簡易檢索 / 詳目顯示

研究生: Shewaye Temesgen Kassa
Shewaye Temesgen Kassa
論文名稱: Thin-film Metallic Glass as an Effective Coating for Enhancing Polyacrylonitrile and Polysulfone Membranes for Wastewater Treatment
Thin-film Metallic Glass as an Effective Coating for Enhancing Polyacrylonitrile and Polysulfone Membranes for Wastewater Treatment
指導教授: 朱瑾
Jinn P. Chu
胡蒨傑
Chien-Chieh Hu
口試委員: 賴君義
Juin-Yih Lai
李魁然
Kueir-Rarn Lee
白孟宜
Meng-Yi Bai
Antoine Venault
Antoine Venault
胡蒨傑
Chien-Chieh Hu
朱瑾
Jinn P. Chu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 101
中文關鍵詞: 金屬玻璃鍍層含油廢水處理靜電紡絲聚丙烯腈薄膜聚碸電漿處理超濾防污
外文關鍵詞: Thin film metallic glass, electrospun, polyacrylonitrile, membrane, polysulfone, oily wastewater treatment, plasma treatment, ultrafiltration, antifouling
相關次數: 點閱:377下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬玻璃鍍層(TFMG)為非晶結構之金屬,最近於材料改良領域獲得高度的關注。 在此研究中,鍍覆金屬玻璃鍍層於聚合物基質,其聚合物基材為靜電紡絲之聚丙烯腈和聚碸複合膜,目的是為了提高膜的選擇性和防汙性。
    首先,將靜電紡絲之聚丙烯腈(PAN)纖維膜鍍覆不同厚度的鋯基(Zr60 Cu25 Al10 Ni5)金屬玻璃,於RF功率100w和工作壓力3mtorr的條件下。鍍覆金屬玻璃鍍層之PAN纖維膜可用於油水分離,並有95%以上的排油率。由於金屬玻璃鍍層具光滑表面,可以完全保護PAN纖維膜免於受到化學腐蝕和熱降解,使PAN纖維膜免受到污染。在不同金屬玻璃鍍層的厚度於疏水性,粗糙度和孔隙率皆有顯著的影響,相對較厚的鍍層(61.9nm)對PAN纖維膜的水接觸角從24º增加到136º。此外,表面活性劑對薄膜通量和油水分離性能的影響上已有系統的研究。所製備乳液中的表面活性劑為十二烷基硫酸鈉(SDS),SDS的濃度對油滴大小及其分佈表現出顯著的影響,導致疏水性金屬玻璃鍍層的除油性與SDS的含量並行,其含量範圍於95%至100%。
    第二,將不對稱且相對緻密的聚碸(PSF)複合超濾薄膜作為基材,並兩階段改質來提高PSF複合超濾膜的選擇性、水通量和防污性。第一步用氬氣和氧氣等電漿對PSF複合超濾膜進行功能化,再來用不同的金屬玻璃系統(W50 Ni25 B25, Zr60 Cu25 Al10 Ni5, 和 Pd74 Si14 Cu12)鍍覆於PSF複合超濾膜。所得的功能化PSF超濾膜表現出良好的親水性(水接觸角為18度),並顯示出350.7 Lm−2h−1 之高純水通量以及83%之牛血清白蛋白排斥率。鍍覆金屬玻璃之PSF複合超濾膜改善了牛血清白蛋白的排斥行能,而純水通量只略有變化。因此,在鎢基、鋯基和鈀基PSF複合超濾薄膜之純水通量分別為321.5 Lm−2h−1、215.6 Lm−2h−1 和 181.3 Lm−2h−1, 而牛血清白蛋白的排斥範圍從98.6%至99.9%。尤其於鎢基之PSF複合超濾膜具顯著的純水通量、牛血清白蛋白排斥性和防污性,歸於表面親水性(水接觸角為24.2度)和表面電荷所致。鍍覆金屬玻璃系統於PSF複合超濾膜之RF功率為50W,以及工作距離為 12公分,使鍍膜時不會分散聚合物的本體結構。因此,氬氣和氧氣等電漿改質和鍍覆金屬玻璃之改質在改進方面是獨立發展的。
    總體而言,在此研究成功鍍覆不同金屬玻璃系統於PAN纖維膜和PSF複合超濾膜,使聚合物的本體結構不會分散。金屬玻璃鍍層在其特地用途和行能上產生良好的膜特性,其中鍍覆金屬玻璃之PAN薄膜和PSF複合超濾膜分別具有95%之排油性和98%牛血清白蛋白排斥性


    Thin film metallic glasses (TFMGs) are amorphous structured metals that recently gained incredible attention in the field of material modifications. In this work, TFMGs were sputter-deposited onto polymeric substrates (electrospun polyacrylonitrile and Polysulfone composite membranes), with the aims of enhancing membrane selectivity and antifouling.
    First, the electrospun polyacrylonitrile (PAN) fabric membrane was coated with the Zr-based TFMG (Zr53Cu26Al16Ni5) with different coating thicknesses (24.2, 51.0, and 61.9 nm). The metallic glass-coated PAN fabric membrane was used for oil-water separation and performed above 95% oil rejection. Moreover, the coating film entirely protected the electrospun PAN fabric membrane from chemical and thermal degradation as well as preserved the membrane from fouling, as the result of the smooth surface generated by TFMG coating. Here, the thickness of TFMG-coating exhibited a significant effect on the membrane hydrophobicity, roughness, and porosity so that relatively thick coating film (61.9nm) increased the water contact angle (WCA) of PAN fabric membrane from 24 ° to 136 °. Besides, the surfactant effect on the membrane’s flux and oil/water separation performance has been systematically studied. The surfactant, sodium dodecyl sulfate (SDS) concentration in the prepared emulsion shown a substantial effect on the oil droplet size as well as its distribution and finally causes the hydrophobic TFMG-coated membrane exhibited different oil rejection performance parallel with the SDS content, which was found in the range of 95%-100%.
    In the second part of this study, asymmetric and relatively dense Polysulfone (PSf) composite membrane was used as a substrate and a two-step modification was successfully implemented to improve the selectivity/water flux and antifouling performance of the PSf composite ultrafiltration membrane. PSf composite ultrafiltration membrane was first activated oxygen and then coated with several metallic glass systems (W50Ni25B25, Zr60Cu25Al10Ni5, and Pd74Si14Cu12). The resulting activated PSf ultrafiltration membrane exhibited strongly hydrophilic (WCA of 18.1 °), and show high pure water flux (PWF) of 350.7 Lm−2h−1 with bovine serum albumin (BSA) rejection of 83%. The TFMG/polysulfone composite ultrafiltration membrane improved BSA rejection performance with slight changes on PWF. Thus, W-, Zr-, and Pd-based TFMG/polysulfone composite membranes PWF were found 321.5 Lm−2h−1, 215.6 Lm−2h−1, and 181.3 Lm−2h−1, respectively, and BSA rejection ranged from 98.6 to 99.9%. Particularly the W-based TFMG/polysulfone composite membrane performs a remarkable PWF, BSA rejection, and antifouling that probably owing to the surface hydrophilicity (WCA of 24.2 °) and surface charge. In this modification, TFMG was sputter deposited at 50W RF power and an appropriate substrate distance (12cm) from the target to implant TFMG on the PSf membrane without noticeable damages to the polymer bulk structure. Therefore, the Ar/O2 plasma for oxygen grafting and TFMG coating played important roles in achieving such incredible improvements. Here, TFMG-coated polysulfone composite ultrafiltration membranes achieved moderately higher pure water flux and protein rejection with incredible antifouling competence, even under extended fouling processing time.
    Overall, in this study different TFMG systems have successfully sputter deposited on PAN fabric and PSf composite membranes without distracting the bulk structure. The TFMG-coating results an incredible membranes characteristics as a function of their specific purpose and performance in which the TFMG-coated PAN and PSf presented above 95% oil rejection and more than 98% BSA rejection, respectively.

    摘要 i Abstract iii Acknowledgment v List of Figures ix List of Tables xii 1. Introduction 1 2. Literature review 3 2.1 Thin film metallic glass formation and their unique property 3 2.1.1 Glass-forming ability 4 2.1.2 Smooth surface 6 2.1.3 Surface wettability 6 2.1.4 Mechanical properties 8 2.1.5 Chemical properties 9 2.2 Potential applications of thin film metallic glass 12 2.2.1 Biomedical application 12 2.2.2 Mechanical failure Prevention 17 2.2.3 Diffusion barrier coating film 20 2.3 Membranes in separation technology 23 2.3.1 Membrane classification 24 2.3.2 Membrane Preparation 25 2.4 Membrane process 28 2.5 Membrane modification 30 2.6 Wastewater treatment through a membrane 33 2.7 Challenges in the membrane-wastewater treatment 34 2.8 Motivation and objective 37 3. Experimental 38 3.1 Materials 38 3.2 Membrane preparation 38 3.2.1 Preparation of ultrafiltration PSf composite membrane 38 3.2.2 Ultrafiltration composite membrane oxygen activation and TFMG coating 38 3.2.3 Preparation of thin film metallic glass-coated membrane 39 3.3 Material Characterization 39 3.3.1 Membrane morphology 39 3.3.2 Crystallography and elemental analysis 39 3.3.3 Membrane stability 40 3.4 Membrane separation performance analysis 40 3.4.1 PAN fabric membrane Oil-water separation 40 3.4.2 Ultrafiltration experiment 40 3.4.3 Membrane fouling experiment 41 4. Results and discussion 43 4.1 Thin film metallic glass as an effective coating for enhancing oil/water separation of electrospun polyacrylonitrile membrane 43 4.1.1 Membrane Characterization 43 4.1.2 Surface wettability of membranes 45 4.1.3 Analysis of oil/water separation 46 4.1.4 Membrane antifouling Analysis 50 4.1.5 Membrane stability 51 4.2 Antifouling and high selective thin film metallic glass / Polysulfone composite membrane for ultrafiltration application 56 4.2.1 Ultrafiltration PSf composite membrane modification by plasma treatment 56 4.2.2 Membranes Morphology 58 4.2.3 Membrane surface wettability and charge 61 4.2.4 Pure water flux and protein rejection for varied ultrafiltration composite membranes 62 4.2.5 Antifouling performance of membranes 64 5. Summary and future work 69 5.1 Summary and Conclusion 69 5.2 Suggestions 70 5.3 Future work 70 6. References 72

    1. Q. Ma, H. Cheng, A.G. Fane, R. Wang, H. Zhang, Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation, Small, 12 (2016) 2186-2202.
    2. J. Ayyavoo, T.P.N. Nguyen, B.-M. Jun, I.-C. Kim, Y.-N. Kwon, Protection of polymeric membranes with antifouling surfacing via surface modifications, colloid surf. a physicochem. eng. asp., 506 (2016) 190-201.
    3. A. Khan, T.A. Sherazi, Y. Khan, S. Li, S.A.R. Naqvi, Z. Cui, Fabrication and characterization of polysulfone/modified nanocarbon black composite antifouling ultrafiltration membranes, J. Membr. Sci., 554 (2018) 71-82.
    4. D.R.a.T. Matsuura, Surface Modifications for Antifouling Membranes, Chem. Rev. 110 (2010), 2448–2471
    5. R. Zhang, Y. Liu, M. He, Y. Su, X. Zhao, M. Elimelech, Z. Jiang, Antifouling membranes for sustainable water purification: strategies and mechanisms, Chem. Soc. Rev, 45 (2016) 5888-5924.
    6. I. Banerjee, R.C. Pangule, R.S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms, Adv. Mater, 23 (2011) 690-718.
    7. J.P. Chu, C.C. Yu, Y. Tanatsugu, M. Yasuzawa, Y.L. Shen, Non-stick syringe needles: Beneficial effects of thin film metallic glass coating, Sci. Rep, 6: 31847 (2016).
    8. H.-W. Chen, K.-C. Hsu, Y.-C. Chan, J.-G. Duh, J.-W. Lee, J.S.-C. Jang, G.-J. Chen, Antimicrobial properties of Zr–Cu–Al–Ag thin film metallic glass, Thin Solid Films, 561 (2014) 98-101.
    9. C. H. Chang, C.-L. Li, C.-C. Yu, Y.-L. Chen, S. Chyntara, J.P. Chu, M.-J. Chen, S.-H. Chang, Beneficial effects of thin film metallic glass coating in reducing adhesion of platelet and cancer cells: Clinical testing, Surf. Coat. Technol., 344 (2018) 312-321.
    10. J. C. Chang, J.-W. Lee, B.-S. Lou, C.-L. Li, J.P. Chu, Effects of tungsten contents on the microstructure, mechanical and anticorrosion properties of Zr–W–Ti thin film metallic glasses, Thin Solid Films, 584 (2015) 253-256.
