簡易檢索 / 詳目顯示

研究生: 涂奕棋
Yi-Qi Tu
論文名稱: 以各種界面修飾策略應用於銫鉛碘量子點發光二極體之分析與探討
Investigating the Application of Various Interface Modification Strategies on Cesium Lead Iodide Quantum Dot Light-Emitting Diodes
指導教授: 陳良益
Liang-Yih Chen
口試委員: 張志宇
Zhi-Yu Zhang
邱天隆
Tian-Long Qiu
林俊男
Jun-Nan Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 118
中文關鍵詞: 全無機銫鉛碘鈣鈦礦量子點發光二極體
外文關鍵詞: a ll inorganic cesium lead iodide (CsPbI 3 ) perovskite,, quantum dots (QDs), light emitting diodes (
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈣鈦礦發光二極體為新一代應用於高解析度、高亮度及廣色域顯示器的有利候選者。然而位於650奈米紅光波段的鈣鈦礦發光二極體因發光層材料穩定性不佳及操作壽命短等問題,目前仍在開發階段。在本研究中,主要在於合成具有高螢光量子產率且調控發光波長於650 奈米的鈣鈦礦奈米材料,並將其應用於發光二極體的製作。在此,利用熱注入法與過量碘源的添加合成出鉛碘鈣鈦礦量子點,使其發光波長由690奈米藍位移至650奈米。接著,再藉由碘化鉀的優化處理,可使銫鉛碘鈣鈦礦量子點的螢光量子產率提高至83.5%,並大幅改善其穩定性。而透過苯乙基碘化銨與聚甲基丙烯酸甲酯進行銫鉛碘鈣鈦礦發光層與電子/電洞傳輸層的界面修飾,可使所製備的發光二極體的最佳外部量子效率值達到8.12%,最大輝度達到345 cd/m2,發光波長位於652奈米,並具有良好的操作穩定性和壽命。由以上研究結果顯示,通過合適的鈣鈦礦量子點合成方式與優化處理,搭配界面優化策略,能有效提升紅光鈣鈦礦量子點發光二極體的光電效能。


    Perovskite light-emitting diodes (PeLEDs) are promising candidates for high-resolution, high-brightness, and wide color gamut displays. However, red-emitting PeLEDs in the wavelength of 650 nm are still in the developmental stage due to poor stability of the emissive layer material and short operational lifetime. In this study, the focus was on fabricating red-emitting perovskite nanomaterials with high fluorescence quantum yield and an emission wavelength at 650 nm, and applying them in light-emitting diodes (LEDs). Through a hot-injection method and the addition of excess iodine source, all-inorganic cesium lead iodide (CsPbI3) perovskite quantum dots (PQDs) were synthesized, shifting their emission wavelength from 690 nm to 650 nm. Subsequently, by optimizing the post-treatment with potassium iodide, the fluorescence quantum yield of CsPbI3 PQDs was increased to achieve 83.5% while significantly improving their stability. Furthermore, by modifying the interface between the CsPbI3 emissive layer and the electron/hole transport layer with phenethylammonium iodide (PEAI) and poly(methyl methacrylate) (PMMA), the optimized external quantum efficiency (EQE) of the light-emitting diodes achieved 8.12%. The devices exhibited a maximum brightness of 345 cd/m², an emission wavelength at 652 nm, and demonstrated good operational stability and lifetime. These results demonstrate that by employing appropriate PQDs synthesis methods and optimization treatments, along with interface engineering strategies, the optoelectronic performance of red-emitting perovskite LEDs can be effectively enhanced.

    中文摘要 4 Abstract 5 致謝 6 目錄 7 圖目錄 11 表目錄 16 第一章、緒論 17 1-1前言 17 1-2研究動機與目的 17 第二章、理論基礎與文獻回顧 19 2-1半導體與量子點 19 2-1-1半導體簡介 19 2-1-2量子點材料簡介 20 2-2鈣鈦礦量子點 22 2-2-1金屬鹵素鈣鈦礦材料 22 2-2-2全無機鈣鈦礦量子點合成方法 23 2-3鈣鈦礦量子點發光二極體 30 2-3-1鈣鈦礦發光二極體結構 30 2-3-2發光二極體性能指標 33 2-4紅光鈣鈦礦量子點發光二極體發展與挑戰 35 2-4-1配體對發光二極體效能影響 38 2-4-2界面鈍化對發光二極體效能影響 43 第三章、實驗方法 50 3-1實驗流程圖 50 3-2實驗藥品 51 3-3分析儀器與原理 55 3-3-1紫外光-可見光光譜儀 (UV/visible spectrophotometer) 55 3-3-2螢光光譜儀(Fluorescence spectrophotometer) 56 3-3-3絕對量子效率量測系統(absolute photoluminescence quantum yield) 57 3-3-4時間解析光致螢光光譜 (Time-resolved photoluminescence,TRPL) 58 3-3-5 X光繞射分析儀(X-ray diffraction,XRD) 59 3-3-6場發射穿透式電子顯微鏡(field emission gun transmission electron microscope,FE-TEM) 60 3-3-7高解析度場發射型掃描式電子顯微鏡 (high resolution field-emission scanning electron microscope,FE-SEM) 60 3-3-8 X光光電子能譜儀(X-Ray photoelectron spectrometer,XPS) 61 3-3-9紫外光電子能譜儀(Ultraviolet Photoelectron Spectroscopy,UPS) 61 3-3-10低能量反轉光電子能譜儀(Low Energy Inverse Photoelectron Spectroscopy,LEIPS) 62 3-3-11電致發光量測系統(Electroluminescence,EL) 62 3-4實驗步驟 63 3-4-1以熱注入法合成CsPbI3紅光量子點 63 3-4-2以碘化鉀進行CsPbI3量子點優化處理 64 3-4-3 CsPbI3量子點發光二極體製作 65 3-4-4發光二極體界面修飾 66 3-5-5單載子元件製作 66 第四章、結果與討論 69 4-1以熱注入法合成CsPbI3紅光量子點 69 4-1-1添加額外碘源合成紅光CsPbI3量子點 69 4-1-2以碘化鉀進行CsPbI3量子點後處理優化 75 4-2 CsPbI3量子點發光二極體性能研究 80 4-3界面修飾對CsPbI3量子點發光二極體性能研究 93 4-3-1 添加電洞傳輸層與發光層間之界面修飾層對發光二極體之影響 93 4-3-2 添加電子傳輸層與發光層間之界面修飾層對發光二極體之影響 101 第五章、結論 108 第六章、參考文獻 109

    1. S. O. Kasap, Optoelectronics & Photonics, second ed. (Prentice Hall, 2013).
    2. K. J. Klabunde and R. M. Richards, Nanoscale Materials in Chemistry, second ed. (John Wiley & Sons, 2009).
    3. S. K. Kailasa, K. H. Cheng and H. F. Wu, Semiconductor Nanomaterials-Based Fluorescence Spectroscopic and Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometric Approaches to Proteome Analysis, Materials (Basel) 6, 5763-5795 (2013).
    4. A. C. Berends and C. de Mello Donega, Ultrathin One- and Two-Dimensional Colloidal Semiconductor Nanocrystals: Pushing Quantum Confinement to the Limit, The Journal of Physical Chemistry Letters 8, 4077-4090 (2017).
    5. M. A. Green, A. Ho-Baillie and H. J. Snaith, The Emergence of Perovskite Solar Cells, Nature Photonics 8, 506-514 (2014).
    6. P. Ramasamy, D.-H. Lim, B. Kim, S.-H. Lee, M.-S. Lee and J.-S. Lee, All-Inorganic Cesium Lead Halide Perovskite Nanocrystals for Photodetector Applications, Chemical Communications 52, 2067-2070 (2016).
    7. J. Song, L. Xu, J. Li, J. Xue, Y. Dong, X. Li and H. Zeng, Monolayer and Few‐Layer All‐Inorganic Perovskites as a New Family of Two‐Dimensional Semiconductors for Printable Optoelectronic Devices, Advanced Materials 28, 4861-4869 (2016).
    8. T. Miyasaka, Perovskite Photovoltaics: Rare Functions of Organo Lead Halide in Solar Cells and Optoelectronic Devices, Chemistry Letters 44, 720-729 (2015).
    9. G. Yang, Z. Ren, K. Liu, M. Qin, W. Deng, H. Zhang, H. Wang, J. Liang, F. Ye and Q. Liang, Stable and Low-Photovoltage-Loss Perovskite Solar Cells by Multifunctional Passivation, Nature Photonics 15, 681-689 (2021).
    10. M. Jeong, I. W. Choi, E. M. Go, Y. Cho, M. Kim, B. Lee, S. Jeong, Y. Jo, H. W. Choi and J. Lee, Stable Perovskite Solar Cells with Efficiency Exceeding 24.8% and 0.3-V Voltage Loss, Science 369, 1615-1620 (2020).
    11. J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin and N.-G. Park, High-Efficiency Perovskite Solar Cells, Chemical Reviews 120, 7867-7918 (2020).
    12. A. H. Liang, K. Wang, Y. Gao, B. P. Finkenauer, C. H. Zhu, L. R. Jin, L. B. Huang and L. T. Dou, Highly Efficient Halide Perovskite Light-Emitting Diodes via Molecular Passivation, Angewandte Chemie-International Edition 60, 8337-8343 (2021).
    13. J. H. Li, L. M. Xu, T. Wang, J. Z. Song, J. W. Chen, J. Xue, Y. H. Dong, B. Cai, Q. S. Shan, B. N. Han and H. B. Zeng, 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control, Advanced Materials 29, 1603885 (2017).
    14. Y. S. Tan, Y. T. Zou, L. Z. Wu, Q. Huang, D. Yang, M. Chen, M. Y. Ban, C. Wu, T. Wu, S. Bai, T. Song, Q. Zhang and B. Q. Sun, Highly Luminescent and Stable Perovskite Nanocrystals with Octylphosphonic Acid as a Ligand for Efficient Light-Emitting Diodes, ACS Applied Materials & Interfaces 10, 3784-3792 (2018).
    15. J. C. Yu, A. Y. Lee, D. B. Kim, E. D. Jung, D. W. Kim and M. H. Song, Enhancing the Performance and Stability of Perovskite Nanocrystal Light-Emitting Diodes with a Polymer Matrix, Advanced Materials Technologies 2, 1700003 (2017).
    16. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Gratzel, S. Mhaisalkar and T. C. Sum, Low-Temperature Solution-Processed Wavelength-Tunable Perovskites for Lasing, Nature Materials 13, 476-480 (2014).
    17. M. M. Stylianakis, T. Maksudov, A. Panagiotopoulos, G. Kakavelakis and K. Petridis, Inorganic and Hybrid Perovskite Based Laser Devices: A Review, Materials 12, 859 (2019).
    18. G. Divitini, S. Cacovich, F. Matteocci, L. Cina, A. Di Carlo and C. Ducati, In Situ Observation of Heat-Induced Degradation of Perovskite Solar Cells, Nat Energy 1, 15012 (2016).
    19. W. Nie, J. C. Blancon, A. J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M. A. Alam, M. Y. Sfeir, C. Katan, J. Even, S. Tretiak, J. J. Crochet, G. Gupta and A. D. Mohite, Light-Activated Photocurrent Degradation and Self-Healing in Perovskite Solar Cells, Nature Communications 7, 11574 (2016).
    20. C. B. Murray, D. J. Norris and M. G. Bawendi, Synthesis and Characterization of Nearly Monodisperse Cde (E = S, Se, Te) Semiconductor Nanocrystallites, Journal of the American Chemical Society 115, 8706-8715 (1993).
    21. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko, Nanocrystals of Cesium Lead Halide Perovskites (CsPbX(3), X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut, Nano Letter 15, 3692-3696 (2015).
    22. J. Shamsi, A. S. Urban, M. Imran, L. De Trizio and L. Manna, Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties, Chemical Reviews 119, 3296-3348 (2019).
    23. Y. Bekenstein, B. A. Koscher, S. W. Eaton, P. D. Yang and A. P. Alivisatos, Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies, Journal of the American Chemical Society 137, 16008-16011 (2015).
    24. D. D. Zhang, S. W. Eaton, Y. Yu, L. T. Dou and P. D. Yang, Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires, Journal of the American Chemical Society 137, 9230-9233 (2015).
    25. A. Z. Pan, B. He, X. Y. Fan, Z. K. Liu, J. J. Urban, A. P. Alivisatos, L. He and Y. Liu, Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors, ACS Nano 10, 7943-7954 (2016).
    26. Y. Dong, T. Qiao, D. Kim, D. Parobek, D. Rossi and D. H. Son, Precise Control of Quantum Confinement in Cesium Lead Halide Perovskite Quantum Dots via Thermodynamic Equilibrium, Nano Letter 18, 3716-3722 (2018).
    27. X. M. Li, Y. Wu, S. L. Zhang, B. Cai, Y. Gu, J. Z. Song and H. B. Zeng, CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes, Advanced Functional Materials 26, 2435-2445 (2016).
    28. S. Wei, Y. C. Yang, X. J. Kang, L. Wang, L. J. Huang and D. C. Pan, Room-Temperature and Gram-Scale Synthesis of CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals with 50-85% Photoluminescence Quantum Yields, Chemical Communications 52, 7265-7268 (2016).
    29. X. M. Li, D. J. Yu, F. Cao, Y. Gu, Y. Wei, Y. Wu, J. Z. Song and H. B. Zeng, Healing All-Inorganic Perovskite Films via Recyclable Dissolution-Recyrstallization for Compact and Smooth Carrier Channels of Optoelectronic Devices with High Stability, Advanced Functional Materials 26, 5903-5912 (2016).
    30. J. Z. Song, J. H. Li, L. M. Xu, J. H. Li, F. J. Zhang, B. N. Han, Q. S. Shan and H. B. Zeng, Room-Temperature Triple-Ligand Surface Engineering Synergistically Boosts Ink Stability, Recombination Dynamics, and Charge Injection toward EQE-11.6% Perovskite QLEDs, Advanced Materials 30, 1800764 (2018).
    31. S. M. SZE, Semiconductor Devices, third ed. (2010).
    32. E. Yoon, K. Y. Jang, J. Park and T. W. Lee, Understanding the Synergistic Effect of Device Architecture Design toward Efficient Perovskite Light-Emitting Diodes Using Interfacial Layer Engineering, Advanced Materials Interfaces 8, 2001712 (2021).
    33. L. S. Hung, C. W. Tang and M. G. Mason, Enhanced Electron Injection in Organic Electroluminescence Devices Using an Al/Lif Electrode, Applied Physics Letters 70, 152-154 (1997).
    34. J. Z. Song, T. Fang, J. H. Li, L. M. Xu, F. J. Zhang, B. N. Han, Q. S. Shan and H. B. Zeng, Organic-Inorganic Hybrid Passivation Enables Perovskite QLEDs with an EQE of 16.48%, Advanced Materials 30, 1805409 (2018).
    35. M. Y. Xie, J. Guo, X. Y. Zhang, C. H. Bi, L. Zhang, Z. M. Chu, W. T. Zheng, J. B. You and J. J. Tian, High-Efficiency Pure-Red Perovskite Quantum-Dot Light-Emitting Diodes, Nano Letters 22, 8266-8273 (2022).
    36. Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith and R. H. Friend, Bright Light-Emitting Diodes Based on Organometal Halide Perovskite, Nature Nanotechnology 9, 687-692 (2014).
    37. Z. Liu, W. D. Qiu, X. M. Peng, G. W. Sun, X. Y. Liu, D. H. Liu, Z. C. Li, F. R. He, C. Y. Shen, Q. Gu, F. L. Ma, L. Yip, L. T. Hou, Z. J. Qi and S. J. Su, Perovskite Light-Emitting Diodes with EQE Exceeding 28% through a Synergetic Dual-Additive Strategy for Defect Passivation and Nanostructure Regulation, Advanced Materials 33, 2103268 (2021).
    38. J. Jiang, Z. M. Chu, Z. G. Yin, J. Z. Li, Y. G. Yang, J. R. Chen, J. L. Wu, J. B. You and X. W. Zhang, Red Perovskite Light-Emitting Diodes with Efficiency Exceeding 25% Realized by Co-Spacer Cations, Advanced Materials 34, 2204460 (2022).
    39. Y. Shen, Y. Q. Li, K. Zhang, L. J. Zhang, F. M. Xie, L. Chen, X. Y. Cai, Y. Lu, H. Ren, X. Y. Gao, H. J. Xie, H. Y. Mao, S. Kera and J. X. Tang, Multifunctional Crystal Regulation Enables Efficient and Stable Sky-Blue Perovskite Light-Emitting Diodes, Advanced Functional Materials 32, 2206574 (2022).
    40. Y. Yu, Y. Y. Tang, B. F. Wang, K. Zhang, J. X. Tang and Y. Q. Li, Red Perovskite Light-Emitting Diodes: Recent Advances and Perspectives, Laser & Photonics Reviews 17, 2200608 (2023).
    41. F. L. Yuan, X. P. Zheng, A. Johnston, Y. K. Wang, C. Zhou, Y. T. Dong, B. Chen, H. J. Chen, J. Z. Fan, G. Sharma, P. C. Li, Y. Gao, O. Voznyy, H. T. Kung, Z. H. Lu, O. M. Bakr and E. H. Sargent, Color-Pure Red Light-Emitting Diodes Based on Two-Dimensional Lead-Free Perovskites, Science Advances 6, eabb0253 (2020).
    42. M. W. Jiang, Z. H. Hu, L. K. Ono and Y. B. Qi, CsPbBrxI3-X Thin Films with Multiple Ammonium Ligands for Low Turn-On Pure-Red Perovskite Light-Emitting Diodes, Nano Research 14, 191-197 (2021).
    43. J. B. Zhang, L. W. Zhang, P. Cai, X. G. Xue, M. K. Wang, J. Zhang and G. L. Tu, Enhancing Stability of Red Perovskite Nanocrystals through Copper Substitution for Efficient Light-Emitting Diodes, Nano Energy 62, 434-441 (2019).
    44. Y. Hassan, J. H. Park, M. L. Crawford, A. Sadhanala, J. Lee, J. C. Sadighian, E. Mosconi, R. Shivanna, E. Radicchi, M. Jeong, C. Yang, H. Choi, S. H. Park, M. H. Song, F. De Angelis, C. Y. Wong, R. H. Friend, B. R. Lee and H. J. Snaith, Ligand-Engineered Bandgap Stability in Mixed-Halide Perovskite LEDs, Nature 591, 72 (2021).
    45. M. C. Brennan, S. Draguta, P. V. Kamat and M. Kuno, Light-Induced Anion Phase Segregation in Mixed Halide Perovskites, ACS Energy Letters 3, 204-213 (2018).
    46. Y. Tian, C. K. Zhou, M. Worku, X. Wang, Y. C. Ling, H. W. Gao, Y. Zhou, Y. Miao, J. J. Guan and B. W. Ma, Highly Efficient Spectrally Stable Red Perovskite Light-Emitting Diodes, Advanced Materials 30, 1707093 (2018).
    47. Z. Andaji-Garmaroudi, M. Abdi-Jalebi, F. U. Kosasih, T. Doherty, S. Macpherson, A. R. Bowman, G. J. Man, U. B. Cappel, H. Rensmo, C. Ducati, R. H. Friend and S. D. Stranks, Elucidating and Mitigating Degradation Processes in Perovskite Light-Emitting Diodes, Advanced Energy Materials 10, 2002676 (2020).
    48. P. Vashishtha and J. E. Halpert, Field-Driven Ion Migration and Color Instability in Red-Emitting Mixed Halide Perovskite Nanocrystal Light-Emitting Diodes, Chemistry of Materials 29, 5965-5973 (2017).
    49. Y. F. Miao, X. M. Liu, Y. T. Chen, T. Y. Zhang, T. F. Wang and Y. X. Zhao, Deep-Red Perovskite Light-Emitting Diodes Based on One-Step-Formed gamma-CsPbI3 Cuboid Crystallites, Advanced Materials 33, 2105699 (2021).
    50. W. Travis, E. N. K. Glover, H. Bronstein, D. O. Scanlon and R. G. Palgrave, On the Application of the Tolerance Factor to Inorganic and Hybrid Halide Perovskites: A Revised System, Chemical Science 7, 4548-4556 (2016).
    51. J. S. Manser, J. A. Christians and P. V. Kamat, Intriguing Optoelectronic Properties of Metal Halide Perovskites, Chemical Reviews 116, 12956-13008 (2016).
    52. L. Protesescu, S. Yakunin, S. Kumar, J. Bar, F. Bertolotti, N. Masciocchi, A. Guagliardi, M. Grotevent, I. Shorubalko, M. I. Bodnarchuk, C. J. Shih and M. V. Kovalenko, Dismantling the "Red Wall" of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium-Cesium Lead Iodide Nanocrystals, ACS Nano 11, 3119-3134 (2017).
    53. J. Pan, Y. Q. Shang, J. Yin, M. De Bastiani, W. Peng, I. Dursun, L. Sinatra, A. M. El-Zohry, M. N. Hedhili, A. H. Emwas, O. F. Mohammed, Z. J. Ning and O. M. Bakr, Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes, Journal of the American Chemical Society 140, 562-565 (2018).
    54. H. Huang, M. I. Bodnarchuk, S. V. Kershaw, M. V. Kovalenko and A. L. Rogach, Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance, ACS Energy Letters 2, 2071-2083 (2017).
    55. Y. F. Lan, J. S. Yao, J. N. Yang, Y. H. Song, X. C. Ru, Q. Zhang, L. Z. Feng, T. Chen, K. H. Song and H. B. Yao, Spectrally Stable and Efficient Pure Red CsPbI3 Quantum Dot Light-Emitting Diodes Enabled by Sequential Ligand Post-Treatment Strategy, Nano Letter 21, 8756-8763 (2021).
    56. R. D. Zhu, Z. Y. Luo, H. W. Chen, Y. J. Dong and S. T. Wu, Realizing Rec. 2020 Color Gamut with Quantum Dot Displays, Optics Express 23, 23680-23693 (2015).
    57. Y. K. Wang, F. L. Yuan, Y. T. Dong, J. Y. Li, A. Johnston, B. Chen, M. I. Saidaminov, C. Zhou, X. P. Zheng, Y. Hou, K. Bertens, H. Ebe, D. X. Ma, Z. T. Deng, S. Yuan, R. Chen, L. K. Sagar, J. K. Liu, J. M. Fan, P. C. Li, X. Y. Li, Y. Gao, M. K. Fung, Z. H. Lu, O. M. Bakr, L. S. Liao and E. H. Sargent, All-Inorganic Quantum-Dot LEDs Based on a Phase-Stabilized alpha-CsPbI3 Perovskite, Angewandte Chemie-International Edition 60, 16164-16170 (2021).
    58. J. H. Chang, P. Park, H. Jung, B. G. Jeong, D. Hahm, G. Nagamine, J. Ko, J. Cho, L. A. Padilha, D. C. Lee, C. Lee, K. Char and W. K. Bae, Unraveling the Origin of Operational Instability of Quantum Dot Based Light-Emitting Diodes, ACS Nano 12, 10231-10239 (2018).
    59. L. F. Zhao, K. Roh, S. Kacmoli, K. Al Kurdi, S. Jhulki, S. Barlow, S. R. Marder, C. Gmachl and B. P. Rand, Thermal Management Enables Bright and Stable Perovskite Light-Emitting Diodes, Advanced Materials 32, 2000752 (2020).
    60. Y. Z. Jiang, M. H. Cui, S. S. Li, C. J. Sun, Y. M. Huang, J. L. Wei, L. Zhang, M. Lv, C. C. Qin, Y. F. Liu and M. J. Yuan, Reducing the Impact of Auger Recombination in Quasi-2D Perovskite Light-Emitting Diodes, Nature Communications 12, 336 (2021).
    61. W. Zou, R. Z. Li, S. T. Zhang, Y. L. Liu, N. N. Wang, Y. Cao, Y. F. Miao, M. M. Xu, Q. Guo, D. W. Di, L. Zhang, C. Yi, F. Gao, R. H. Friend, J. P. Wang and W. Huang, Minimising Efficiency Roll-Off in High-Brightness Perovskite Light-Emitting Diodes, Nature Communications 9, 608 (2018).
    62. Y. C. Ye, Y. Q. Li, X. Y. Cai, W. Zhou, Y. Shen, K. C. Shen, J. K. Wang, X. Y. Gao, I. S. Zhidkov and J. X. Tang, Minimizing Optical Energy Losses for Long-Lifetime Perovskite Light-Emitting Diodes, Advanced Functional Materials 31, 2105813 (2021).
    63. S. He, N. Kumar, H. B. Lee, K. J. Ko, Y. J. Jung, J. I. Kim, S. Bae, J. H. Lee and J. W. Kang, Tailoring the Refractive Index and Surface Defects Of CsPbBr3 Quantum Dots via Alkyl Cation-Engineering for Efficient Perovskite Light-Emitting Diodes, Chemical Engineering Journal 425, 130678 (2021).
    64. K. F. Jia, L. Song, Y. S. Hu, X. Y. Guo, X. Y. Liu, C. Geng, S. Xu, R. T. Fan, L. X. Huang, N. N. Luan and W. G. Bi, Improved Performance for Thermally Evaporated Perovskite Light-Emitting Devices via Defect Passivation and Carrier Regulation, ACS Applied Materials & Interfaces 12, 15928-15933 (2020).
    65. Z. M. Chu, Q. F. Ye, Y. Zhao, F. Ma, Z. G. Yin, X. W. Zhang and J. B. You, Perovskite Light-Emitting Diodes with External Quantum Efficiency Exceeding 22% via Small-Molecule Passivation, Advanced Materials 33, 2007169 (2021).
    66. Z. W. Xiao, Y. T. Wu, L. H. He, X. L. Yang, Y. J. Lian, G. Q. Li and X. Yang, Enhancing The Performance of Perovskite Light-Emitting Devices through 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene Interlayer Incorporation, RSC Advances 9, 29037-29043 (2019).
    67. L. M. Xu, J. H. Li, B. Cai, J. Z. Song, F. J. Zhang, T. Fang and H. B. Zeng, A Bilateral Interfacial Passivation Strategy Promoting Efficiency and Stability of Perovskite Quantum Dot Light-Emitting Diodes, Nature Communications 11, 3902 (2020).
    68. K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong and Z. H. Wei, Perovskite Light-Emitting Diodes with External Quantum Efficiency Exceeding 20 Per Cent, Nature 562, 245 (2018).
    69. C. Chen, T. T. Xuan, Y. Yang, F. Huang, T. L. Zhou, L. Wang and R. J. Xie, Passivation Layer of Potassium Iodide Yielding High Efficiency and Stable Deep Red Perovskite Light-Emitting Diodes, ACS Applied Materials & Interfaces 14, 16404-16412 (2022).
    70. Y. Shen, K. C. Shen, Y. Q. Li, M. L. Guo, J. K. Wang, Y. C. Ye, F. M. Xie, H. Ren, X. Y. Gao, F. Song and J. X. Tang, Interfacial Potassium-Guided Grain Growth for Efficient Deep-Blue Perovskite Light-Emitting Diodes, Advanced Functional Materials 31, 2006736 (2021).
    71. J. Iskandar, C. C. Lee, A. Kurniawan, H. M. Cheng, S. W. Liu and S. Biring, Improving the Efficiency of Near-IR Perovskite LEDs via Surface Passivation and Ultrathin Interfacial Layers, Cell Reports Physical Science 3, 101170 (2022).
    72. T. Fang, T. T. Wang, X. S. Li, Y. H. Dong, S. Bai and J. Z. Song, Perovskite Qled with an External Quantum Efficiency of Over 21% by Modulating Electronic Transport, Science Bulletin 66, 36-43 (2021).
    73. Z. W. Yao, C. H. Bi, A. Q. Liu, M. Q. Zhang and J. J. Tian, High Brightness and Stability Pure-Blue Perovskite Light-Emitting Diodes Based on a Novel Structural Quantum-Dot Film, Nano Energy 95, 106974 (2022).
    74. T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y. J. Pu, S. Ohisa and J. Kido, Anion-Exchange Red Perovskite Quantum Dots with Ammonium Iodine Salts for Highly Efficient Light-Emitting Devices, Nature Photonics 12, 681 (2018).
    75. J. N. Yang, Y. Song, J. S. Yao, K. H. Wang, J. J. Wang, B. S. Zhu, M. M. Yao, S. U. Rahman, Y. F. Lan, F. J. Fan and H. B. Yao, Potassium Bromide Surface Passivation on CsPbI3-xBrx Nanocrystals for Efficient and Stable Pure Red Perovskite Light-Emitting Diodes, Journal of the American Chemical Society 142, 2956-2967 (2020).
    76. T. T. Wang, X. S. Li, T. Fang, S. L. Wang and J. Z. Song, Room-Temperature Synthesis of Perovskite-Phase CsPbI3 Nanocrystals for Optoelectronics via a Ligand-Mediated Strategy, Chemical Engineering Journal 418, 129361 (2021).
    77. H. M. Li, W. Dong, X. Y. Shen, C. D. Ge, Y. L. Song, Z. S. Wang, A. R. Wang, Z. Q. Yang, M. W. Hao, Y. Zhang, W. T. Zheng, X. Y. Zhang and Q. F. Dong, Enhancing the Efficiency and Stability of CsPbI3 Nanocrystal-Based Light-Emitting Diodes through Ligand Engineering with Octylamine, Journal of Physical Chemistry C 126, 1085-1093 (2022).
    78. J. Tauc, R. Grigorovici and A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, physica status solidi (b) 15, 627-637 (1966).
    79. P. Makula, M. Pacia and W. Macyk, How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra, The Journal of Physical Chemistry Letters 9, 6814-6817 (2018).
    80. M. Tebyetekerwa, J. Zhang, Z. Xu, T. N. Truong, Z. Y. Yin, Y. R. Lu, S. Ramakrishna, D. Macdonald and H. T. Nguyen, Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides, ACS Nano 14, 14579-14604 (2020).
    81. S.-K. Kim, H. Yang and Y.-S. Kim, Control of Carrier Injection and Transport in Quantum Dot Light Emitting Diodes (QLEDs) via Modulating Schottky Injection Barrier and Carrier Mobility, Journal of Applied Physics 126, 185702 (2019).

    無法下載圖示 全文公開日期 2025/07/31 (校內網路)
    全文公開日期 2025/07/31 (校外網路)
    全文公開日期 2025/07/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE