簡易檢索 / 詳目顯示

研究生: 謝欣妤
Hsin-Yu Hsieh
論文名稱: 以室溫合成法 進行藍光鈣鈦礦量子點之研究
Study on Blue Emission Perovskite Quantum Dots by Room Temperature Synthesis
指導教授: 陳良益
Liang-Yih Chen
口試委員: 江志強
Jyh-Chiang Jiang
江志強
Jyh-Chiang Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 268
中文關鍵詞: 氯溴化銫鉛鈣鈦礦量子點陰離子置換配體鈍化優化處理水處理鈣鈦礦發光二極體
外文關鍵詞: cesium lead bromide chloride (CsPb(Br/Cl)3) perovskite quantum dots anion exchange, ligand passivation, optimization treatment, quantum‐dot light‐emitting diodes (QLEDs)
相關次數: 點閱:295下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討以室溫合成法進行氯溴化銫鉛鈣鈦礦藍光量子點製備與光電性質分析,並以此進行量子點發光二極體的製做與光電性質分析。首先,以批次法進行溴化銫鉛鈣鈦礦綠光量子點,之後再以氯化鉛做為氯源,將溴化銫鉛鈣鈦礦量子點進行部份溴離子取代,以製備氯溴化銫鉛鈣鈦礦藍光量子點。且因此合成方法製程溫度低,為探討日後進行大量製做的可行性評估,將同時以微流道法進行連續式合成氯溴化銫鉛鈣鈦礦藍光量子點的製程探討。經由結構與光譜分析可知:使用以上兩種方法進行氯溴化銫鉛鈣鈦礦藍光量子點在形貌與結構上並無太大差異,但由螢光量子效率的分析卻可知:使用連續式微流道法所合成的量子點具有較高的螢光量子效率。但由於在進行後段的陰離子交換過程中仍會導致表面產生鹵素缺陷與配體損失而使量子點的螢光量子效率仍不佳。因此在本研究中將藉由不同的鹵素後處理法進行優化。在經過許多鹵素源優化後發現:以氯化氫進行優化的效果最佳,可將氯溴化銫鉛鈣鈦礦藍光量子點的螢光量子效率提升至70%。之後,將使用室溫法所合成的鹵化銫鉛鈣鈦礦量子點進行量子點發光二極體的製作與光電性質分析。溴化銫鉛鈣鈦礦量子點綠光二極體的驅動電壓為5.40 V,最大輝度為127 cd/m2,電流效率為2.91 cd/A,外部量子效率為0.959%;碘溴化銫鉛鈣鈦礦量子點紅光二極體的驅動電壓為5.60 V,最大輝度為60.2 cd/m2,電流效率為0.122 cd/A,外部量子效率為0.367%;氯溴化銫鉛鈣鈦礦量子點藍光二極體的驅動電壓為5.20 V,輝度為2.25 cd/m2,電流效率為0.0120 cd/A,外部量子效率為0.0150%。以此三原色發光二極體進行色域分析可達106% NTSC標準。


    This study mainly discusses the preparation and optoelectronic properties of cesium lead bromide chloride (CsPb(Br/Cl)3) perovskite quantum dots (PQDs) by room temperature process. In addition, CsPb(Br/Cl)3 PQDs were used to fabricate quantum dot light emission diode (QD-LED) and analyzed its emission properties. Firstly, the green emission cesium lead bromide (CsPbBr3) PQDs were synthesized by batch process and partial bromide ions of CsPbBr3 PQDs was replaced by chloride ions by using lead chloride for blue emission cesium lead bromide chloride (CsPb(Br/Cl)3) PQDs. In addition, the continuous micro-fluidic channel method was employed to discuss the feasibility of mass production in the future due to low synthesis temperature. From structure and spectrum analyses, CsPb(Br/Cl)3 PQDs synthesized by above two methods do not have much difference in morphology and structure. But from analysis of photoluminescence quantum yield (PL-QY), it can be know that CsPb(Br/Cl)3 PQDs synthesized by continuous micro-fluidic channel have higher PL-QY. However, in the stage of anion exchange process, the halogen defects and ligand loss would still occur on the surfaces of CsPb(Br/Cl)3 PQDs and the PL-QY of CsPb(Br/Cl)3 PQDs is still not good enough. Therefore, different halogen post treatment were employed for optimization. After optimizing many halogen sources, it was found that CsPb(Br/Cl)3 PQDs treated by hydrogen chloride (HCl) is the best. The PL-QY of HCl treated CsPb(Br/Cl)3 PQDs could achieve 70%. After that, cesium lead halogen (CsPbX3, X=Cl, Br, I) PQDs were used to fabricate QD-LED and to analyze their optoelectronic properties. Among them, the turn-on voltage (VT), maximum luminance (Lummax), current efficiency (CE) and external quantum efficiency (EQE) of CsPbBr3 green emission QD-LED were 5.40 V, 127 cd/m2, 2.91 cd/A and 0.959%. The VT, Lummax, CE and EQE of cesium lead bromide iodide (CsPb(Br/I)3) red emission QD-LED were 5.60 V, 60.2 cd/m2, 0.122 cd/A and 0.367%. The VT, Lummax, CE and EQE of CsPb(Br/Cl)3 blue emission QD-LED were 5.20 V, 2.25 cd/m2, 0.012 cd/A and 0.012%. The gamut of three color QD-LED can achieve 106% of NTSC standard

    中文摘要 1 Abstract 3 致謝 6 目錄 8 圖目錄 12 表目錄 32 第一章、緒論 38 1-1前言 38 1-2研究動機與目的 39 第二章、理論基礎與文獻回顧 41 2-1 半導體材料特性 41 2-2 鈣鈦礦奈米材料 45 2-2-1 鈣鈦礦結構 45 2-2-2 鈣鈦鑛量子點簡介 46 2-2-3 鈣鈦鑛材料發展 47 2-2-4 鈣鈦礦量子點的穩定性 48 2-2-5 鈣鈦礦量子點的尺寸與形狀 52 2-2-6 鈣鈦礦量子點光學性質量測 55 2-3 藍光鈣鈦礦量子點探討 57 2-3-1 鈣鈦鑛量子點特性及合成 57 2-3-2 鈣鈦鑛量子點陰離子置換 61 2-3-3 CsPb(Br/Cl)3 藍光量子點 69 2-3-4 優化鈣鈦礦藍光量子點 72 2-4 微流道晶片合成量子點 79 2-4-1 微流體和微流道簡介 79 2-4-2 微流道材料與製作方法 80 2-4-3 連續式微流控技術合成奈米材料 84 2-5 CsPbX3 (X=Cl,Br,I)量子點材料應用 88 2-5-1 發光二極體結構簡介 89 2-5-2 發光二極體性能分析 92 2-5-3 CsPbX3 (X=Cl,Br,I)發光二極體 94 第三章、實驗步驟 115 3-1 實驗流程圖 115 3-2 實驗藥品 116 3-3 實驗分析與儀器原理 119 3-4 實驗步驟 134 3-4-1 以批次反應器合成CsPb(Br/Cl)3量子點 134 3-4-2 以微流道晶片合成CsPb(Br/I)3量子點 137 3-4-3 CsPb(Br/Cl)3量子點進行後處理優化製程 140 3-4-4 CsPbX3量子點螢光量子效率測量 141 3-4-5 利用CsPbX3 (X=Br,I,Cl)進行發光二極體元件製作 142 第四章、結果與討論 146 4-1 以室溫法進行CsPb(Br/Cl)3量子點製程優化與性質分析 146 4-1-1 CsPb(Br/Cl)3 量子點合成與性質分析 146 4-1-2 以金屬氯化物進行CsPb(Br/Cl)3量子點後處理優化參數 153 4-1-3 以水分子進行CsPb(Br/Cl)3 量子點後處理優化參數探討 160 4-1-4 以氯化物加入水分子進行CsPb(Br/Cl)3量子點後處理優化參數探討 177 4-2 微流道反應器合成CsPb(Br/Cl)3量子點之製程優化與性質分析 191 4-2-1 以微流道反應器進行CsPb(Br/Cl)3量子點合成與後處理優化參數探討 191 4-2-2 以微流道反應器進行CsPb(Br/Cl)3量子點沉澱相後處理優化參數探討 215 4-3 以CsPbX3量子點應用於發光二極體之研究 230 第五章、結論 252 第六章、參考文獻 254

    1. V. D’Innocenzo, A. R. Srimath Kandada, M. De Bastiani, M. Gandini and A. Petrozza, Tuning the Light Emission Properties by Band Gap Engineering in Hybrid Lead Halide Perovskite, Journal of the American Chemical Society 136 (51), 17730-17733 (2014).
    2. F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips and R. H. Friend, High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors, The Journal of Physical Chemistry Letters 5 (8), 1421-1426 (2014).
    3. R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore and H. J. Snaith, Bandgap-Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells, Advanced Energy Materials 6 (8), 1502458 (2016).
    4. K. Park, J. W. Lee, J. D. Kim, N. S. Han, D. M. Jang, S. Jeong, J. Park and J. K. Song, Light–Matter Interactions in Cesium Lead Halide Perovskite Nanowire Lasers, The Journal of Physical Chemistry Letters 7 (18), 3703-3710 (2016).
    5. S. D. Stranks and H. J. Snaith, Metal-Halide Perovskites for Photovoltaic and Light-Emitting Devices, Nature Nanotechnology 10 (5), 391-402 (2015).
    6. S. Huang, Z. Li, L. Kong, N. Zhu, A. Shan and L. Li, Enhancing the Stability of CH3NH3PbBr3 Quantum Dots by Embedding in Silica Spheres Derived from Tetramethyl Orthosilicate in “Waterless” Toluene, Journal of the American Chemical Society 138 (18), 5749-5752 (2016).
    7. M. Rioult,2015. Hematite-Based Epitaxial Thin Films as Photoanodes for Solar Water Splitting.PhD Dissertation, Ecole Polytechnique.
    8. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Y John Wiley & Sons, Inc., Hoboken, New Jersey, 2006).
    9. Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato and L. Manna, Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions, Journal of the American Chemical Society 137 (32), 10276-10281 (2015).
    10. G. C. Papavassiliou, Synthetic Three-and Lower-Dimensional Semiconductors Based on Inorganic Units, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 286 (1), 231-238 (2006).
    11. A. S. Bhalla, R. Guo and R. Roy, The Perovskite Structure—A Review of its Role in Ceramic Science and Technology, Materials Research Innovations 4 (1), 3-26 (2000).
    12. P. Buffat and J. P. Borel, Size Effect on the Melting Temperature of Gold Particles, Physical Review A 13 (6), 2287-2298 (1976).
    13. M. V. Limaye, S. B. Singh, S. K. Date, D. Kothari, V. R. Reddy, A. Gupta, V. Sathe, R. J. Choudhary and S. K. Kulkarni, High Coercivity of Oleic Acid Capped CoFe2O4 Nanoparticles at Room Temperature, The Journal of Physical Chemistry B 113 (27), 9070-9076 (2009).
    14. C. K. Moller, A Phase Transition in Cæsium Plumbochloride, Nature 180 (4593), 981-982 (1957).
    15. C. K. MØLler, Crystal Structure and Photoconductivity of Cæsium Plumbohalides, Nature 182 (4647), 1436-1436 (1958).
    16. J. Mizusaki, K. Arai and K. Fueki, Ionic Conduction of the Perovskite-Type Halides, Solid State Ionics 11 (3), 203-211 (1983).
    17. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, Journal of the American Chemical Society 131 (17), 6050-6051 (2009).
    18. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh and S. I. Seok, Iodide Management in Formamidinium-Lead-Halide–Based Perovskite Layers for Efficient Solar Cells, Science 356 (6345), 1376-1379 (2017).
    19. J. Shamsi, A. S. Urban, M. Imran, L. De Trizio and L. Manna, Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties, Chemical Reviews 119 (5), 3296-3348 (2019).
    20. T. Leijtens, G. E. Eperon, N. K. Noel, S. N. Habisreutinger, A. Petrozza and H. J. Snaith, Stability of Metal Halide Perovskite Solar Cells, Advanced Energy Materials 5 (20), 1500963 (2015).
    21. T. A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A. A. Dubale and B.-J. Hwang, Organometal Halide Perovskite Solar Cells : Degradation and Stability, Energy & Environmental Science 9 (2), 323-356 (2016).
    22. L. Protesescu, S. Yakunin, S. Kumar, J. Bär, F. Bertolotti, N. Masciocchi, A. Guagliardi, M. Grotevent, I. Shorubalko, M. I. Bodnarchuk, C.-J. Shih and M. V. Kovalenko, Dismantling the “Red Wall” of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium–Cesium Lead Iodide Nanocrystals, ACS Nano 11 (3), 3119-3134 (2017).
    23. J. S. Manser, J. A. Christians and P. V. Kamat, Intriguing Optoelectronic Properties of Metal Halide Perovskites, Chemical Reviews 116 (21), 12956-13008 (2016).
    24. W. Travis, E. N. K. Glover, H. Bronstein, D. O. Scanlon and R. G. Palgrave, On the Application of the Tolerance Factor to Inorganic and Hybrid Halide Perovskites : A Revised System, Chemical Science 7 (7), 4548-4556 (2016).
    25. C. J. Bartel, C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Musgrave, L. M. Ghiringhelli and M. Scheffler, New Tolerance Factor to Predict the Stability of Perovskite Oxides and Halides, Science Advances 5 (2), 2375-2548 (2019).
    26. G. Kieslich, S. Sun and A. K. Cheetham, Solid-State Principles Applied to Organic–Inorganic Perovskites : New Tricks for an Old Dog, Chemical Science 5 (12), 4712-4715 (2014).
    27. M.-G. Ju, J. Dai, L. Ma and X. C. Zeng, Lead-Free Mixed Tin and Germanium Perovskites for Photovoltaic Application, Journal of the American Chemical Society 139 (23), 8038-8043 (2017).
    28. Y. Wei, Z. Cheng and J. Lin, An Overview on Enhancing the Stability of Lead Halide Perovskite Quantum Dots and Their Applications in Phosphor-Converted Leds, Chemical Society Reviews 48 (1), 310-350 (2019).
    29. Z. Shi, J. Guo, Y. Chen, Q. Li, Y. Pan, H. Zhang, Y. Xia and W. Huang, Lead-Free Organic–Inorganic Hybrid Perovskites for Photovoltaic Applications : Recent Advances and Perspectives, Advanced Materials 29 (16), 1605005 (2017).
    30. S. Singh and D. Kabra, Influence of Solvent Additive on the Chemical and Electronic Environment of Wide Bandgap Perovskite Thin Films, Journal of Materials Chemistry C 6 (44), 12052-12061 (2018).
    31. H. Zhang, X. Sun and S. Chen, Over 100 cd A−1 Efficient Quantum Dot Light-Emitting Diodes with Inverted Tandem Structure, Advanced Functional Materials 27 (21), 1700610 (2017).
    32. Y.-X. Zhang, H.-Y. Wang, Z.-Y. Zhang, Y. Zhang, C. Sun, Y.-Y. Yue, L. Wang, Q.-D. Chen and H.-B. Sun, Photoluminescence Quenching of Inorganic Cesium Lead Halides Perovskite Quantum Dots (CsPbX3) by Electron/Hole Acceptor, Physical Chemistry Chemical Physics 19 (3), 1920-1926 (2017).
    33. A. Pan, B. He, X. Fan, Z. Liu, J. J. Urban, A. P. Alivisatos, L. He and Y. Liu, Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr3 Perovskite Nanocrystals : The Role of Organic Acid, Base, and Cesium Precursors, ACS Nano 10 (8), 7943-7954 (2016).
    34. E. Fanizza, F. Cascella, D. Altamura, C. Giannini, A. Panniello, L. Triggiani, F. Panzarea, N. Depalo, R. Grisorio, G. P. Suranna, A. Agostiano, M. L. Curri and M. Striccoli, Post-Synthesis Phase and Shape Evolution of CsPbBr3 Colloidal Nanocrystals : The Role of Ligands, Nano Research 12 (5), 1155-1166 (2019).
    35. G. Almeida, L. Goldoni, Q. Akkerman, Z. Dang, A. H. Khan, S. Marras, I. Moreels and L. Manna, Role of Acid–Base Equilibria in the Size, Shape, and Phase Control of Cesium Lead Bromide Nanocrystals, ACS Nano 12 (2), 1704-1711 (2018).
    36. Z. Liu, Y. Bekenstein, X. Ye, S. C. Nguyen, J. Swabeck, D. Zhang, S.-T. Lee, P. Yang, W. Ma and A. P. Alivisatos, Ligand Mediated Transformation of Cesium Lead Bromide Perovskite Nanocrystals to Lead Depleted Cs4PbBr6 Nanocrystals, Journal of the American Chemical Society 139 (15), 5309-5312 (2017).
    37. M. D. Galanin, A. A. Kutyonkov, V. N. Smorchkov, Y. P. Timofeev and Z. A. Chizhikova, Measurement of Photoluminescence Quantum Yield of Dye Solutions by the Vavilov and Integrating-Sphere Methods, Optics and Spectroscopy 53, 405 (1982).
    38. M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller and U. Resch-Genger, Determination of the Fluorescence Quantum Yield of Quantum Dots : Suitable Procedures and Achievable Uncertainties, Analytical Chemistry 81 (15), 6285-6294 (2009).
    39. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko, Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I) : Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut, Nano Letters 15 (6), 3692-3696 (2015).
    40. S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang and D. Pan, Room-Temperature and Gram-Scale Synthesis of Cspbx3 (X = Cl, Br, I) Perovskite Nanocrystals with 50–85% Photoluminescence Quantum Yields, Chemical Communications 52 (45), 7265-7268 (2016).
    41. J. Shamsi, P. Rastogi, V. Caligiuri, A. L. Abdelhady, D. Spirito, L. Manna and R. Krahne, Bright-Emitting Perovskite Films by Large-Scale Synthesis and Photoinduced Solid-State Transformation of CsPbBr3 Nanoplatelets, ACS Nano 11 (10), 10206-10213 (2017).
    42. K.-H. Wang, L. Wu, L. Li, H.-B. Yao, H.-S. Qian and S.-H. Yu, Large-Scale Synthesis of Highly Luminescent Perovskite-Related CsPb2Br5 Nanoplatelets and Their Fast Anion Exchange, Angewandte Chemie International Edition 55 (29), 8328-8332 (2016).
    43. M. V. Kovalenko, L. Protesescu and M. I. Bodnarchuk, Properties and Potential Optoelectronic Applications of Lead Halide Perovskite Nanocrystals, Science 358 (6364), 745-750 (2017).
    44. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells, Nano Letters 13 (4), 1764-1769 (2013).
    45. N. Pellet, J. Teuscher, J. Maier and M. Grätzel, Transforming Hybrid Organic Inorganic Perovskites by Rapid Halide Exchange, Chemistry of Materials 27 (6), 2181-2188 (2015).
    46. G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent and M. V. Kovalenko, Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I), Nano Letters 15 (8), 5635-5640 (2015).
    47. A. Yan, Y. Guo, C. Liu, Z. Deng, Y. Guo and X. Zhao, Tuning the Optical Properties of CsPbBr3 Nanocrystals by Anion Exchange Reactions with CsX Aqueous Solution, Nanoscale Research Letters 13 (1), 185 (2018).
    48. L. Wu, H. Hu, Y. Xu, S. Jiang, M. Chen, Q. Zhong, D. Yang, Q. Liu, Y. Zhao, B. Sun, Q. Zhang and Y. Yin, From Nonluminescent Cs4PbX6 (X = Cl, Br, I) Nanocrystals to Highly Luminescent CsPbX3 Nanocrystals: Water-Triggered Transformation through a CsX-Stripping Mechanism, Nano Letters 17 (9), 5799-5804 (2017).
    49. H. Hu, L. Wu, Y. Tan, Q. Zhong, M. Chen, Y. Qiu, D. Yang, B. Sun, Q. Zhang and Y. Yin, Interfacial Synthesis of Highly Stable CsPbX3/Oxide Janus Nanoparticles, Journal of the American Chemical Society 140 (1), 406-412 (2018).
    50. W. Lv, X. Tang, L. Li, L. Xu, M. Li, R. Chen and W. Huang, Assessment for Anion-Exchange Reaction in CsPbX3 (X = Cl, Br, I) Nanocrystals from Bond Strength of Inorganic Salt, The Journal of Physical Chemistry C 123 (39), 24313-24320 (2019).
    51. A. Shapiro, M. W. Heindl, F. Horani, M.-H. Dahan, J. Tang, Y. Amouyal and E. Lifshitz, Significance of Ni Doping in CsPbX3 Nanocrystals Via Postsynthesis Cation–Anion Coexchange, The Journal of Physical Chemistry C 123 (40), 24979-24987 (2019).
    52. J. Kang and L.-W. Wang, High Defect Tolerance in Lead Halide Perovskite CsPbBr3, The Journal of Physical Chemistry Letters 8 (2), 489-493 (2017).
    53. S. Mandal, S. Mukherjee, C. K. De, D. Roy, S. Ghosh and P. K. Mandal, Extent of Shallow/Deep Trap States Beyond the Conduction Band Minimum in Defect-Tolerant CsPbBr3 Perovskite Quantum Dot : Control over the Degree of Charge Carrier Recombination, The Journal of Physical Chemistry Letters, 1702-1707 (2020).
    54. T. Umebayashi, K. Asai, T. Kondo and A. Nakao, Electronic Structures of Lead Iodide Based Low-Dimensional Crystals, Physical Review B 67 (15), 155405 (2003).
    55. F. Li, Y. Liu, H. Wang, Q. Zhan, Q. Liu and Z. Xia, Postsynthetic Surface Trap Removal of CsPbX3 (X = Cl, Br, or I) Quantum Dots via a ZnX2/Hexane Solution toward an Enhanced Luminescence Quantum Yield, Chemistry of Materials 30 (23), 8546-8554 (2018).
    56. R. K. Behera, S. Das Adhikari, S. K. Dutta, A. Dutta and N. Pradhan, Blue-Emitting CsPbCl3 Nanocrystals: Impact of Surface Passivation for Unprecedented Enhancement and Loss of Optical Emission, The Journal of Physical Chemistry Letters 9 (23), 6884-6891 (2018).
    57. Y. Liu, F. Li, Q. Liu and Z. Xia, Synergetic Effect of Postsynthetic Water Treatment on the Enhanced Photoluminescence and Stability of CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals, Chemistry of Materials 30 (19), 6922-6929 (2018).
    58. G. H. Ahmed, J. K. El-Demellawi, J. Yin, J. Pan, D. B. Velusamy, M. N. Hedhili, E. Alarousu, O. M. Bakr, H. N. Alshareef and O. F. Mohammed, Giant Photoluminescence Enhancement in CsPbCl3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation, ACS Energy Letters 3 (10), 2301-2307 (2018).
    59. A. Dutta, R. K. Behera, S. K. Dutta, S. Das Adhikari and N. Pradhan, Annealing CsPbX3 (X = Cl and Br) Perovskite Nanocrystals at High Reaction Temperatures : Phase Change and Its Prevention, The Journal of Physical Chemistry Letters 9 (22), 6599-6604 (2018).
    60. M. A. Uddin, R. L. Calabro, D.-Y. Kim and K. R. Graham, Halide Exchange and Surface Modification of Metal Halide Perovskite Nanocrystals with Alkyltrichlorosilanes, Nanoscale 10 (35), 16919-16927 (2018).
    61. C. Bi, S. Wang, Q. Li, S. V. Kershaw, J. Tian and A. L. Rogach, Thermally Stable Copper(II)-Doped Cesium Lead Halide Perovskite Quantum Dots with Strong Blue Emission, The Journal of Physical Chemistry Letters 10 (5), 943-952 (2019).
    62. X. Shen, S. Wang, X. Zhang, H. Wang, X. Zhang, C. Wang, Y. Gao, Z. Shi, W. W. Yu and Y. Zhang, Enhancing the Efficiency of CsPbX3 (X = Cl, Br, I) Nanocrystals Via Simultaneous Surface Peeling and Surface Passivation, Nanoscale 11 (24), 11464-11469 (2019).
    63. V. Dolník, S. Liu and S. Jovanovich, Capillary Electrophoresis on Microchip, Electrophoresis 21 (1), 41-54 (2000).
    64. R. Kikkeri, P. Laurino, A. Odedra and P. H. Seeberger, Synthesis of Carbohydrate-Functionalized Quantum Dots in Microreactors, Angewandte Chemie International Edition 49 (11), 2054-2057 (2010).
    65. J. Baek, Y. Shen, I. Lignos, M. G. Bawendi and K. F. Jensen, Multistage Microfluidic Platform for the Continuous Synthesis of III–V Core/Shell Quantum Dots, Angewandte Chemie International Edition 57 (34), 10915-10918 (2018).
    66. I. Lignos, S. Stavrakis, G. Nedelcu, L. Protesescu, A. J. deMello and M. V. Kovalenko, Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform : Fast Parametric Space Mapping, Nano Letters 16 (3), 1869-1877 (2016).
    67. J. Song, J. Li, X. Li, L. Xu, Y. Dong and H. Zeng, Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3), Advanced Materials 27 (44), 7162-7167 (2015).
    68. A. Loiudice, S. Saris, E. Oveisi, D. T. L. Alexander and R. Buonsanti, CsPbBr3 QD/AlOx Inorganic Nanocomposites with Exceptional Stability in Water, Light, and Heat, Angewandte Chemie International Edition 56 (36), 10696-10701 (2017).
    69. Z. Liu, Y. Zhang, Y. Fan, Z. Chen, Z. Tang, J. Zhao, Y. lv, J. Lin, X. Guo, J. Zhang and X. Liu, Toward Highly Luminescent and Stabilized Silica-Coated Perovskite Quantum Dots through Simply Mixing and Stirring under Room Temperature in Air, ACS Applied Materials & Interfaces 10 (15), 13053-13061 (2018).
    70. Y. Tan, Y. Zou, L. Wu, Q. Huang, D. Yang, M. Chen, M. Ban, C. Wu, T. Wu, S. Bai, T. Song, Q. Zhang and B. Sun, Highly Luminescent and Stable Perovskite Nanocrystals with Octylphosphonic Acid as a Ligand for Efficient Light-Emitting Diodes, ACS Applied Materials & Interfaces 10 (4), 3784-3792 (2018).
    71. Y. Huang, W. Luan, M. Liu and L. Turyanska, DDAB-Assisted Synthesis of Iodine-Rich CsPbI3 Perovskite Nanocrystals with Improved Stability in Multiple Environments, Journal of Materials Chemistry C 8 (7), 2381-2387 (2020).
    72. F. Liu, Y. Zhang, C. Ding, S. Kobayashi, T. Izuishi, N. Nakazawa, T. Toyoda, T. Ohta, S. Hayase, T. Minemoto, K. Yoshino, S. Dai and Q. Shen, Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield, ACS Nano 11 (10), 10373-10383 (2017).
    73. C. Bi, S. V. Kershaw, A. L. Rogach and J. Tian, Improved Stability and Photodetector Performance of CsPbI3 Perovskite Quantum Dots by Ligand Exchange with Aminoethanethiol, Advanced Functional Materials 29 (29), 1902446 (2019).
    74. E. Moyen, A. Kanwat, S. Cho, H. Jun, R. Aad and J. Jang, Ligand Removal and Photo-Activation of CsPbBr3 Quantum Dots for Enhanced Optoelectronic Devices, Nanoscale 10 (18), 8591-8599 (2018).
    75. T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa and J. Kido, Anion-Exchange Red Perovskite Quantum Dots with Ammonium Iodine Salts for Highly Efficient Light-Emitting Devices, Nature Photonics 12 (11), 681-687 (2018).
    76. E.-P. Yao, Z. Yang, L. Meng, P. Sun, S. Dong, Y. Yang and Y. Yang, High-Brightness Blue and White LEDs based on Inorganic Perovskite Nanocrystals and Their Composites, Advanced Materials 29 (23), 1606859 (2017).
    77. M. K. Gangishetty, S. Hou, Q. Quan and D. N. Congreve, Reducing Architecture Limitations for Efficient Blue Perovskite Light-Emitting Diodes, Advanced Materials 30 (20), 1706226 (2018).
    78. H. H. Fong, A. Papadimitratos and G. G. Malliaras, Nondispersive Hole Transport in a Polyfluorene Copolymer with a Mobility of 0.01cm2V−1s−1, Applied Physics Letters 89 (17), 172116 (2006).
    79. H. Huang, H. Lin, S. V. Kershaw, A. S. Susha, W. C. H. Choy and A. L. Rogach, Polyhedral Oligomeric Silsesquioxane Enhances the Brightness of Perovskite Nanocrystal-Based Green Light-Emitting Devices, The Journal of Physical Chemistry Letters 7 (21), 4398-4404 (2016).
    80. F. Krieg, S. T. Ochsenbein, S. Yakunin, S. ten Brinck, P. Aellen, A. Süess, B. Clerc, D. Guggisberg, O. Nazarenko, Y. Shynkarenko, S. Kumar, C.-J. Shih, I. Infante and M. V. Kovalenko, Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0 : Zwitterionic Capping Ligands for Improved Durability and Stability, ACS Energy Letters 3 (3), 641-646 (2018).
    81. E. Moyen, H. Jun, H.-M. Kim and J. Jang, Surface Engineering of Room Temperature-Grown Inorganic Perovskite Quantum Dots for Highly Efficient Inverted Light-Emitting Diodes, ACS Applied Materials & Interfaces 10 (49), 42647-42656 (2018).
    82. J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han and H. Zeng, 50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control, Advanced Materials 29 (5), 1603885 (2017).
    83. J. Song, T. Fang, J. Li, L. Xu, F. Zhang, B. Han, Q. Shan and H. Zeng, Organic–Inorganic Hybrid Passivation Enables Perovskite QLEDs with an EQE of 16.48%, Advanced Materials 30 (50), 1805409 (2018).
    84. P. Vashishtha and J. E. Halpert, Field-Driven Ion Migration and Color Instability in Red-Emitting Mixed Halide Perovskite Nanocrystal Light-Emitting Diodes, Chemistry of Materials 29 (14), 5965-5973 (2017).
    85. Y. Cai, H. Wang, Y. Li, L. Wang, Y. Lv, X. Yang and R.-J. Xie, Trimethylsilyl Iodine-Mediated Synthesis of Highly Bright Red-Emitting CsPbI3 Perovskite Quantum Dots with Significantly Improved Stability, Chemistry of Materials 31 (3), 881-889 (2019).
    86. X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song and H. Zeng, CsPbX3 Quantum Dots for Lighting and Displays : Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes, Advanced Functional Materials 26 (15), 2435-2445 (2016).
    87. J. Y. Woo, Y. Kim, J. Bae, T. G. Kim, J. W. Kim, D. C. Lee and S. Jeong, Highly Stable Cesium Lead Halide Perovskite Nanocrystals through in Situ Lead Halide Inorganic Passivation, Chemistry of Materials 29 (17), 7088-7092 (2017).
    88. S.-H. Guo, J. Zhou, X. Zhao, C.-Y. Sun, S.-Q. You, X.-L. Wang and Z.-M. Su, Enhanced CO2 Photoreduction Via Tuning Halides in Perovskites, Journal of Catalysis 369, 201-208 (2019).
    89. X. Zheng, S. Yuan, J. Liu, J. Yin, F. Yuan, W.-S. Shen, K. Yao, M. Wei, C. Zhou, K. Song, B.-B. Zhang, Y. Lin, M. N. Hedhili, N. Wehbe, Y. Han, H.-T. Sun, Z.-H. Lu, T. D. Anthopoulos, O. F. Mohammed, E. H. Sargent, L.-S. Liao and O. M. Bakr, Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes, ACS Energy Letters 5 (3), 793-798 (2020).
    90. T. Fang, F. Zhang, S. Yuan, H. Zeng and J. Song, Recent Advances and Prospects Toward Blue Perovskite Materials and Light-Emitting Diodes, InfoMat 1 (2), 211-233 (2019).
    91. Q. Jing, M. Zhang, X. Huang, X. Ren, P. Wang and Z. Lu, Surface Passivation of Mixed-Halide Perovskite Cspb(BrxI1−X)3 Nanocrystals by Selective Etching for Improved Stability, Nanoscale 9 (22), 7391-7396 (2017).
    92. J. Song, J. Li, L. Xu, J. Li, F. Zhang, B. Han, Q. Shan and H. Zeng, Room-Temperature Triple-Ligand Surface Engineering Synergistically Boosts Ink Stability, Recombination Dynamics, and Charge Injection Toward Eqe-11.6% Perovskite Qleds, Advanced Materials 30 (30), 1800764 (2018).

    無法下載圖示 全文公開日期 2025/08/03 (校內網路)
    全文公開日期 2025/08/03 (校外網路)
    全文公開日期 2025/08/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE