簡易檢索 / 詳目顯示

研究生: 范詠傑
Yong-Jie Fan
論文名稱: 以熱注入法合成藍光鈣鈦礦量子點
Synthesizing Blue-Emitting Perovskite Quantum Dots via Hot Injection Method
指導教授: 陳良益
Liang-Yih Chen
口試委員: 江志強
Jyh-Chiang Jiang
邱昱誠
Yu-Cheng Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 224
中文關鍵詞: 銫鉛鹵素鈣鈦礦藍光量子點鹵素過量法正四丁基六氟磷酸銨量子點發光二極體
外文關鍵詞: cesium lead halogen perovskite blue emission quantum dots, halogen excess method, n-tetrabutylammonium hexafluorophosphate, quantum dot light-emitting diode
相關次數: 點閱:185下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,因為量子點顯示技術興起,全無機銫鉛鹵素鈣鈦礦量子點因其螢光量子效率高、窄螢光半高寬等優勢,引起了廣泛關注。然而,在紅/綠/藍三原色中,氯化銫鉛鈣鈦礦藍光量子點相較綠光與紅光量子點,其光電性質仍有大幅度改善的空間,對於日後進行全彩量子點發光二極體的發展無疑是一大限制。因此,在本研究將使用熱注入法探討氯化銫鉛鈣鈦礦藍光量子點的合成與光電性質。在研究中,藉由鹵素過量法以添加溴化鋅與氯化鋅的方式,使溴氯化銫鉛鈣鈦礦藍光量子點的螢光量子效率提升至20.4 %;此外,亦透過陰離子置換法將氯化銫鉛鈣鈦礦藍光量子點結構中部份氯離子以溴離子取代,更可提高藍光量子點的螢光量子效率達38.5 %。以上兩種方法,除了可用來提高氯化銫鉛鈣鈦礦藍光量子點的螢光效率之外,更可藉此進行激發光波段的調整。而在合成最後離心過程中,產物主要分散於懸浮相中,但仍可發現有許多不具發光性質的沉澱相存在。為了有效地提高量子點的產率,在本研究中進一步的將懸浮相與沉澱相進行優化處理。在此,以正四丁基六氟磷酸銨與超純水各別對懸浮相與沉澱相進行處理。經正四丁基六氟磷酸銨處理之後的懸浮相與沉澱相的螢光量子效率可分別達到80.7 %與59.4 %。隨後,使用本實驗室自行合成的三原色量子點進行量子點發光二極體製作與光電性質分析。其中,綠光量子點發光二極體的啟動電壓為3.60 V,最大輝度值為352 cd/m2,電流效率為2.57 cd/A,外部量子效率為0.821 %;紅光量子點發光二極體的啟動電壓為5.30 V,最大輝度值為106 cd/m2,電流效率為0.311 cd/A,外部量子效率為0.660 %;藍光量子點發光二極體的最大輝度值為0.389 cd/m2,電流效率4.85x10-3 cd/A,外部量子效率8.87x10-3 %。透過此三原色量子點發光二極體所形成的色域可達125 %的NTSC標準。


    Recently, due to the rise of quantum dots display technology, all inorganic cesium lead halogen (CsPbX3, X=Cl, Br, I) perovskite quantum dots (PQDs) have attracted wide attention due to their advantages of high photoluminescence quantum yield (PL-QY) and narrow fluorescence full width at half maximum (FWHM). However, in red/green/blue colors, cesium lead chloride perovskite (CsPbCl3) blue emission PQDs have much room for improvement in optoelectronic properties compared to green and red emission PQDs and it will be the bottleneck for full-color quantum dots light-emitting diode (QD-LED). Therefore, in this study, the hot injection method was used to investigate the synthesis and optoelectronic properties of CsPbCl3 PQDs. By using zinc bromide and zinc chloride as excess halogens during synthesis for improving the PL-QY of cesium lead bromide chloride (CsPb(Br/Cl)3) PQDs to achieve 20.4 %. In addition, the anion exchange process was employed to replace part of chloride in the structure of CsPbCl3 PQDs as bromide for improving the PL-QY of CsPb(Br/Cl)3 PQDs to achieve 38.5 %. The above two methods can not only improve the PL-QY of blue emission PQDs, but can also adjust the emission wavelength. In the final stage, the centrifugation was used to separate the main product in the suspension phase and the non-emission by-product in precipitation phase. In order to effectively improve the yield of PQDs, the suspension phase and precipitation phase were further optimized. Herein, n-tetrabutylammonium hexafluorophosphate (TBAPF6) and ultrapure water were employed to treat suspension phase and precipitation phase. The PL-QY of the suspension phase and precipitation phase after treatment with TBAPF6 reached 80.7% and 59.4%, respectively. Subsequently, the red/green/blue emission QDs synthesized by lab were used to make QD-LED and analyzed their optolelectronic properties. Among them, the turn-on voltage (Von), maximum luminance (Lummax), current efficiency (CE) and external quantum efficiency (EQE) of cesium lead bromide (CsPbBr3)green emission QD-LED were 3.60 V, 352 cd/m2, 2.57 cd/A and 0.821%. The Von, Lummax, CE and EQE of cesium lead bromide iodide (CsPb(Br/I)3) red emission QD-LED were 5.30 V, 106 cd/m2, 0.311 cd/A and 0.660%. The Lummax, CE and EQE of CsPb(Br/Cl)3 blue emission QD-LED were 0.389 cd/m2, 4.85x10-3 cd/A and 8.87x10-3%. The gamut of three color QD-LED can achieve 125% of NTSC standard.

    中文摘要 I Abstract III 致謝 V 目錄 VI 表目錄 IX 圖目錄 XIII 第一章、緒論 1 1-1 前言 1 1-2 研究目的與動機 3 第二章、理論基礎與文獻回顧 5 2-1 奈米材料與半導體 5 2-1-1 奈米材料簡介 5 2-1-2 半導體材料 8 2-1-3 半導體量子點材料 12 2-2 鈣鈦礦材料 14 2-2-1 鈣鈦礦結構 14 2-2-2 有機-無機金屬鹵化物鈣鈦礦材料 15 2-2-3 全無機金屬鹵化物鈣鈦礦材料 16 2-3 全無機銫鉛鹵素鈣鈦礦量子點合成 17 2-3-1 熱注入技術 17 2-3-2 室溫再結晶技術 20 2-3-3 離子置換法 23 2-3-4 銫鉛鹵素鈣鈦礦量子點的尺寸與形狀的控制 27 2-4 量子點性質優化與藍光量子點的限制與挑戰 33 2-4-1 核殼結構與配體穩定性控制 33 2-4-2 金屬鹵化鹽處理 38 2-4-3 缺陷剝離 42 2-4-4 銫鉛鹵素藍光鈣鈦礦量子點的限制與挑戰 44 2-5 全無機銫鉛鹵素鈣鈦礦量子點發光二極體 52 第三章、實驗設計 64 3-1 實驗藥品 64 3-2 分析儀器設備 72 3-3 實驗流程圖 85 3-4 實驗步驟 86 3-4-1 以不同的反應比例合成CsPb(Br/Cl)3量子點 86 3-4-2 以陰離子置換法合成CsPb(Br/Cl)3量子點 88 3-4-3 以鹵素過量法合成CsPb(Br/Cl)3量子點 89 3-4-4 以正四丁基六氟磷酸銨進行合成後處理 90 3-4-5 以水分子後處理進行沉澱相的回收優化 91 3-4-6 發光二極體綠光量子點的製備 92 3-4-7 發光二極體紅光量子點的製備 93 3-4-8 發光二極體藍光量子點的製備 94 3-4-9 量子點螢光量子效率的量測 95 3-4-10 量子點發光二極體的製備 97 3-4-11 量子點發光二極體的特性量測 100 第四章、結果與討論 101 4-1 CsPb(Br/Cl)3藍光量子點之製程探討 101 4-1-1 銫與鉛的反應比例分析 101 4-1-2 以陰離子置換法合成CsPb(Br/Cl)3藍光鈣鈦礦量子點 110 4-1-3 以鹵素過量法合成藍光鈣鈦礦量子點 118 4-2 CsPb(Br/Cl)3藍光量子點後處理優化參數之探討 126 4-2-1 以正四丁基六氟磷酸銨進行合成後優化處理 127 4-2-2 以水分子進行沉澱相的回收處理 148 4-3 CsPbX3量子點發光二極體製備與光電特性分析 159 第五章、結論 179 第六章、參考文獻 181

    1. G. Giorgi, J.-I. Fujisawa, H. Segawa and K. Yamashita, Organic–Inorganic Hybrid Lead Iodide Perovskite Featuring Zero Dipole Moment Guanidinium Cations: A Theoretical Analysis, The Journal of Physical Chemistry C 119 (9), 4694-4701 (2015).
    2. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko, Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut, Nano Letters 15 (6), 3692-3696 (2015).
    3. Q. A. Akkerman, V. D'Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato and L. Manna, Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions, Journal of the American Chemical Society 137 (32), 10276-10281 (2015).
    4. S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang and D. Pan, Room-Temperature and Gram-Scale Synthesis of CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals with 50-85 % Photoluminescence Quantum Yields, Chemical Communications 52 (45), 7265-7268 (2016).
    5. B. R. Sutherland, A. K. Johnston, A. H. Ip, J. Xu, V. Adinolfi, P. Kanjanaboos and E. H. Sargent, Sensitive, Fast, and Stable Perovskite Photodetectors Exploiting Interface Engineering, ACS Photonics 2 (8), 1117-1123 (2015).
    6. V. Adinolfi, O. Ouellette, M. I. Saidaminov, G. Walters, A. L. Abdelhady, O. M. Bakr and E. H. Sargent, Fast and Sensitive Solution-Processed Visible-Blind Perovskite UV Photodetectors, Advanced Materials 28 (33), 7264-7268 (2016).
    7. Y. H. Kim, H. Cho, J. H. Heo, T. S. Kim, N. Myoung, C. L. Lee, S. H. Im and T. W. Lee, Multicolored Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes, Advanced Materials 27 (7), 1248-1254 (2015).
    8. J. Li, S. G. Bade, X. Shan and Z. Yu, Single-Layer Light-Emitting Diodes Using Organometal Halide Perovskite/Poly(ethylene oxide) Composite Thin Films, Advanced Materials 27 (35), 5196-5202 (2015).
    9. S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss and M. V. Kovalenko, Low-Threshold Amplified Spontaneous Emission and Lasing from Colloidal Nanocrystals of Caesium Lead Halide Perovskites, Nature Communications 6, 8056 (2015).
    10. Y. Fu, H. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Zhu and S. Jin, Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I), ACS Nano 10 (8), 7963-7972 (2016).
    11. B. A. Koscher, J. K. Swabeck, N. D. Bronstein and A. P. Alivisatos, Essentially Trap-Free CsPbBr3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment, Journal of the American Chemical Society 139 (19), 6566-6569 (2017).
    12. F. Di Stasio, S. Christodoulou, N. Huo and G. Konstantatos, Near-Unity Photoluminescence Quantum Yield in CsPbBr3 Nanocrystal Solid-State Films via Postsynthesis Treatment with Lead Bromide, Chemistry of Materials 29 (18), 7663-7667 (2017).
    13. J. Y. Woo, Y. Kim, J. Bae, T. G. Kim, J. W. Kim, D. C. Lee and S. Jeong, Highly Stable Cesium Lead Halide Perovskite Nanocrystals through in Situ Lead Halide Inorganic Passivation, Chemistry of Materials 29 (17), 7088-7092 (2017).
    14. F. Liu, Y. Zhang, C. Ding, S. Kobayashi, T. Izuishi, N. Nakazawa, T. Toyoda, T. Ohta, S. Hayase, T. Minemoto, K. Yoshino, S. Dai and Q. Shen, Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100 % Absolute Photoluminescence Quantum Yield, ACS Nano 11 (10), 10373-10383 (2017).
    15. J. Pan, Y. Shang, J. Yin, M. De Bastiani, W. Peng, I. Dursun, L. Sinatra, A. M. El-Zohry, M. N. Hedhili, A. H. Emwas, O. F. Mohammed, Z. Ning and O. M. Bakr, Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes, Journal of the American Chemical Society 140 (2), 562-565 (2018).
    16. 馬振基,奈米材料科技原理與應用(第三版). (全華圖書股份有限公司, 2017).
    17. 汪信、劉孝恆,奈米材料科學簡明教程. (滄海圖書資訊股份有限公司, 2011).
    18. 蔡宏營,奈米科技概論與應用. (五南圖書出版股份有限公司, 2013).
    19. 林貞君、林旻澐,材料科學與工程導論基礎篇(第八版). (高立圖書有限公司, 2014).
    20. S. O. Kasap, Optoelectronics and Photonics. (Prentice Hall, 2013).
    21. A. P. Alivisatos., Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science 271 (5251), 933-937 (1996).
    22. S. Jagtap, P. Chopade, S. Tadepalli, A. Bhalerao and S. Gosavi, A Review on the Progress of ZnSe as Inorganic Scintillator, Opto-Electronics Review 27 (1), 90-103 (2019).
    23. A. S. Bhalla, R. Guo and R. Roy, The Perovskite Structure – a Review of Its Role in Ceramic Science and Technology, Material Research Innovations 4 (1), 3-26 (2000).
    24. Z. Cheng and J. Lin, Layered Organic–Inorganic Hybrid Perovskites: Structure, Optical Properties, Film Preparation, Patterning and Templating Engineering, CrystEngComm 12 (10), 2646 (2010).
    25. M. A. Green, A. Ho-Baillie and H. J. Snaith, The Emergence of Perovskite Solar Cells, Nature Photonics 8 (7), 506-514 (2014).
    26. J. Shamsi, A. S. Urban, M. Imran, L. De Trizio and L. Manna, Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties, Chemical Reviews 119 (5), 3296-3348 (2019).
    27. R. Rossetti, S. Nakahara and L. E. Brus, Quantum Size Effects in the Redox Potentials, Resonance Raman Spectra, and Electronic Spectra of CdS Crystallites in Aqueous Solution, The Journal of Chemical Physics 79 (2), 1086-1088 (1983).
    28. M. Nikl, K. Nitsch, K. Polak, G. P. Pazzi, P. Fabeni, D. S. Citrin and M. Gurioli, Optical Properties of The Pb­2+-Based Aggregated Phase in a CsCl Host Crystal: Quantum-Confinement Effects, Physical Review B Condens Matter 51 (8), 5192-5199 (1995).
    29. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, Journal of the American Chemical Society 131, 6050-6051 (2009).
    30. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh and S. I. Seok, Iodide Management in Formamidinium-Lead-Halide–Based Perovskite Layers for Efficient Solar Cells, Science 356, 1376-1379 (2017).
    31. J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress and A. Hagfeldt, Promises and Challenges of Perovskite Solar Cells, Science 358, 739-744 (2017).
    32. F. Sahli, J. Werner, B. A. Kamino, M. Brauninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J. J. Diaz Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen and C. Ballif, Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency, Nature Materials 17 (9), 820-826 (2018).
    33. A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo and P. R. F. Barnes, Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells, Chemistry of Materials 27 (9), 3397-3407 (2015).
    34. H. Huang, M. I. Bodnarchuk, S. V. Kershaw, M. V. Kovalenko and A. L. Rogach, Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance, ACS Energy Letters 2 (9), 2071-2083 (2017).
    35. N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M. S. Islam and S. A. Haque, Fast Oxygen Diffusion and Iodide Defects Mediate Oxygen-Induced Degradation of Perovskite Solar Cells, Nature Communications 8, 15218 (2017).
    36. T. C. Jellicoe, J. M. Richter, H. F. Glass, M. Tabachnyk, R. Brady, S. E. Dutton, A. Rao, R. H. Friend, D. Credgington, N. C. Greenham and M. L. Bohm, Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals, Journal of the American Chemical Society 138 (9), 2941-2944 (2016).
    37. A. Wang, X. Yan, M. Zhang, S. Sun, M. Yang, W. Shen, X. Pan, P. Wang and Z. Deng, Controlled Synthesis of Lead-Free and Stable Perovskite Derivative Cs2SnI6 Nanocrystals via a Facile Hot-Injection Process, Chemistry of Materials 28 (22), 8132-8140 (2016).
    38. X. Zhang, W. Wang, B. Xu, H. Liu, H. Shi, H. Dai, X. Zhang, S. Chen, K. Wang and X. W. Sun, Less-Lead Control toward Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes, ACS Applied Materials & Interfaces 10 (28), 24242-24248 (2018).
    39. A. K. Guria, S. K. Dutta, S. D. Adhikari and N. Pradhan, Doping Mn2+ in Lead Halide Perovskite Nanocrystals: Successes and Challenges, ACS Energy Letters 2 (5), 1014-1021 (2017).
    40. R. Begum, M. R. Parida, A. L. Abdelhady, B. Murali, N. M. Alyami, G. H. Ahmed, M. N. Hedhili, O. M. Bakr and O. F. Mohammed, Engineering Interfacial Charge Transfer in CsPbBr3 Perovskite Nanocrystals by Heterovalent Doping, Journal of the American Chemical Society 139 (2), 731-737 (2017).
    41. I. Levchuk, A. Osvet, X. Tang, M. Brandl, J. D. Perea, F. Hoegl, G. J. Matt, R. Hock, M. Batentschuk and C. J. Brabec, Brightly Luminescent and Color-Tunable Formamidinium Lead Halide Perovskite FAPbX3 (X = Cl, Br, I) Colloidal Nanocrystals, Nano Letters 17 (5), 2765-2770 (2017).
    42. B. Xu, W. Wang, X. Zhang, W. Cao, D. Wu, S. Liu, H. Dai, S. Chen, K. Wang and X. Sun, Bright and Efficient Light-Emitting Diodes Based on MA/Cs Double Cation Perovskite Nanocrystals, Journal of Materials Chemistry C 5 (25), 6123-6128 (2017).
    43. X. Zhang, H. Liu, W. Wang, J. Zhang, B. Xu, K. L. Karen, Y. Zheng, S. Liu, S. Chen, K. Wang and X. W. Sun, Hybrid Perovskite Light-Emitting Diodes Based on Perovskite Nanocrystals with Organic-Inorganic Mixed Cations, Advanced Materials 29 (18) (2017).
    44. X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song and H. Zeng, CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes, Advanced Functional Materials 26 (15), 2435-2445 (2016).
    45. S. Sun, D. Yuan, Y. Xu, A. Wang and Z. Deng, Ligand-Mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals via Reprecipitation Process at Room Temperature, ACS Nano 10 (3), 3648-3657 (2016).
    46. W. van der Stam, J. J. Geuchies, T. Altantzis, K. H. van den Bos, J. D. Meeldijk, S. Van Aert, S. Bals, D. Vanmaekelbergh and C. de Mello Donega, Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3 Perovskite Nanocrystals through Cation Exchange, Journal of the American Chemical Society 139 (11), 4087-4097 (2017).
    47. G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent and M. V. Kovalenko, Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I), Nano Letters 15 (8), 5635-5640 (2015).
    48. C. B. Murray, D. J. Norris and M. G. Bawendi, Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites, The Journal of Organic Chemistry 115, 8706-8715 (1993).
    49. W. W. Yu and X. Peng, Formation of High-Quality CdS and OtherII VI Semiconductor Nanocrystals inNoncoordinating Solvents Tunable Reactivityof Monomers, Angewandte Chemie International Edition 41, 2368−2371 (2002).
    50. C. R. Bullen and P. Mulvaney, Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene, Nano Letters 4, 2303−2307 (2004).
    51. X. Li, F. Cao, D. Yu, J. Chen, Z. Sun, Y. Shen, Y. Zhu, L. Wang, Y. Wei, Y. Wu and H. Zeng, All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications, Small 13 (9) (2017).
    52. H. Kasi, H. S. Nalwa, H. Oikawa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh and H. Nakanishi, A Novel Preparation Method of Organic Microcrystals, Japanese Journal of Applied Physics 31, 1132-1134 (1992).
    53. Y. S. Zhao, H. Fu, A. Peng, Y. Ma, D. Xiao and J. Yao, Low-Dimensional Nanomaterials Based on Small Organic Molecules: Preparation and Optoelectronic Properties, Advanced Materials 20 (15), 2859-2876 (2008).
    54. J. Mizusaki, K. Arai and K. Fueki, Ionic Conduction of the Perovskite-Type Halides, Solid State Ionics 11, 203-211 (1983).
    55. N. Pellet, J. Teuscher, J. Maier and M. Grätzel, Transforming Hybrid Organic Inorganic Perovskites by Rapid Halide Exchange, Chemistry of Materials 27 (6), 2181-2188 (2015).
    56. M. V. Kovalenko, L. Protesescu and M. I. Bodnarchuk, Properties and Potential Optoelectronic Applications of Lead Halide Perovskite Nanocrystals, Science 358, 745-750 (2017).
    57. H. Liu, Z. Liu, W. Xu, L. Yang, Y. Liu, D. Yao, D. Zhang, H. Zhang and B. Yang, Engineering the Photoluminescence of CsPbX3 (X = Cl, Br, and I) Perovskite Nanocrystals Across the Full Visible Spectra with the Interval of 1 nm, ACS Applied Materials & Interfaces 11 (15), 14256-14265 (2019).
    58. L. De Trizio and L. Manna, Forging Colloidal Nanostructures via Cation Exchange Reactions, Chemical Reviews 116 (18), 10852-10887 (2016).
    59. D. H. Son, S. M. Hughes, Y. Yin and A. P. Alivisatos, Cation Exchange Reactions in Ionic Nanocrystals, Science 306, 1009−1012 (2004).
    60. L. Protesescu, S. Yakunin, S. Kumar, J. Bar, F. Bertolotti, N. Masciocchi, A. Guagliardi, M. Grotevent, I. Shorubalko, M. I. Bodnarchuk, C. J. Shih and M. V. Kovalenko, Dismantling the "Red Wall" of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium-Cesium Lead Iodide Nanocrystals, ACS Nano 11 (3), 3119-3134 (2017).
    61. K. Hills-Kimball, Y. Nagaoka, C. Cao, E. Chaykovsky and O. Chen, Synthesis of Formamidinium Lead Halide Perovskite Nanocrystals through Solid–Liquid–Solid Cation Exchange, Journal of Materials Chemistry C 5 (23), 5680-5684 (2017).
    62. D. Yu, F. Cao, Y. Shen, X. Liu, Y. Zhu and H. Zeng, Dimensionality and Interface Engineering of 2D Homologous Perovskites for Boosted Charge-Carrier Transport and Photodetection Performances, The Journal of Physical Chemistry Letters 8 (12), 2565-2572 (2017).
    63. W. Li, Z. Wang, F. Deschler, S. Gao, R. H. Friend and A. K. Cheetham, Chemically Diverse and Multifunctional Hybrid Organic–Inorganic Perovskites, Nature Reviews Materials 2 (3) (2017).
    64. Y. Bekenstein, B. A. Koscher, S. W. Eaton, P. Yang and A. P. Alivisatos, Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies, Journal of the American Chemical Society 137 (51), 16008-16011 (2015).
    65. D. Zhang, S. W. Eaton, Y. Yu, L. Dou and P. Yang, Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires, Journal of the American Chemical Society 137 (29), 9230-9233 (2015).
    66. A. Pan, B. He, X. Fan, Z. Liu, J. J. Urban, A. P. Alivisatos, L. He and Y. Liu, Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors, ACS Nano 10 (8), 7943-7954 (2016).
    67. E. Fanizza, F. Cascella, D. Altamura, C. Giannini, A. Panniello, L. Triggiani, F. Panzarea, N. Depalo, R. Grisorio, G. P. Suranna, A. Agostiano, M. L. Curri and M. Striccoli, Post-Synthesis Phase and Shape Evolution of CsPbBr3 Colloidal Nanocrystals: The Role of Ligands, Nano Research 12 (5), 1155-1166 (2019).
    68. F. Di Stasio, M. Imran, Q. A. Akkerman, M. Prato, L. Manna and R. Krahne, Reversible Concentration-Dependent Photoluminescence Quenching and Change of Emission Color in CsPbBr3 Nanowires and Nanoplatelets, The Journal of Physical Chemistry Letters 8 (12), 2725-2729 (2017).
    69. C. Bi, S. Wang, S. V. Kershaw, K. Zheng, T. Pullerits, S. Gaponenko, J. Tian and A. L. Rogach, Spontaneous Self-Assembly of Cesium Lead Halide Perovskite Nanoplatelets into Cuboid Crystals with High Intensity Blue Emission, Advanced Science 6 (13), 1900462 (2019).
    70. G. Almeida, L. Goldoni, Q. Akkerman, Z. Dang, A. H. Khan, S. Marras, I. Moreels and L. Manna, Role of Acid-Base Equilibria in the Size, Shape, and Phase Control of Cesium Lead Bromide Nanocrystals, ACS Nano 12 (2), 1704-1711 (2018).
    71. Q. A. Akkerman, A. L. Abdelhady and L. Manna, Zero-Dimensional Cesium Lead Halides: History, Properties, and Challenges, The Journal of Physical Chemistry Letters 9 (9), 2326-2337 (2018).
    72. Q. A. Akkerman, S. Park, E. Radicchi, F. Nunzi, E. Mosconi, F. De Angelis, R. Brescia, P. Rastogi, M. Prato and L. Manna, Nearly Monodisperse Insulator Cs4PbX6 (X = Cl, Br, I) Nanocrystals, Their Mixed Halide Compositions, and Their Transformation into CsPbX3 Nanocrystals, Nano Letters 17 (3), 1924-1930 (2017).
    73. T. Udayabhaskararao, L. Houben, H. Cohen, M. Menahem, I. Pinkas, L. Avram, T. Wolf, A. Teitelboim, M. Leskes, O. Yaffe, D. Oron and M. Kazes, A Mechanistic Study of Phase Transformation in Perovskite Nanocrystals Driven by Ligand Passivation, Chemistry of Materials 30 (1), 84-93 (2017).
    74. Q. A. Akkerman, S. G. Motti, A. R. Srimath Kandada, E. Mosconi, V. D'Innocenzo, G. Bertoni, S. Marras, B. A. Kamino, L. Miranda, F. De Angelis, A. Petrozza, M. Prato and L. Manna, Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control, Journal of the American Chemical Society 138 (3), 1010-1016 (2016).
    75. P. P. Boix, S. Agarwala, T. M. Koh, N. Mathews and S. G. Mhaisalkar, Perovskite Solar Cells: Beyond Methylammonium Lead Iodide, The Journal of Physical Chemistry Letters 6 (5), 898-907 (2015).
    76. J. Kang and L. W. Wang, High Defect Tolerance in Lead Halide Perovskite CsPbBr3, The Journal of Physical Chemistry Letters 8 (2), 489-493 (2017).
    77. P. Liu, W. Chen, W. Wang, B. Xu, D. Wu, J. Hao, W. Cao, F. Fang, Y. Li, Y. Zeng, R. Pan, S. Chen, W. Cao, X. W. Sun and K. Wang, Halide-Rich Synthesized Cesium Lead Bromide Perovskite Nanocrystals for Light-Emitting Diodes with Improved Performance, Chemistry of Materials 29 (12), 5168-5173 (2017).
    78. D. Yang, X. Li, Y. Wu, C. Wei, Z. Qin, C. Zhang, Z. Sun, Y. Li, Y. Wang and H. Zeng, Surface Halogen Compensation for Robust Performance Enhancements of CsPbX3 Perovskite Quantum Dots, Advanced Optical Materials 7 (11), 1900276 (2019).
    79. P. Reiss, M. Protiere and L. Li, Core/Shell Semiconductor Nanocrystals, Small 5 (2), 154-168 (2009).
    80. S. Wang, C. Bi, J. Yuan, L. Zhang and J. Tian, Original Core–Shell Structure of Cubic CsPbBr3@Amorphous CsPbBrx Perovskite Quantum Dots with a High Blue Photoluminescence Quantum Yield of over 80%, ACS Energy Letters 3 (1), 245-251 (2017).
    81. B. Wang, C. Zhang, S. Huang, Z. Li, L. Kong, L. Jin, J. Wang, K. Wu and L. Li, Postsynthesis Phase Transformation for CsPbBr3/Rb4PbBr6 Core/Shell Nanocrystals with Exceptional Photostability, ACS Applied Materials & Interfaces 10 (27), 23303-23310 (2018).
    82. X. Zhang, M. Lu, Y. Zhang, H. Wu, X. Shen, W. Zhang, W. Zheng, V. L. Colvin and W. W. Yu, PbS Capped CsPbI3 Nanocrystals for Efficient and Stable Light-Emitting Devices Using p-i-n Structures, ACS Central Science 4 (10), 1352-1359 (2018).
    83. Q. Zhong, M. Cao, H. Hu, D. Yang, M. Chen, P. Li, L. Wu and Q. Zhang, One-Pot Synthesis of Highly Stable CsPbBr3@SiO2 Core-Shell Nanoparticles, ACS Nano 12 (8), 8579-8587 (2018).
    84. V. K. Ravi, R. A. Scheidt, A. Nag, M. Kuno and P. V. Kamat, To Exchange or Not to Exchange. Suppressing Anion Exchange in Cesium Lead Halide Perovskites with PbSO4–Oleate Capping, ACS Energy Letters 3 (4), 1049-1055 (2018).
    85. M. I. Bodnarchuk, S. C. Boehme, S. Ten Brinck, C. Bernasconi, Y. Shynkarenko, F. Krieg, R. Widmer, B. Aeschlimann, D. Gunther, M. V. Kovalenko and I. Infante, Rationalizing and Controlling the Surface Structure and Electronic Passivation of Cesium Lead Halide Nanocrystals, ACS Energy Letters 4 (1), 63-74 (2019).
    86. J. De Roo, M. Ibanez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I. Van Driessche, M. V. Kovalenko and Z. Hens, Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals, ACS Nano 10 (2), 2071-2081 (2016).
    87. F. Krieg, S. T. Ochsenbein, S. Yakunin, S. Ten Brinck, P. Aellen, A. Suess, B. Clerc, D. Guggisberg, O. Nazarenko, Y. Shynkarenko, S. Kumar, C. J. Shih, I. Infante and M. V. Kovalenko, Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability, ACS Energy Letters 3 (3), 641-646 (2018).
    88. M. G. La-Placa, G. Longo, A. Babaei, L. Martinez-Sarti, M. Sessolo and H. J. Bolink, Photoluminescence Quantum Yield Exceeding 80 % in Low Dimensional Perovskite Thin-Films via Passivation Control, Chemical Communications 53 (62), 8707-8710 (2017).
    89. L. Wu, Q. Zhong, D. Yang, M. Chen, H. Hu, Q. Pan, H. Liu, M. Cao, Y. Xu, B. Sun and Q. Zhang, Improving the Stability and Size Tunability of Cesium Lead Halide Perovskite Nanocrystals Using Trioctylphosphine Oxide as the Capping Ligand, Langmuir 33 (44), 12689-12696 (2017).
    90. V. K. Ravi, P. K. Santra, N. Joshi, J. Chugh, S. K. Singh, H. Rensmo, P. Ghosh and A. Nag, Origin of the Substitution Mechanism for the Binding of Organic Ligands on the Surface of CsPbBr3 Perovskite Nanocubes, The Journal of Physical Chemistry Letters 8 (20), 4988-4994 (2017).
    91. A. Dutta, R. K. Behera, S. K. Dutta, S. Das Adhikari and N. Pradhan, Annealing CsPbX3 (X = Cl and Br) Perovskite Nanocrystals at High Reaction Temperatures: Phase Change and Its Prevention, The Journal of Physical Chemistry Letters 9 (22), 6599-6604 (2018).
    92. J. Pan, L. N. Quan, Y. Zhao, W. Peng, B. Murali, S. P. Sarmah, M. Yuan, L. Sinatra, N. M. Alyami, J. Liu, E. Yassitepe, Z. Yang, O. Voznyy, R. Comin, M. N. Hedhili, O. F. Mohammed, Z. H. Lu, D. H. Kim, E. H. Sargent and O. M. Bakr, Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering, Advanced Materials 28 (39), 8718-8725 (2016).
    93. G. Li, J. Huang, H. Zhu, Y. Li, J.-X. Tang and Y. Jiang, Surface Ligand Engineering for Near-Unity Quantum Yield Inorganic Halide Perovskite QDs and High-Performance QLEDs, Chemistry of Materials 30 (17), 6099-6107 (2018).
    94. Q. Ye, Y. Zhao, S. Mu, P. Gao, X. Zhang and J. You, Stabilizing the Black Phase of Cesium Lead Halide Inorganic Perovskite for Efficient Solar Cells, Science China Chemistry 62 (7), 810-821 (2019).
    95. W. Travis, E. N. K. Glover, H. Bronstein, D. O. Scanlon and R. G. Palgrave, On the Application of the Tolerance Factor to Inorganic and Hybrid Halide Perovskites: a Revised System, Chemical Science 7 (7), 4548-4556 (2016).
    96. C. Wang, A. S. Chesman and J. J. Jasieniak, Stabilizing the Cubic Perovskite Phase of CsPbI3 Nanocrystals by Using an Alkyl Phosphinic Acid, Chemical Communications 53 (1), 232-235 (2016).
    97. H. Wang, N. Sui, X. Bai, Y. Zhang, Q. Rice, F. J. Seo, Q. Zhang, V. L. Colvin and W. W. Yu, Emission Recovery and Stability Enhancement of Inorganic Perovskite Quantum Dots, The Journal of Physical Chemistry Letters 9 (15), 4166-4173 (2018).
    98. S. Seth, T. Ahmed, A. De and A. Samanta, Tackling the Defects, Stability, and Photoluminescence of CsPbX3 Perovskite Nanocrystals, ACS Energy Letters 4 (7), 1610-1618 (2019).
    99. A. Filippetti and A. Mattoni, Hybrid Perovskites for Photovoltaics: Insights from First Principles, Physical Review B 89 (12) (2014).
    100. F. Li, Y. Liu, H. Wang, Q. Zhan, Q. Liu and Z. Xia, Postsynthetic Surface Trap Removal of CsPbX3 (X = Cl, Br, or I) Quantum Dots via a ZnX2/Hexane Solution toward an Enhanced Luminescence Quantum Yield, Chemistry of Materials 30 (23), 8546-8554 (2018).
    101. H. Li, Y. Qian, X. Xing, J. Zhu, X. Huang, Q. Jing, W. Zhang, C. Zhang and Z. Lu, Enhancing Luminescence and Photostability of CsPbBr3 Nanocrystals via Surface Passivation with Silver Complex, The Journal of Physical Chemistry C 122 (24), 12994-13000 (2018).
    102. Y. Dong, T. Qiao, D. Kim, D. Parobek, D. Rossi and D. H. Son, Precise Control of Quantum Confinement in Cesium Lead Halide Perovskite Quantum Dots via Thermodynamic Equilibrium, Nano Letters 18 (6), 3716-3722 (2018).
    103. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong and X. Liu, Simultaneous Phase and Size Control of Upconversion Nanocrystals through Lanthanide Doping, Nature 463 (7284), 1061-1065 (2010).
    104. D. A. Bussian, S. A. Crooker, M. Yin, M. Brynda, A. L. Efros and V. I. Klimov, Tunable Magnetic Exchange Interactions in Manganese-Doped Inverted Core-Shell ZnSe-CdSe Nanocrystals, Nature Materials 8 (1), 35-40 (2009).
    105. C. Bi, S. Wang, Q. Li, S. V. Kershaw, J. Tian and A. L. Rogach, Thermally Stable Copper(II)-Doped Cesium Lead Halide Perovskite Quantum Dots with Strong Blue Emission, The Journal of Physical Chemistry Letters 10 (5), 943-952 (2019).
    106. J.-K. Chen, J.-P. Ma, S.-Q. Guo, Y.-M. Chen, Q. Zhao, B.-B. Zhang, Z.-Y. Li, Y. Zhou, J. Hou, Y. Kuroiwa, C. Moriyoshi, O. M. Bakr, J. Zhang and H.-T. Sun, High-Efficiency Violet-Emitting All-Inorganic Perovskite Nanocrystals Enabled by Alkaline-Earth Metal Passivation, Chemistry of Materials 31 (11), 3974-3983 (2019).
    107. J. S. Yao, J. Ge, K. H. Wang, G. Zhang, B. S. Zhu, C. Chen, Q. Zhang, Y. Luo, S. H. Yu and H. B. Yao, Few-Nanometer-Sized alpha-CsPbI3 Quantum Dots Enabled by Strontium Substitution and Iodide Passivation for Efficient Red-Light Emitting Diodes, Journal of the American Chemical Society 141 (5), 2069-2079 (2019).
    108. S. Zou, Y. Liu, J. Li, C. Liu, R. Feng, F. Jiang, Y. Li, J. Song, H. Zeng, M. Hong and X. Chen, Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting Diodes, Journal of the American Chemical Society 139 (33), 11443-11450 (2017).
    109. Q. A. Akkerman, D. Meggiolaro, Z. Dang, F. De Angelis and L. Manna, Fluorescent Alloy CsPbx Mn1-xI3 Perovskite Nanocrystals with High Structural and Optical Stability, ACS Energy Letters 2 (9), 2183-2186 (2017).
    110. Y. Liu, F. Li, Q. Liu and Z. Xia, Synergetic Effect of Postsynthetic Water Treatment on the Enhanced Photoluminescence and Stability of CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals, Chemistry of Materials 30 (19), 6922-6929 (2018).
    111. H. Wu, Y. Zhang, M. Lu, X. Zhang, C. Sun, T. Zhang, V. L. Colvin and W. W. Yu, Surface Ligand Modification of Cesium Lead Bromide Nanocrystals for Improved Light-Emitting Performance, Nanoscale 10 (9), 4173-4178 (2018).
    112. Z. J. Yong, S. Q. Guo, J. P. Ma, J. Y. Zhang, Z. Y. Li, Y. M. Chen, B. B. Zhang, Y. Zhou, J. Shu, J. L. Gu, L. R. Zheng, O. M. Bakr and H. T. Sun, Doping-Enhanced Short-Range Order of Perovskite Nanocrystals for Near-Unity Violet Luminescence Quantum Yield, Journal of the American Chemical Society 140 (31), 9942-9951 (2018).
    113. A. De, S. Das, N. Mondal and A. Samanta, Highly Luminescent Violet- and Blue-Emitting Stable Perovskite Nanocrystals, ACS Materials Letters 1 (1), 116-122 (2019).
    114. X. Zheng, S. Yuan, J. Liu, J. Yin, F. Yuan, W.-S. Shen, K. Yao, M. Wei, C. Zhou, K. Song, B.-B. Zhang, Y. Lin, M. N. Hedhili, N. Wehbe, Y. Han, H.-T. Sun, Z.-H. Lu, T. D. Anthopoulos, O. F. Mohammed, E. H. Sargent, L.-S. Liao and O. M. Bakr, Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes, ACS Energy Letters 5 (3), 793-798 (2020).
    115. S. Wang, Y. Wang, Y. Zhang, X. Zhang, X. Shen, X. Zhuang, P. Lu, W. W. Yu, S. V. Kershaw and A. L. Rogach, Cesium Lead Chloride/Bromide Perovskite Quantum Dots with Strong Blue Emission Realized via a Nitrate-Induced Selective Surface Defect Elimination Process, The Journal of Physical Chemistry Letters 10 (1), 90-96 (2019).
    116. S. Wang, X. Shen, Y. Zhang, X. Zhuang, D. Xue, X. Zhang, J. Wu, J. Zhu, Z. Shi, S. V. Kershaw, W. W. Yu and A. L. Rogach, Oxalic Acid Enabled Emission Enhancement and Continuous Extraction of Chloride from Cesium Lead Chloride/Bromide Perovskite Nanocrystals, Small 15 (34), e1901828 (2019).
    117. R. K. Behera, S. Das Adhikari, S. K. Dutta, A. Dutta and N. Pradhan, Blue-Emitting CsPbCl3 Nanocrystals: Impact of Surface Passivation for Unprecedented Enhancement and Loss of Optical Emission, The Journal of Physical Chemistry Letters 9 (23), 6884-6891 (2018).
    118. M. Liu, G. Zhong, Y. Yin, J. Miao, K. Li, C. Wang, X. Xu, C. Shen and H. Meng, Aluminum-Doped Cesium Lead Bromide Perovskite Nanocrystals with Stable Blue Photoluminescence Used for Display Backlight, Advanced Science 4 (11), 1700335 (2017).
    119. H. C. Wang, Z. Bao, H. Y. Tsai, A. C. Tang and R. S. Liu, Perovskite Quantum Dots and Their Application in Light-Emitting Diodes, Small 14 (1) (2018).
    120. M. Era, S. Morimoto, T. Tsutsui and S. Saito, Organic‐Inorganic Heterostructure Electroluminescent Device Using a Layered Perovskite Semiconductor (C6H5C2H4NH3)2PbI4, Applied Physics Letters 65 (6), 676-678 (1994).
    121. J. Song, J. Li, X. Li, L. Xu, Y. Dong and H. Zeng, Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3), Advanced Materials 27 (44), 7162-7167 (2015).
    122. J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han and H. Zeng, 50-Fold EQE Improvement up to 6.27 % of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control, Advanced Materials 29 (5) (2017).
    123. J. Song, J. Li, L. Xu, J. Li, F. Zhang, B. Han, Q. Shan and H. Zeng, Room-Temperature Triple-Ligand Surface Engineering Synergistically Boosts Ink Stability, Recombination Dynamics, and Charge Injection toward EQE-11.6 % Perovskite QLEDs, Advanced Materials 30 (30), e1800764 (2018).
    124. S. Hou, M. K. Gangishetty, Q. Quan and D. N. Congreve, Efficient Blue and White Perovskite Light-Emitting Diodes via Manganese Doping, Joule 2 (11), 2421-2433 (2018).
    125. T. Fang, F. Zhang, S. Yuan, H. Zeng and J. Song, Recent Advances and Prospects toward Blue Perovskite Materials and Light-Emitting Diodes, InfoMat 1 (2), 211-233 (2019).
    126. T. Chiba, K. Hoshi, Y. J. Pu, Y. Takeda, Y. Hayashi, S. Ohisa, S. Kawata and J. Kido, High-Efficiency Perovskite Quantum-Dot Light-Emitting Devices by Effective Washing Process and Interfacial Energy Level Alignment, ACS Applied Materials & Interfaces 9 (21), 18054-18060 (2017).
    127. Z. Shi, S. Li, Y. Li, H. Ji, X. Li, D. Wu, T. Xu, Y. Chen, Y. Tian, Y. Zhang, C. Shan and G. Du, Strategy of Solution-Processed All-Inorganic Heterostructure for Humidity/Temperature-Stable Perovskite Quantum Dot Light-Emitting Diodes, ACS Nano 12 (2), 1462-1472 (2018).
    128. Y. Huang, W. Luan, M. Liu and L. Turyanska, DDAB-Assisted Synthesis of Iodine-Rich CsPbI3 Perovskite Nanocrystals with Improved Stability in Multiple Environments, Journal of Materials Chemistry C 8 (7), 2381-2387 (2020).
    129. J. Li, J. Chen, L. Xu, S. Liu, S. Lan, X. Li and J. Song, A zinc non-halide dopant strategy enables efficient perovskite CsPbI3 quantum dot-based light-emitting diodes, Materials Chemistry Frontiers (2020).
    130. X. Shen, Y. Zhang, S. V. Kershaw, T. Li, C. Wang, X. Zhang, W. Wang, D. Li, Y. Wang, M. Lu, L. Zhang, C. Sun, D. Zhao, G. Qin, X. Bai, W. W. Yu and A. L. Rogach, Zn-Alloyed CsPbI3 Nanocrystals for Highly Efficient Perovskite Light-Emitting Devices, Nano Letters 19 (3), 1552-1559 (2019).
    131. 施正雄,儀器分析原理與應用. (五南圖書出版股份有限公司, 2012).
    132. G. A. Reynolds and K. H. Drexhage, New Coumarin Dyes with Rigidized Structure for Flashlamp-Pumped Dye Lasers, Optics Communications 13 (3), 222-225 (1975).
    133. M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmuller and U. Resch-Genger, Determination of the Fluorescence Quantum Yield of Quantum Dots Suitable Procedures and Achievable Uncertainties, Analytical Chemistry 81 (6285-6294) (2009).
    134. L. Wu, H. Hu, Y. Xu, S. Jiang, M. Chen, Q. Zhong, D. Yang, Q. Liu, Y. Zhao, B. Sun, Q. Zhang and Y. Yin, From Nonluminescent Cs4PbX6 (X = Cl, Br, I) Nanocrystals to Highly Luminescent CsPbX3 Nanocrystals: Water-Triggered Transformation through a CsX-Stripping Mechanism, Nano Letters 17 (9), 5799-5804 (2017).
    135. J. Chen, D. Liu, M. J. Al-Marri, L. Nuuttila, H. Lehtivuori and K. Zheng,Photo-Stability of CsPbBr3 Perovskite Quantum Dots for Optoelectronic Application, Science China Materials 59 (9), 719-727 (2016).
    136. X. Shen, S. Wang, X. Zhang, H. Wang, X. Zhang, C. Wang, Y. Gao, Z. Shi, W. W. Yu and Y. Zhang, Enhancing the Efficiency of CsPbX3 (X = Cl, Br, I) Nanocrystals via Simultaneous Surface Peeling and Surface Passivation, Nanoscale 11 (24), 11464-11469 (2019).
    137. S.-H. Guo, J. Zhou, X. Zhao, C.-Y. Sun, S.-Q. You, X.-L. Wang and Z.-M. Su, Enhanced CO2 photoreduction via Tuning Halides in Perovskites, Journal of Catalysis 369, 201-208 (2019).
    138. Y. S. Shin, Y. J. Yoon, K. T. Lee, J. Jeong, S. Y. Park, G. H. Kim and J. Y. Kim, Vivid and Fully Saturated Blue Light-Emitting Diodes Based on Ligand-Modified Halide Perovskite Nanocrystals, ACS Applied Materials & Interfaces 11 (26), 23401-23409 (2019).
    139. T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa and J. Kido, Anion-Exchange Red Perovskite Quantum Dots with Ammonium Iodine Salts for Highly Efficient Light-Emitting Devices, Nature Photonics 12 (11), 681-687 (2018).

    無法下載圖示 全文公開日期 2025/08/03 (校內網路)
    全文公開日期 2025/08/03 (校外網路)
    全文公開日期 2025/08/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE