Tsunemori, A. and Isamu A. (1990). Stimulated Emission Near Ultraviolet at Room Temperature from a GaN Film Grown on Sapphire by MOVPE Using an AlN Buffer Layer. Jpn. J. Appl. Phys., Vol. 29, pp. L205-L206.

    [15]Nakamura, S., Pearton, S. and Fasol, G. (2000). The Blue Laser Diode : The Complete Story . Berlin: Springer.

    [16]Usui, A., Sunakawa, H., Sakai , A. and Yamaguchi, A. A. (1997). Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy. Jpn. J. appl. Phys., Vol. 36, p. L889.

    [17]Amano, H., Kito, M., Hiramatsu, K. and Akasaki, I. (1989). P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron-Beam Irradiation. Jpn. J. Appl. Phys. Part 2-Letters, Vol. 28, pp. L2112-L2114.

    [18]Nakamura, S., Mukai, T., Senoh, M. and Iwasa, N. (1992). Thermal annealing effects on p-Type Mg-doped GaN films. Jpn. Journal of Appl. Phys., Vol. 31, L139.

    [19]Nakamura, S. (1993). High-power InGaN/GaN double‐heterostructure violet light emitting diodes. Appl. Phys. Lett., Vol. 62, No. 19, pp. 2390-2392.

    [20]Nakamura, S., Senoh, M. and Mukia, T. (1993). P-GaN/n-InGaN/GaN Double-heterostructure Blue-light-emitting Diodes. Jpn. J. Appl. Phys., Vol. 32, p. L8.

    [21]Nakamura, S., Senoh, M., Iwasa, N. and Nagahama, S. (1995). High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures. Jpn. J. Appl. Phys., Vol. 2, 34(7A):797-9.

    [22]Nakamura, S., Masayuki, S., Shinichi, N., Naruhito, I., Takao, Y., Toshio, M., et al. (1996). InGaN-based multi-quantum-well-structure laser diodes. Jpn. J. Appl. Phys., Vol. 2, 35(1B): L74-1.

    [23]Wu, J., Walukiewicz, W., Yu, K. M., Ager III, J. W., Haller, E. E. Lu, H., Schaff, W. J., Saito,Y. and Nanishi,Y. (2002). Unusual properties of the fundamental bandgap of InN. Appl. Phys. Lett., Vol. 80, p. 3967.

    [24]Neufeld, C. J., Toledo, N. G., Cruz, S. C., Iza, M., DenBaars, S. P. and Mishra, U. K. (2008). High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap. Appl. Phys. Lett., Vol. 93, 143502.

    [25]Pantha, R. B., Li, J., Lin, J. Y. and Jiang, H. X. (2009). InGaN/GaN multiple quantum well solar cells with long operatingwavelengths. Appl. Phys. Lett., Vol. 94, 063505.

    [26]Tsai, C. L., Liu, G. S., Fan, G. C. and Lee, Y. S. (2010). Substrate-free large gap InGaN solar cells with bottom reflector. Solid-State Electronics., Vol. 54, pp. 541-544.

    [27]Imogen, M. P., Daniel, D. K., Arthur, J. F., and Harry A. A. (2010). Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells. Appl. Phys. Lett., Vol. 96, 153501.

    [28]Jampana, B. R., Melton, A. G., Jamil, M., Faleev, N. N., Opila, R. L., Ferguson, I. T., Honsberg, C. B. (2010). Design and Realization of Wide-Band-Gap(2.67eV) InGaN p-n Junction Solar Cell. IEEE Electron Device Lett., Vol. 31, pp. 32-34.

    [29]陳隆建(2008)。發光二極體之原理與製程。台北縣土城市:全華圖書股份有限公司。

    [30]郭浩中、賴芳儀、郭守義(2009)。LED原理與應用。台北市:五南圖書股份有限公司。

    [31]劉如熹(2008) 。白光發光二極體製作技術-由晶粒金屬化至封裝。台北縣土城市:全華圖書股份有限公司。

    [32]Rhoderick E. H. and Williams R. H. (1988). Metal–Semiconductor Contacts, Clarendon Press, Oxford, UK, New York, pp. 98-99.

    [33]Shah J. M., Li Y.-L., Gessmann Th., and Schubert E. F. (2003). Experimental analysis and theoretical model foranomalously high ideality factors (n >> 2.0) in AlGaN/GaN p-n junction diodes. J. Appl. Phys., Vol. 94, p. 2627.

    [34]Radiometry. (n.d.). Retrieved May 28, 2010, from http://en.wikipedia.org/wiki/Radiometry

    [35]Photometry. (n.d.). Retrieved May 5, 2010, from http://en.wikipedia.org/wiki/Photometry_(optics)

    [36]蔡進譯(2005)。超高效率太陽電池-從愛因斯坦的光電效應談起。物理雙月刊,廿七卷(五期),(701-719)。取自http://www.psroc.phys.ntu.edu.tw/bimonth/download.php?d=2&cpid=146&did=8

    [37]Solar Simulation product training. Newport Corporation. Retrieved May 15, 2010, from http://www.newport.com/images/webDocuments-EN/images/12298.pdf

    [38]Reeves, G. K. and Harrison, H. B. (1982). Obtaining the specific contact resistance from transmission line model measurements. IEEE Electron Device Lett., Vol. EDL-3, p. 111.

    [39]Guo, H., Andagana, H. B. and Cao, X. A. (2010). Au-Doped Indium Tin Oxide Ohmic Contacts to p-Type GaN. J. Electron. Mater., Vol. 5, 5, pp. 494-498.

    [40]Chuah, L.S., Hassan, Z. and Abu Hassan, H. (2010).Ohmic contacts properties of Ni/Ag metallization scheme on p-type GaN. J. Non-Cryst. Solids, Vol. 356, 3, pp. 181-185.

    [41]Chary, I., Chandolu, A., Borisov, B., Kuryatkov, V., Nikishin, S. and Holtz, M. (2009). Influence of Surface Treatment and Annealing Temperatureon the Formation of Low-Resistance Au/Ni Ohmic Contactsto p-GaN. J. Electron. Mater., Vol. 38, 4, pp. 545-550.

    [42]Kim, S. Y., Jang, H. W. and Lee, J. L. (2003). Effect of an indium-tin-oxide overlayer on transparent NiOAu ohmic contact on p-type GaN. Appl. Phys. Lett., Vol. 82, 1, pp. 61-63.

    [43]Chen, Z. Z., Qin Z. X., Tong Y. Z., Hu X. D., Yu T. J., Yang Z. J., et al. (2003). Thermal annealing effects on Ni/Au contacts to p type GaN indifferent ambient. Mater. Sci. Eng. B, Vol. 100, pp. 199-203.

    [44]Narayan, J., Wang, H., Oh, T.-H., Choi, H. K. and Fan, J. C. C. (2002). Formation of Epitaxial Au/Ni/Au Contacts to p-GaN. Appl. Phys. Lett., Vol. 81, pp. 3978-3980.

    [45]Van der Pauw, L. J. (1958). A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Tech. Rev., Vol. 20, p. 220.

    [46]Sheet Resistance Mapping for GaN-Based Light-Emitting Diodes Using Lehighton Electronics’ LEI-1510 Instrument. Thomas Gessmann and E. Fred Schubert. Retrieved May 15, 2010, from http://www.ecse.rpi.edu/~schubert/Course-Teaching-modules/

    QR CODE