簡易檢索 / 詳目顯示

研究生: 周建峰
Jian-Fong Jhou
論文名稱: 晶粒級覆晶式封裝白光發光二極體之光萃取效率提升與空間均勻光色之研究
Study of Light Extraction Efficiency and Color Spatial Uniformity for Flip-Chip Chip Scale Packaging White Light Emitting Diodes
指導教授: 李宗憲
Tsung-Xian Lee
林宗翰
Tzung-Han Lin
口試委員: 謝明勳
Ming-Hsun Hsieh
陳俊傑
Chun-Chieh Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 135
中文關鍵詞: 白光發光二極體覆晶晶粒晶粒級封裝光萃取效率空間色彩均勻性
外文關鍵詞: White Light-Emitting Diodes, Flip Chip, Chip Scale Package, Light Extraction Efficiency, Color Spatial Uniformity
相關次數: 點閱:302下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對晶粒級覆晶式封裝白光LED進行最佳化分析,且根據不同封裝形式,提出八種可在製程上實現之封裝結構,並針對其內部螢光粉及矽膠結構與外部封裝尺寸進行優化,探討影響光萃取效率及空間色彩分佈之主要原因,同時考慮實際上散熱鰭片表面之漫反射特性,確保模擬結果更接近於現實。
    從模擬結果中,得知主要影響空間色彩分佈之原因與螢光粉結構及封裝外部比例有極大關係。例如當Type I與Type II封裝體尺寸比例為1.1至1.3時,可獲得最佳的空間色彩分佈,正負80度內所對應之 皆小於0.004,且當封裝體大於晶粒體積25倍以上時,有最佳的光萃取效率結果。而主要影響光萃取效率的封裝反射表面為藍光覆晶晶片底部的反射層,以及封裝體底部之白漆反射層,若能有效提升上述兩者之反射率,將提升光萃取效率10至20%,且不影響空間色彩分佈之結果。最後,為了進一步提升空間色彩分佈之均勻性,分析摻雜不同濃度的奈米粉末粒子於封裝體中之結果,當摻雜濃度5%的奈米粉末粒子於Type I之螢光粉結構中,可使整體 改善至0.00064,且正負80度內的 分佈皆小於0.001。


    This paper analyze light extraction efficiency (LEE) and color spatial uniformity (CSU) for flip-chip white light-emitting diodes with chip scale packaging. Depends on the type of package, we propose eight different structures which can be realized. Furthermore, the internal phosphor and silicone structures as well as the external packaging size is optimized. At the same time, the root cause of affect LEE and CSU is discussed. In addition, to ensure the simulation results is close to reality, this study take into account the diffuse reflection characteristics on the surface of the heat sink.

    According to the simulation results, we can figure out that the main impact of CSU is phosphor structure and scale of package size. For example, when the height-width-ratio (HWR) of Type I and Type II is from 1.1 to 1.3, the CSU will be reduce them to less than 0.004 within 80 degrees. Besides, when the size of package is 25 times larger than the size of chip, the optimized LEE can be obtained. Among of these, the reflectivity of bottom surface also is the major cause of LEE reduction, including reflective mirror layer of flip-chip and white paint layer of the package. If we could increase the reflectance of these layers, the LEE will be enhanced about 10 to 20% and the CSU won’t be influenced. Finally, in order to further improve the CSU, the different concentrations of nanoparticle doped in different position of the package is analyzed.. From the simulation results, for Type I, we can find that when the concentration is up to 5%, the average CSU can be reduced to 0.00064, and all are less than 0.001 within 80 degrees.

    摘 要 I Abstract II 目錄 III 圖索引 IV 表索引 VI 第一章 緒論 1 1.1 研究背景 2 1.2 研究動機與目的 5 1.3 論文大綱與架構 6 第二章 白光LED元件與其光萃取效率及色彩分佈特性 9 2.1 白光LED封裝 9 2.2 不同封裝形式對於白光LED之光萃取效率比較 12 2.3 不同封裝形式對於白光LED之空間色彩分佈比較 14 2.4 白光LED空間色彩分佈之評價與公式 16 第三章 晶粒級覆晶式封裝白光LED之光源模型建立 21 3.1 藍光覆晶晶片模型建立與參數設定 21 3.2 螢光粉與透明封裝膠模型建立與參數設定 23 3.3 封裝介面之模型建立與參數設定 27 第四章 晶粒級覆晶式封裝LED之光色特性分析與結構優化 30 4.1 螢光粉封裝形式之分析 30 4.2 散熱鰭片漫反射與側壁毛化分析 33 4.3 封裝體內部結構優化對於LEE及CSU之影響分析 36 4.4 封裝體外部尺寸優化對於LEE及CSU之影響分析 46 4.5 底部反射對於LEE及CSU之影響分析 60 4.6 目標色溫對空間色彩分佈及效率之影響 65 第五章 奈米粒子摻雜對光萃取效率與空間色彩分佈之影響 69 第六章 結論 83 參考文獻 85 圖附錄 90 表附錄 113 中英文對照表 124

    [1] Craford, M. G."LEDs for solid state lighting and other emerging applications: status, trends, and challenges." Optics & Photonics 2005. International Society for Optics and Photonics, 2005.
    [2] Schubert, E. F., Gessmann, T., & Kim, J. K. Light emitting diodes. John Wiley & Sons, Inc., 2005.
    [3] Liu, S., & Luo, X. LED packaging for lighting applications: design, manufacturing, and testing. John Wiley & Sons, 2011.
    [4] Moriguchi, T., Noguchi, Y., Sakano, K., & Shimizu, Y. "Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material." U.S. Patent No. 5,998,925. 7 Dec. 1999.
    [5] Zukauskas, A., Ivanauskas, F., Vaicekauskas, R., Shur, M. S., & Gaska, R. "Optimization of multichip white solid state lighting source with four or more LEDs." International Symposium on Optical Science and Technology. International Society for Optics and Photonics, 2001.
    [6] Nakamura, S., Mukai, T., & Senoh, M. "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes."Applied Physics Letters 64.13 (1994): 1687-1689.
    [7] Yang, C. C., Lin, C. M., Chen, Y. J., Wu, Y. T., Chuang, S. R., Liu, R. S., & Hu, S. F. "Highly stable three-band white light from an InGaN-based blue light-emitting diode chip precoated with (oxy) nitride green/red phosphors." Applied physics letters 90.12 (2007): 123503-123503.
    [8] McNulty, T. F., Doxsee, D. D., & Rose, J. W. "UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same." U.S. Patent No. 6,686,676. 3 Feb. 2004.
    [9] Xie, R. J., Hirosaki, N., Kimura, N., Sakuma, K., & Mitomo, M. "2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors." Applied physics letters 90.19 (2007): 191101-191101.
    [10] You, J. P., Tran, N. T., & Shi, F. G. "Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration." Optics express 18.5 (2010): 5055-5060.
    [11] Kimura, N., Sakuma, K., Hirafune, S., Asano, K., Hirosaki, N., & Xie, R. J. "Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode." Applied physics letters 90.5 (2007): 051109.
    [12] Moriguchi, T., Noguchi, Y., Sakano, K., & Shimizu, Y. "Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material." U.S. Patent No. 5,998,925. 7 Dec. 1999.
    [13] ENERGY, STAR. "Program Requirements for solid state lighting luminaires."Eligibility Criteria–Version 1 (2008).
    [14] Kim, B., Kim, H., & Kang, S. "Reverse functional design of discontinuous refractive optics using an extended light source for flat illuminance distributions and high color uniformity." Optics express 19.3 (2011): 1794-1807.
    [15] Kim, B., Choi, M., Kim, H., Lim, J., & Kang, S. "Elimination of flux loss by optimizing the groove angle in modified Fresnel lens to increase illuminance uniformity, color uniformity and flux efficiency in LED illumination." Optics express 17.20 (2009): 17916-17927.
    [16] Ashdown, I. E. "Chromaticity and color temperature for achitectural lighting."International Symposium on Optical Science and Technology. International Society for Optics and Photonics, 2002.
    [17] Liu, Z., Liu, S., Wang, K., & Luo, X. "Optical analysis of color distribution in white LEDs with various packaging methods." Photonics Technology Letters, IEEE 20.24 (2008): 2027-2029.
    [18] Hu, R., Luo, X., & Liu, S. "Study on the optical properties of conformal coating light-emitting diode by Monte Carlo simulation." Photonics Technology Letters, IEEE 23.22 (2011): 1673-1675.
    [19] Hu, R., Luo, X., Zheng, H., Qin, Z., Gan, Z., Wu, B., & Liu, S. "Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating." Optics express 20.13 (2012): 13727-13737.
    [20] Zheng, H., Luo, X., Hu, R., Cao, B., Fu, X., Wang, Y., & Liu, S. "Conformal phosphor coating using capillary microchannel for controlling color deviation of phosphor-converted white light-emitting diodes." Optics express 20.5 (2012): 5092-5098.
    [21] Zheng, H., Wang, Y., Li, L., Fu, X., Zou, Y., & Luo, X. "Dip-transfer phosphor coating on designed substrate structure for high angular color uniformity of white light emitting diodes with conventional chips." Optics express 21.106 (2013): A933-A941.
    [22] Collins III, W. D., Krames, M. R., Verhoeckx, G. J., & van Leth, N. J. M. "Using electrophoresis to produce a conformally coated phosphor-converted light emitting semiconductor." U.S. Patent No. 6,576,488. 10 Jun. 2003.
    [23] Zheng, H., Fu, X., Hu, R., Liu, S., & Luo, X. "Angular color uniformity improvement for phosphor-converted white light-emitting diodes by optimizing remote coating phosphor geometry." Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 2012 13th International Conference on. IEEE, 2012.
    [24] Sommer, C., Krenn, J. R., Hartmann, P., Pachler, P., Schweighart, M., Tasch, S., & Wenzl, F. P. "The effect of the phosphor particle sizes on the angular homogeneity of phosphor-converted high-power white LED light sources." Selected Topics in Quantum Electronics, IEEE Journal of 15.4 (2009): 1181-1188.
    [25] Zheng, H., Liu, S., & Luo, X. "Enhancing angular color uniformity of phosphor-converted white light-emitting diodes by phosphor dip-transfer coating." Journal of Lightwave Technology 31.12 (2013): 1987-1993.
    [26] Shuai, Y., He, Y., Tran, N. T., & Shi, F. G. "Angular CCT uniformity of phosphor converted white LEDs: Effects of phosphor materials and packaging structures." Photonics Technology Letters, IEEE 23.3 (2011): 137-139.
    [27] Chen, K. J., Chen, H. C., Lin, C. C., Wang, C. H., Yeh, C. C., Tsai, H. H., ... & Kuo, H. C. "An investigation of the optical analysis in white light-emitting diodes with conformal and remote phosphor structure." Journal of Display Technology 9.11 (2013): 915-920.
    [28] Huang, K. C., Lai, T. H., & Chen, C. Y. "Improved CCT uniformity of white LED using remote phosphor with patterned sapphire substrate." Applied optics 52.30 (2013): 7376-7381.
    [29] Sun, C. C., Chen, C. Y., Chen, C. C., Chiu, C. Y., Peng, Y. N., Wang, Y. H., ... & Chung, C. Y. "High uniformity in angular correlated-color-temperature distribution of white LEDs from 2800K to 6500K." Optics express20.6 (2012): 6622-6630.
    [30] Sommer, C., Wenzl, F. P., Hartmann, P., Pachler, P., Schweighart, M., & Leising, G. "Tailoring of the color conversion elements in phosphor-converted high-power LEDs by optical simulations." Photonics Technology Letters, IEEE 20.9 (2008): 739-741.
    [31] Jordan, R. C., Bauer, J., & Oppermann, H. "Optimized heat transfer and homogeneous color converting for Ultra High Brightness LED Package." Photonics Europe. International Society for Optics and Photonics, 2006.
    [32] Kim, J. K., Luo, H., Schubert, E. F., Cho, J., Sone, C., & Park, Y. "Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup." Japanese Journal of Applied Physics 44.5L (2005): L649.
    [33] Kuo, H. C., Hung, C. W., Chen, H. C., Chen, K. J., Wang, C. H., Sher, C. W., ... & Cheng, Y. J. "Patterned structure of remote phosphor for phosphor-converted white LEDs." Optics express 19.104 (2011): A930-A936.
    [34] Chen, K. J., Chen, H. C., Shih, M. H., Wang, C. H., Tsai, H. H., Chien, S. H., ... & Kuo, H. C. "Enhanced luminous efficiency of WLEDs using a dual-layer structure of the remote phosphor package." Journal of Lightwave Technology 31.12 (2013): 1941-1945.
    [35] Lin, M. T., Ying, S. P., Lin, M. Y., Tai, K. Y., Tai, S. C., Liu, C. H., ... & Sun, C. C. "Ring remote phosphor structure for phosphor-converted white LEDs." Photonics Technology Letters, IEEE 22.8 (2010): 574-576.
    [36] Zhu, L., Wang, X. H., Lai, P. T., & Choi, H. W. "Angularly uniform white light-emitting diodes using an integrated reflector cup." Photonics Technology Letters, IEEE 22.7 (2010): 513-515.
    [37] Wu, H., Narendran, N., Gu, Y., & Bierman, A. "Improving the performance of mixed-color white LED systems by using scattered photon extraction technique." Optical Engineering+ Applications. International Society for Optics and Photonics, 2007.
    [38] Wu, B., Luo, X., Zheng, H., & Liu, S. "Effect of gold wire bonding process on angular correlated color temperature uniformity of white light-emitting diode." Optics express 19.24 (2011): 24115-24121.
    [39] Chen, H. C., Chen, K. J., Lin, C. C., Wang, C. H., Han, H. V., Tsai, H. H., ... & Kuo, H. C. "Improvement in uniformity of emission by ZrO2 nano-particles for white LEDs." Nanotechnology 23.26 (2012): 265201.
    [40] Fujita, S., Umayahara, Y., & Tanabe, S. "Influence of light scattering on luminous efficacy in Ce: YAG glass-ceramic phosphor."Journal of the ceramic society of Japan 118.1374 (2010): 128-131.
    [41] Hu, R., Zheng, H., Hu, J., & Luo, X. "Comprehensive study on the transmitted and reflected light through the phosphor layer in light-emitting diode packages." Display Technology, Journal of 9.6 (2013): 447-452.
    [42] Hu, R., Fu, X., Zou, Y., & Luo, X. "A complementary study to “Toward scatter-free phosphors in white phosphor-converted light-emitting diodes:” comment." Optics express 21.4 (2013): 5071-5073.
    [43] Park, H. K., Oh, J. H., & Rag Do, Y. "Toward scatter-free phosphors in white phosphor-converted light-emitting diodes." Optics express20.9 (2012): 10218-10228.
    [44] Tran, N. T., You, J. P., & Shi, F. G. "Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED."Lightwave Technology, Journal of 27.22 (2009): 5145-5150.
    [45] Shuai, Y., Tran, N. T., & Shi, F. G.. "Nonmonotonic phosphor size dependence of luminous efficacy for typical white LED emitters." Photonics Technology Letters, IEEE 23.9 (2011): 552-554.
    [46] Liu, Z. Y., Li, C., Yu, B. H., Wang, Y. H., & Niu, H. B. "Effects of YAG: Ce phosphor particle size on luminous flux and angular color uniformity of phosphor-converted white LEDs." Display Technology, Journal of 8.6 (2012): 329-335.

    QR CODE