    11. H. Jia, F. Liu, Z. An, W. Li, G. Wang, J.P. Chu, J.S.C. Jang, Y. Gao, P.K. Liaw, Thin-film metallic glasses for substrate fatigue-property improvements, Thin Solid Films, 561 (2014) 2-27.
    12. C. C. Yu, C.M. Lee, J.P. Chu, J.E. Greene, P.K. Liaw, Fracture-resistant thin-film metallic glass: Ultra-high plasticity at room temperature, APL Materials, 4 (2016) 116101.
    13. P.H. Tsai, J.B. Li, Y.Z. Chang, H.C. Lin, J.S.C. Jang, J.P. Chu, J.W. Lee, P.K. Liaw, Fatigue properties improvement of high-strength aluminum alloy by using a ZrCu-based metallic glass thin film coating, Thin Solid Films, 561 (2014) 28-32.
    14. S. Alzahrani, A.W. Mohammad, Challenges and trends in membrane technology implementation for produced water treatment, A review, J Water Process Eng., 4 (2014) 107-133.
    15. J.P. Chu, T. Y. Liu, C.L. Li, C.-H. Wang, J.S.C. Jang, M.-J. Chen, S.-H. Chang, W.-C. Huang, Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application, Thin Solid Films, 561 (2014) 102-107.
    16. N. Kaushik, P. Sharma, S. Ahadian, A. Khademhosseini, M. Takahashi, A. Makino, S. Tanaka, M. Esashi, Metallic glass thin films for potential biomedical applications, J. Biomed Mater. Res. B. Appl. Biomater., 102 (2014) 1544-1552.
    17. D. Alique, D. Martinez-Diaz, R. Sanz, J.A. Calles, Review of Supported Pd-Based Membranes Preparation by Electroless Plating for Ultra-Pure Hydrogen Production, Membranes, 8 (2018).
    18. Z. Shi, J.A. Szpunar, S. Wu, Design and synthesis of thin palladium membranes on porous metal substrate for hydrogen extraction, J. Phys.: Conf. Ser, 165 (2009).
    19. H. Wang, X. Hu, Z. Ke, C.Z. Du, L. Zheng, C. Wang, Z. Yuan, Review: Porous Metal Filters and Membranes for Oil-Water Separation, Nanoscale Research Letters, 13 (2018).
    20. W.L. Wang, Y.H. Wu, L.H. Li, W. Zhai, X.M. Zhang, B. Wei, Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy, Sci. Rep., 5 (2015).
    21. S. Sarker, D. Isheim, G. King, Q. An, D. Chandra, S.I. Morozov, K. Page, J.N. Wermer, D.N. Seidman, M. Dolan, Icosahedra clustering and short range order in Ni-Nb-Zr amorphous membranes, Sci. Rep., 8 (2018).
    22. O. Palumbo, F. Trequattrini, M. Hulyalkar, S. Sarker, N. Pal, D. Chandra, T. Flanagan, M. Dolan, A. Paolone, Hydrogen Induced Abrupt Structural Expansion at High Temperatures of a Ni32Nb28Zr30Cu10 Membrane for H(2) Purification, Membranes 6 (2016).
    23. C. Fan, X. Yue, A. Inoue, C.T. Liu, X. Shen, P.K. Liaw, Recent Topics on the Structure and Crystallization of Al-based Glassy Alloys, Mat. Res., 22 (2019).
    24. N. Chen, L. Martin, D.V. Luzguine-Luzgin, A. Inoue, Role of Alloying Additions in Glass Formation and Properties of Bulk Metallic Glasses, Materials, 3 (2010) 5320-5339.
    25. D.V. Louzguine-Luzgin, N. Chen, A.Y. Churymov, L.V. Louzguina-Luzgina, V.I. Polkin, L. Battezzati, A.R. Yavari, Role of different factors in the glass-forming ability of binary alloys, J. Mater. Sci., 50 (2014) 1783-1793.
    26. A. De Sio, L. Tozzetti, Z. Wu, A. Marcelli, M. Cestelli Guidi, G. Della Ventura, H. Zhao, Z. Pan, W. Li, Y. Guan, E. Pace, Physical vapor deposition synthesis of amorphous silicate layers and nanostructures as cosmic dust analogs, Astronomy & Astrophysics, 589 (2016).
    27. R.F. Xiao, W.c. Ho, L.y. Chow, K.K. Fung, J. Zheng, Physical vapor deposition of highly oriented fullerene C60films on amorphous substrates, J. Appl. Phys, 77 (1995) 3572-3574.
    28. S. Singh, M.D. Ediger, J.J. de Pablo, Ultrastable glasses from in silico vapour deposition, Nature materials, 12 (2013) 139-144.
    29. M. Chen, A brief overview of bulk metallic glasses, NPG Asia Materials, 3 (2011) 82-90.
    30. D.M. Mattox, Physical Sputtering and Sputter Deposition (Sputtering), Handbook of Physical Vapor Deposition (PVD) Processing, 2nd Edition (2010), 237-286.
    31. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia, 48 ( 2000) 279-306.
    32. T.S. Srivatsan, Joanna R. Groza, James F. Shackelford, Enrique J. Lavernia, and Michael T. Powers, Materials Processing Handbook, Materials and Manufacturing Processes, 27 (2012) 1146-1147.
    33. W.H. Wang, Dong, C., Shek, C. H., Bulk metallic glasses, Materials Science and Engineering, 44 (2004) 45-89.
    34. S. Thanka Rajan, A.K. Nandakumar, T. Hanawa, B. Subramanian, Materials properties of ion beam sputtered Ti-Cu-Pd-Zr thin film metallic glasses, J. Non-Cryst. Solids, 461 (2017) 104-112.
    35. J. Schroers, Glasses made from pure metals, condensed-matter physics Nature, 512 (2014) 142-143.
    36. W.J. Jasper, N. Anand, A generalized variational approach for predicting contact angles of sessile nano-droplets on both flat and curved surfaces, J. Mol. Liq., 281 (2019) 196-203.
    37. E. Hadjittofis, S.C. Das, G.G.Z. Zhang, J.Y.Y. Heng, in: Y. Qiu, Y. Chen, G.G.Z. Zhang, L. Yu, R.V. Mantri, Developing Solid Oral Dosage Forms, Academic Press, 2nd Edition 2017, pp. 225-252.
    38. S. Shin, J. Seo, H. Han, S. Kang, H. Kim, T. Lee, Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications, Materials, 9 (2016).
    39. R.O. Ritchie, The conflicts between strength and toughness, Nature materials, 10 (2011) 817-822.
    40. S.Y. Kuan, J.C. Huang, Improving the ductility of thin film metallic glasses via nano-twinning, Thin Solid Films, 561 (2014) 43-47.
    41. Y.H. Liu, F. Zhao, Y.L. Li, M.W. Chen, Deformation behavior of metallic glass thin films, J. Appl. Phys., 112 (2012).
    42. S.W. Lee, M. Jafary-Zadeh, D.Z. Chen, Y.W. Zhang, J.R. Greer, Size Effect Suppresses Brittle Failure in Hollow Cu60Zr40 Metallic Glass Nanolattices Deformed at Cryogenic Temperatures, Nano Lett, 15 (2015) 5673-5681.
    43. J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, C. Rullyani, Thin film metallic glasses: Unique properties and potential applications, Thin Solid Films, 520 (2012) 5097-5122.
    44. M. Jafary-Zadeh, G. Praveen Kumar, P.S. Branicio, M. Seifi, J.J. Lewandowski, F. Cui, A Critical Review on Metallic Glasses as Structural Materials for Cardiovascular Stent Applications, J. Funct. Biomater, 9 (2018).
    45. M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson, R.O. Ritchie, A damage-tolerant glass, Nature materials, 10 (2011).
    46. M.S. Bakare, K.T. Voisey, K. Chokethawai, D.G. McCartney, Corrosion behaviour of crystalline and amorphous forms of the glass forming alloy Fe43Cr16Mo16C15B10, J. Alloy Compd., 527 (2012) 210-218.
    47. L.T. Chen, J.-W. Lee, Y.C. Yang, B.S. Lou, C.-L. Li, J.P. Chu, Microstructure, mechanical and anti-corrosion property evaluation of iron-based thin film metallic glasses, Surf. Coat. Technol., 260 (2014) 46-55.
    48. C. Qin, K. Asami, H. Kimura, W. Zhang, A. Inoue, Electrochemical and XPS studies of Ni-based metallic glasses in boiling nitric acid solutions, Electrochim. Acta, 54 (2009) 1612-1617.
    49. N. Padhy, S. Ningshen, U. Kamachi Mudali, Electrochemical and surface investigation of zirconium based metallic glass Zr59Ti3Cu20Al10Ni8 alloy in nitric acid and sodium chloride media, J. Alloys and Comp., 503 (2010) 50-56.
    50. B. Subramanian, S. Maruthamuthu, S. Thanka Rajan, Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels, International Journal of Nanomedicine, 10 (2015).
    51. S.V. Ketov, X. Shi, G. Xie, R. Kumashiro, A.Y. Churyumov, A.I. Bazlov, N. Chen, Y. Ishikawa, N. Asao, H. Wu, D.V. Louzguine-Luzgin, Nanostructured Zr-Pd metallic glass thin film for biochemical applications, Sci. Rep., 5 (2015) 7799.
    52. Y.Y. Chu, Y.S. Lin, C.M. Chang, J.K. Liu, C.H. Chen, J.C. Huang, Promising antimicrobial capability of thin film metallic glasses, Mater. Sci. Eng. C Mater. Biol. Appl., 36 (2014) 221-225.
    53. A. Caron, D.V. Louzguine-Luzguin, R. Bennewitz, Structure vs chemistry: friction and wear of Pt-based metallic surfaces, ACS Appl. Mater. Interfaces, 5 (2013) 11341-11347.
    54. J.S. C. Jang, P. H. Tsai, A. Z. Shiao, T. H. Li, C. Y. Chen, J.P. Chu, J.-G. Duh, M. J. Chen, S. H. Chang, W. C. Huang, Enhanced cutting durability of surgical blade by coating with Fe-based metallic glass thin film, Intermetallics, 65 (2015) 56-60.
    55. C. W. Wang, P. Yiu, J.P. Chu, C.-H. Shek, C.-H. Hsueh, Zr–Ti–Ni thin film metallic glass as a diffusion barrier between copper and silicon, J. Mater. Sci., 50 (2014) 2085-2092.
    56. C.C. Yu, H.J. Wu, P.Y. Deng, M.T. Agne, G.J. Snyder, J.P. Chu, Thin-film metallic glass: an effective diffusion barrier for Se-doped AgSbTe2 thermoelectric modules, Sci. Rep., 7 (2017) 45177.
    57. H.A. Khan, F.K. Baig, R. Mehboob, Nosocomial infections: Epidemiology, prevention, control and surveillance, Asian Pac. J. Trop. Biomed., 7 (2017) 478-482.
    58. Y. Liu, J. Padmanabhan, B. Cheung, J. Liu, Z. Chen, B.E. Scanley, D. Wesolowski, M. Pressley, C.C. Broadbridge, S. Altman, U.D. Schwarz, T.R. Kyriakides, J. Schroers, Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses, Sci. Rep., 6 (2016) 26950.
    59. N.L. Lala, R. Ramaseshan, L. Bojun, S. Sundarrajan, R.S. Barhate, L. Ying-Jun, S. Ramakrishna, Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants, Biotechnol Bioeng., 97 (2007) 1357-1365.
    60. Y.-H. Kim, Y. r. Choi, K. M. Kim, S. Y. Choi, Evaluation of copper ion of antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori and optical, mechanical properties, Appl. Surf. Sci., 258 (2012) 3823-3828.
    61. M.A.a.S.b. Mayson Alkhatib, Antibacterial Activity and Mechanism of Action of Lipid Nanoemulsions Against Staphylococcus aureus, J. Pure Appl. Microbio., 7 (2013) 259-267.
    62. G.J.C. Pai-Tsung Chiang, Sheng-Rui Jian, Yung-Hui Shih, Jason Shian-Ching Jang, Chung-Hsu Lai, Surface Antimicrobial Effects of Zr61Al7.5Ni10Cu17.5Si4 Thin Film Metallic Glasses on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans, J. Health Sci., 2 (2010) 12−20.
    63. P.H. Tsai, Y.Z. Lin, J.B. Li, S.R. Jian, J.S.C. Jang, C. Li, J.P. Chu, J.C. Huang, Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating, Intermetallics, 31 (2012) 127-131.
    64. J.P. Chu, N. Bönninghoff, C.-C. Yu, Y.-K. Liu, G.-H. Chiang, Coating needles with metallic glass to overcome fracture toughness and trauma: Analysis on porcine tissue and polyurethane rubber, Thin Solid Films, 688 (2019).
    65. L.R. Meza, S. Das, J.R. Greer, Strong, lightweight, and recoverable three-dimensional ceramic nanolattices, Science, 345 (2014) 1322-1326.
    66. D. Jang, L.R. Meza, F. Greer, J.R. Greer, Fabrication and deformation of three-dimensional hollow ceramic nanostructures, Nature materials, 12 (2013) 893-898.
    67. C. Schuh, T. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Materialia, 55 (2007) 4067-4109.
    68. R. Cao, Y. Deng, C. Deng, Ultrahigh plastic flow in Au nanotubes enabled by surface stress facilitated reconstruction, Acta Materialia, 86 (2015) 15-22.
    69. M. Muhlbacher, G. Greczynski, B. Sartory, N. Schalk, J. Lu, I. Petrov, J.E. Greene, L. Hultman, C. Mitterer, Enhanced Ti0.84Ta0.16N diffusion barriers, grown by a hybrid sputtering technique with no substrate heating, between Si(001) wafers and Cu overlayers, Sci. Rep., 8 (2018) 5360.
    70. C. Lee, Y.-L. Kuo, The evolution of diffusion barriers in copper metallization, Jom, 59 (2007) 44-49.
    71. A.Z. Moshfegh, O. Akhavan, A calculation of diffusion parameters for Cu/Ta and Ta/Si interfaces in Cu/Ta/Si(111) structure, Materials Science in Semiconductor Processing, 6 (2003) 165-170.
    72. T. Nam, C.W. Lee, T. Cheon, W.J. Lee, S.-H. Kim, S.-H. Kwon, H.-B.-R. Lee, H. Kim, Cobalt titanium nitride amorphous metal alloys by atomic layer deposition, J. Alloys and Compounds, 737 (2018) 684-692.
    73. J. Lee, J.-G. Duh, Structural evolution of Zr-Cu-Ni-Al-N thin film metallic glass and its diffusion barrier performance in Cu-Si interconnect at elevated temperature, Vacuum, 142 (2017) 81-86.
    74. C. C. Yu, H. j. Wu, M.T. Agne, I.T. Witting, P. Y. Deng, G.J. Snyder, J. P. Chu, Titanium-based thin film metallic glass as diffusion barrier layer for PbTe-based thermoelectric modules, APL Materials, 7 (2019).
    75. Z. Dai, L. Ansaloni, L. Deng, Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review, Green Energy & Environment, 1 (2016) 102-128.
    76. K. Dalane, Z. Dai, G. Mogseth, M. Hillestad, L. Deng, Potential applications of membrane separation for subsea natural gas processing, J. Nat. Gas Sci. Eng, 39 (2017) 101-117.
    77. M.K. Purkait, R. Singh, Membrane Technology in Separation Science, Taylor & Francis, 1st Edition (2018) 5-20.
    78. S. Loeb, S. Sourirajan, Sea Water Demineralization by Means of an Osmotic Membrane, Advances in Chemistry; American Chemical Society, 38 (1963) 117-132.
    79. A.K. Hołda, I.F.J. Vankelecom, Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes, J. Appl. Polym., 132 (2015).
    80. X. Tan, D. Rodrigue, A Review on Porous Polymeric Membrane Preparation. Part I: Production Techniques with Polysulfone and Poly (Vinylidene Fluoride), Polymers, 11 (2019) 1-39.
    81. M.A. Alaei Shahmirzadi, A. Kargari, Butterworth-Heinemann, Emerging Technologies for Sustainable Desalination Handbook, Emerging Technologies for Sustainable Desalination Handbook 1st Edition (2018), 285-330.
    82. G.R. Guillen, Y. Pan, M. Li, E.M.V. Hoek, Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation, Ind Eng Chem Res., 50 (2011) 3798-3817.
    83. M. Zahid, A. Rashid, S. Akram, Z.A. Rehan, W. Razzaq, A Comprehensive Review on Polymeric Nano-Composite Membranes for Water Treatment, Int. J. Membrane Sci. Techno., 08 (2018).
    84. J.T. Jung, H.H. Wang, J.F. Kim, J. Lee, J.S. Kim, E. Drioli, Y.M. Lee, Tailoring nonsolvent-thermally induced phase separation (N-TIPS) effect using triple spinneret to fabricate high performance PVDF hollow fiber membranes, J. Membr. Sci., 559 (2018) 117-126.
    85. Q. Fu, C. Duan, Z. Yan, Y. Si, L. Liu, J. Yu, B. Ding, Electrospun nanofibrous composite materials: a versatile platform for high efficiency protein adsorption and separation, Composites Communications, 8 (2018) 92-100.
    86. N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique, Biotechnol Adv., 28 (2010) 325-347.
    87. H.K. Shon, S. Phuntsho, D.S. Chaudhary, S. Vigneswaran, J. Cho, Nanofiltration for water and wastewater treatment a mini review, Drinking Water Engineering and Science Discussions, 6 (2013) 59-77.
    88. L. Bazinet, L. Firdaous, Membrane Processes and Devices for Separation of Bioactive Peptides, Recent Patents on Biotechnology, 3 (2009) 61-72.
    89. M.K. Selatile, S.S. Ray, V. Ojijo, R. Sadiku, Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination, RSC Advances, 8 (2018) 37915-37938.
    90. W. Yu, L.C. Campos, N. Graham, Application of pulsed UV-irradiation and pre-coagulation to control ultrafiltration membrane fouling in the treatment of micro-polluted surface water, Water Res, 107 (2016) 83-92.
    91. L. Ma, X. Dong, M. Chen, L. Zhu, C. Wang, F. Yang, Y. Dong, Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review, Membranes, 7 (2017).
    92. G. Zhang, S. Lu, L. Zhang, Q. Meng, C. Shen, J. Zhang, Novel polysulfone hybrid ultrafiltration membrane prepared with TiO2-g-HEMA and its antifouling characteristics, J. Membr. Sci., 436 (2013) 163-173.
    93. M.B.M.Y. Ang, C.A. Trilles, M.R. De Guzman, J.M. Pereira, R.R. Aquino, S.-H. Huang, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Improved performance of thin-film nanocomposite nanofiltration membranes as induced by embedded polydopamine-coated silica nanoparticles, Sep. Purif. Technol., 224 (2019) 113-120.
    94. P.D. Dalton, C. Vaquette, B.L. Farrugia, T.R. Dargaville, T.D. Brown, D.W. Hutmacher, Electrospinning and additive manufacturing: converging technologies, Biomater. Sci., 1 (2013) 171-185.
    95. J. Gu, P. Xiao, J. Chen, F. Liu, Y. Huang, G. Li, J. Zhang, T. Chen, Robust preparation of superhydrophobic polymer/carbon nanotube hybrid membranes for highly effective removal of oils and separation of water-in-oil emulsions, J. Mater. Chem., 2 (2014) 15268.
    96. M. Padaki, R. Surya Murali, M.S. Abdullah, N. Misdan, A. Moslehyani, M.A. Kassim, N. Hilal, A.F. Ismail, Membrane technology enhancement in oil–water separation. A review, Desalination, 357 (2015) 197-207.
    97. M.A. Tofighy, T. Mohammadi, Synthesis and characterization of ceramic/carbon nanotubes composite adsorptive membrane for copper ion removal from water, Korean Int. J. Chem. Eng., 32 (2014) 292-298.
    98. Youngsam Yoon, Daeyoung Kim and Jeong-Bong Lee hierarchical micro/nano structures for super-hydrophobic surfaces and super-lyophobic surface against liquid metal, Micro and Nano Systems Letters, 2 (2014).
    99. A.K. Selvam, G. Nallathambi, Polyacrylonitrile/silver nanoparticle electrospun nanocomposite matrix for bacterial filtration, Fibers and Polymers, 16 (2015) 1327-1335.
    100. D.G. Yu, J. Zhou, N.P. Chatterton, Y. Li, J. Huang, X. Wang, Polyacrylonitrile nanofibers coated with silver nanoparticles using a modified coaxial electrospinning process, Int. J. Nanomedicine, 7 (2012) 5725-5732.
    101. A. Mahapatra, N. Garg, B.P. Nayak, B.G. Mishra, G. Hota, Studies on the synthesis of electrospun PAN-Ag composite nanofibers for antibacterial application, J. Appl. Polym., 124 (2012) 1178-1185.
    102. R. Balamurugan, S. Sundarrajan, S. Ramakrishna, Recent trends in nanofibrous membranes and their suitability for air and water filtrations, Membranes, 1 (2011) 232-248.
    103. D. Kumar Maurya, ColonyCountJ: A User-Friendly Image J Add-on Program for Quantification of Different Colony Parameters in Clonogenic Assay, J. Clin. Toxicol., 07 (2017).
    104. T.-H. Kao, C.-C. Cheng, C.-F. Huang, J.-K. Chen, Using coaxial electrospinning to fabricate core/shell-structured polyacrylonitrile–polybenzoxazine fibers as nonfouling membranes, RSC Adv., 5 (2015) 58760-58771.
    105. T.-H. Kao, S.-K. Su, C.-I. Su, A.-W. Lee, J.-K. Chen, Polyacrylonitrile microscaffolds assembled from mesh structures of aligned electrospun nanofibers as high-efficiency particulate air filters, Aerosol Sci. Tech., 50 (2016) 615-625.
    106. D. Warsinger, K. Mistry, K. Nayar, H. Chung, J. Lienhard, Entropy Generation of Desalination Powered by Variable Temperature Waste Heat, Entropy, 17 (2015) 7530-7566.
    107. X. Chen, L. Hong, Y. Xu, Z.W. Ong, Ceramic pore channels with inducted carbon nanotubes for removing oil from water, ACS Appl. Mater. Interfaces, 4 (2012) 1909-1918.
    108. P.R. Hunter, A.M. MacDonald, R.C. Carter, Water supply and health, PLoS Med, 7 (2010).
    109. M.A. Gondal, M.S. Sadullah, M.A. Dastageer, G.H. McKinley, D. Panchanathan, K.K. Varanasi, Study of factors governing oil-water separation process using TiO(2) films prepared by spray deposition of nanoparticle dispersions, ACS Appl. Mater. Interfaces, 6 (2014) 13422-13429.
    110. X. Cao, M. Huang, B. Ding, J. Yu, G. Sun, Robust polyacrylonitrile nanofibrous membrane reinforced with jute cellulose nanowhiskers for water purification, Desalination, 316 (2013) 120-126.
    111. J. Ren, X. Huang, N. Wang, K. Lu, X. Zhang, W. Li, D. Liu, Preparation of polyaniline-coated polyacrylonitrile fiber mats and their application to Cr(VI) removal, Synthetic Metals, 222 (2016) 255-266.
    112. B. Fryczkowska, Z. Piprek, M. Sieradzka, R. Fryczkowski, J. Janicki, Preparation and Properties of Composite PAN/PANI Membranes, Int. J. Polym. Sci., (2017) 1-14.
    113. P. Shah, C.N. Murthy, Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal, J. Membr. Sci., 437 (2013) 90-98.
    114. Y. Chen, Z. Xue, N. Liu, F. Lu, Y. Cao, Z. Sun, L. Feng, Fabrication of a silica gel coated quartz fiber mesh for oil–water separation under strong acidic and concentrated salt conditions, RSC Advances, 4 (2014) 11447.
    115. L. Zhu, M. Chen, Y. Dong, C.Y. Tang, A. Huang, L. Li, A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion, Water Res., 90 (2016) 277-285.
    116. R.K. Gupta, G.J. Dunderdale, M.W. England, A. Hozumi, Oil/water separation techniques: a review of recent progresses and future directions, J. Mater. Chem. 5 (2017) 16025-16058.
    117. F. Meng, S.R. Chae, A. Drews, M. Kraume, H.S. Shin, F. Yang, Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material, Water Res., 43 (2009) 1489-1512.
    118. L. Kook, P. Bakonyi, F. Harnisch, J. Kretzschmar, K.J. Chae, G. Zhen, G. Kumar, T. Rozsenberszki, G. Toth, N. Nemestothy, K. Belafi-Bako, Biofouling of membranes in microbial electrochemical technologies: Causes, characterization methods and mitigation strategies, Bioresour Technol., 279 (2019) 327-338.
    119. S. Ozcan, P. Kaner, D. Thomas, P. Cebe, A. Asatekin, Hydrophobic Antifouling Electrospun Mats from Zwitterionic Amphiphilic Copolymers, ACS Appl. Mater. Interfaces, 10 (2018) 18300-18309.
    120. P. Kaner, E. Rubakh, D.H. Kim, A. Asatekin, Zwitterion-containing polymer additives for fouling resistant ultrafiltration membranes, J. Membr. Sci., 533 (2017) 141-159.
    121. Y. Ding, B. Ma, H. Liu, J. Qu, Effects of protein properties on ultrafiltration membrane fouling performance in water treatment, J. Environ Sci., (China), 77 (2019) 273-281.
    122. Y. Ding, Y. Tian, Z. Li, H. Wang, L. Chen, Microfiltration (MF) membrane fouling potential evaluation of protein with different ion strengths and divalent cations based on extended DLVO theory, Desalination, 331 (2013) 62-68.
    123. W. Zhang, L. Ding, Investigation of membrane fouling mechanisms using blocking models in the case of shear-enhanced ultrafiltration, Sep. Purif. Technol., 141 (2015) 160-169.
    124. A. Mierczynska-Vasilev, P. Mierczynski, W. Maniukiewicz, R.M. Visalakshan, K. Vasilev, P.A. Smith, Magnetic separation technology: Functional group efficiency in the removal of haze-forming proteins from wines, Food Chemistry, 275 (2019) 154-160.
    125. R. Miao, L. Wang, N. Mi, Z. Gao, T. Liu, Y. Lv, X. Wang, X. Meng, Y. Yang, Enhancement and Mitigation Mechanisms of Protein Fouling of Ultrafiltration Membranes under Different Ionic Strengths, Environ Sci. Technol., 49 (2015) 6574-6580.
    126. [128] X.F. Shi, G. Tal, N.P. Hankins, V. Gitis, Fouling and cleaning of ultrafiltration membranes: A review, J. Water Process Eng., 1 (2014) 121-138.
    127. C. Wang, Q. Li, H. Tang, D. Yan, W. Zhou, J. Xing, Y. Wan, Membrane fouling mechanism in ultrafiltration of succinic acid fermentation broth, Bioresour Technol., 116 (2012) 366-371.
    128. Q. Shi, Y. Zhou, Y. Sun, Influence of pH and ionic strength on the steric mass-action model parameters around the isoelectric point of protein, Biotechnol Prog., 21 (2005) 516-523.
    129. W. Diyatmika, C.-C. Yu, Y. Tanatsugu, M. Yasuzawa, J.P. Chu, Fibrinogen and albumin adsorption profiles on Ni-free Zr-based thin film metallic glass, Thin Solid Films, 688 (2019) 137382.
    130. A.H. Jalil, U. Pyell, Quantification of Zeta-Potential and Electrokinetic Surface Charge Density for Colloidal Silica Nanoparticles Dependent on Type and Concentration of the Counterion: Probing the Outer Helmholtz Plane, J Phys Chem. C, 122 (2018) 4437-4453.
    131. R. Al-Attabi, L.F. Dumée, L. Kong, J.A. Schütz, Y. Morsi, High Efficiency Poly(acrylonitrile) Electrospun Nanofiber Membranes for Airborne Nanomaterials Filtration, Adv. Eng. Mater, 20 (2018) 1700572.
    132. P.S. Saud, Z.K. Ghouri, B. Pant, T. An, J.H. Lee, M. Park, H.-Y. Kim, Photocatalytic degradation and antibacterial investigation of nano synthesized Ag3VO4particles at PAN nanofibers, Carbon letters, 18 (2016) 30-36.
    133. D.G. Yu, P. Lu, C. Branford-White, J.H. Yang, X. Wang, Polyacrylonitrile nanofibers prepared using coaxial electrospinning with LiCl solution as sheath fluid, Nanotechnology, 22 (2011) 435301.
    134. W.S. Kim, B.S. Lee, D.H. Kim, H.C. Kim, W.R. Yu, S.H. Hong, SnO(2) nanotubes fabricated using electrospinning and atomic layer deposition and their gas sensing performance, Nanotechnology, 21 (2010) 245605.
    135. Y. Zhang, M. Zhou, X. Zhao, L. Ma, Co substituted Zr-Cu-Al-Ni metallic glasses with enhanced glass-forming ability and high plasticity, J. Non-Cryst. Solids, 473 (2017) 120-124.
    136. S. Chen, J. Tu, J. Wu, Q. Hu, S. Xie, J. Zou, X. Zeng, Phase separation and significant plastic strain in a Zr–Cu–Ni–Al–Fe bulk metallic glass, Mat. Sci. Eng. A-Struct. 656 (2016) 84-89.
    137. R.Q. Yang, J.T. Fan, S.X. Li, Z.F. Zhang, Fracture behavior of Zr55Cu30Al10Ni5 bulk metallic glass under quasi-static and dynamic compression, J Mater. Res. Journal, 23 (2011) 1744-1750.
    138. W.-T.C. Jem-Kun Chen, Chih-Chia Cheng, Chia-Chi Yu, Jinn P. Chu, Metallic glass nanotube arrays: Preparation and surface characterizations, Materials Today, 21 (2018).
    139. M.J. Song, J.Luo, S., Han, Y., Dong, Z., Wang, Y., Gu, Z., Zhang, L., Hao, R., Jiang, L., Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant, Sci. Adv, 3 (2017) .
    140. N.J. Shirtcliffe, G. McHale, M.I. Newton, C.C. Perry, P. Roach, Superhydrophobic to superhydrophilic transitions of solgel films for temperature, alcohol or surfactant measurement, Mater. Chem. Phys., 103 (2007) 112-117.
    141. F. M. Chang, Y. J. Sheng, H. Chen, H.K. Tsao, From superhydrophobic to superhydrophilic surfaces tuned by surfactant solutions, Appl. Phys. Lett., 91 (2007) .
    142. V. Dutschk, K.G. Sabbatovskiy, M. Stolz, K. Grundke, V.M. Rudoy, Unusual wetting dynamics of aqueous surfactant solutions on polymer surfaces, J. Colloid Interf. Sci., 267 (2003) 456-462.
    143. S.H. Eric M. Vrijenhoeka, Menachem Elimelecha,∗, Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes, J. Membr. Sci., 188 (2001) (2001) 115–128.
    144. N. Valipour M, F.C. Birjandi, J. Sargolzaei, Super-non-wettable surfaces: A review, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 448 (2014) 93-106.
    145. Q. Li, Z. Xu, I. Pinnau, Fouling of reverse osmosis membranes by biopolymers in wastewater secondary effluent: Role of membrane surface properties and initial permeate flux, J. Membr. Sci., 290 (2007) 173-181.
    146. Y. Zhang, D. Ge, S. Yang, Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness, J Colloid Interface Sci., 423 (2014) 101-107.
    147. Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D.Y. Tang, R. Jose, S. Ramakrishna, C.T. Lim, K.P. Loh, Graphene-Polymer Nanofiber Membrane for Ultrafast Photonics, Adv. Funct. Mater., 20 (2010) 782-791.
    148. S. Chou, R. Wang, L. Shi, Q. She, C. Tang, A.G. Fane, Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density, J. Membr. Sci., 389 (2012) 25-33.
    149. R. Augustine, H.N. Malik, D.K. Singhal, A. Mukherjee, D. Malakar, N. Kalarikkal, S. Thomas, Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties, J. Polym. Res., 21 (2014).
    150. H. Liu, W. Liu, B. Luo, W. Wen, M. Liu, X. Wang, C. Zhou, Electrospun composite nanofiber membrane of poly(l-lactide) and surface grafted chitin whiskers: Fabrication, mechanical properties and cytocompatibility, Carbohydr. Polym., 147 (2016) 216-225.
    151. W. Li, Z. Yang, G. Zhang, Q. Meng, Heat-Treated Polyacrylonitrile (PAN) Hollow Fiber Structured Packings in Isopropanol (IPA)/Water Distillation with Improved Thermal and Chemical Stability, Ind Eng Chem Res, 52 (2013) 6492-6501.
    152. S.H. Park, K.R. Lim, M.Y. Na, K.C. Kim, W.T. Kim, D.H. Kim, High thermal stability of the amorphous oxide in Ti44.5Cu44.5Zr7Be4 metallic glass, AIP Advances, 5 (2015) 117202.
    153. S.H. Park, K.R. Lim, M.Y. Na, K.C. Kim, W.T. Kim, D.H. Kim, Oxidation behavior of Ti–Cu binary metallic glass, Corrosion Science, 99 (2015) 304-312.
    154. I. Alarifi, A. Alharbi, W. Khan, A. Swindle, R. Asmatulu, Thermal, Electrical and Surface Hydrophobic Properties of Electrospun Polyacrylonitrile Nanofibers for Structural Health Monitoring, Materials, 8 (2015) 7017-7031.
    155. S. Xiao, H. Lv, Y. Tong, L. Xu, B. Chen, Thermal behavior and kinetics during the stabilization of polyacrylonitrile precursor in inert gas, Journal of Applied Polymer Science, 122 (2011) 480-488.
    156. D.M. Correia, J. Nunes-Pereira, D. Alikin, A.L. Kholkin, S.A.C. Carabineiro, L. Rebouta, M.S. Rodrigues, F. Vaz, C.M. Costa, S. Lanceros-Méndez, Surface wettability modification of poly(vinylidene fluoride) and copolymer films and membranes by plasma treatment, Polymer, 169 (2019) 138-147.
    157. R. Reis, L.F. Dumee, B.L. Tardy, R. Dagastine, J.D. Orbell, J.A. Schutz, M.C. Duke, Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification, Sci. Rep, 6 (2016) 29206.
    158. J. Wang, X. Chen, R. Reis, Z. Chen, N. Milne, B. Winther-Jensen, L. Kong, L.F. Dumee, Plasma Modification and Synthesis of Membrane Materials-A Mechanistic Review, Membranes 8(2018).
    159. B. Jaleh, P. Parvin, P. Wanichapichart, A.P. Saffar, A. Reyhani, Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma, Appl. Surf. Sci., 257 (2010) 1655-1659.
    160. L.H. Michelle L. Steen, Elizabeth D. Havey, Nathan E. Capps, David G. Castner, Ellen R. Fisher, Low temperature plasma treatment of asymmetric polysulfonemembranes for permanent hydrophilic surface modification, J. Membr. Sci., 188 (2001) 97–114.
    161. M. Nadour, F. Boukraa, A. Ouradi, A. Benaboura, Effects of methylcellulose on the properties and morphology of polysulfone membranes prepared by phase inversion, Mater. Res., 20 (2017) 339-348.
    162. S.T. Kassa, C.-C. Hu, Y.-C. Liao, J.-K. Chen, J.P. Chu, Thin film metallic glass as an effective coating for enhancing oil/water separation of electrospun polyacrylonitrile membrane, Surf. Coat. Tech., 368 (2019) 33-41.
    163. K.G. Zhou, K.S. Vasu, C.T. Cherian, M. Neek-Amal, J.C. Zhang, H. Ghorbanfekr-Kalashami, K. Huang, O.P. Marshall, V.G. Kravets, J. Abraham, Y. Su, A.N. Grigorenko, A. Pratt, A.K. Geim, F.M. Peeters, K.S. Novoselov, R.R. Nair, Electrically controlled water permeation through graphene oxide membranes, Nature, 559 (2018) 236-240.
    164. Z. He, D. Xia, Y. Huang, X. Tan, C. He, L. Hu, H. He, J. Zeng, W. Xu, D. Shu, 3D MnO2 hollow microspheres ozone-catalysis coupled with flat-plate membrane filtration for continuous removal of organic pollutants: Efficient heterogeneous catalytic system and membrane fouling control, J. Hazard Mater., 344 (2018) 1198-1208.
    165. M. Zhou, T. Mattsson, Effect of crossflow regime on the deposit and cohesive strength of membrane surface fouling layers, Food Bioprod. Process, 115 (2019) 185-193.
    166. L. Fortunato, M. Li, T. Cheng, Z.U. Rehman, W. Heidrich, T. Leiknes, Cake layer characterization in Activated Sludge Membrane Bioreactors: Real-time analysis, J. Membr. Sci., 578 (2019) 163-171.
    167. M.Y. Zhang, R.W. Field, K.S. Zhang, Biogenic silver nanocomposite polyethersulfone UF membranes with antifouling properties, J. Membr. Sci., 471 (2014) 274-284.
    168. A. Pegalajar-Jurado, M.N. Mann, M.R. Maynard, E.R. Fisher, Hydrophilic Modification of Polysulfone Ultrafiltration Membranes by Low Temperature Water Vapor Plasma Treatment to Enhance Performance, Plasma Process Polym., 13 (2016) 598-610.
    169. I. H. Alsohaimi, M. Kumar, M.S. Algamdi, M.A. Khan, K. Nolan, J. Lawler, Antifouling hybrid ultrafiltration membranes with high selectivity fabricated from polysulfone and sulfonic acid functionalized TiO 2 nanotubes, Chem. Eng. J., 316 (2017) 573-583.
    170. D. Zhang, A. Karkooti, L. Liu, M. Sadrzadeh, T. Thundat, Y. Liu, R. Narain, Fabrication of antifouling and antibacterial polyethersulfone (PES)/cellulose nanocrystals (CNC) nanocomposite membranes, J. Membr. Sci., 549 (2018) 350-356.
    171. H. Gao, X. Sun, C. Gao, Antifouling polysulfone ultrafiltration membranes with sulfobetaine polyimides as novel additive for the enhancement of both water flux and protein rejection, J. Membr. Sci., 542 (2017) 81-90.

    無法下載圖示 全文公開日期 2024/11/14 (校內網路)
    全文公開日期 2029/11/14 (校外網路)
    全文公開日期 2029/11/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE