簡易檢索 / 詳目顯示

研究生: thi bich thuyen Nguyen
NGUYEN - THI BICH THUYEN
論文名稱: 前處理及發酵方式對以布袋蓮為原料生產乙醇影響之探討
THE EFFECTS OF PRETREATMENTS AND FERMENTATION METHODS ON ETHANOL PRODUCTION FROM WATER HYACINTH (Eichhornia crassipe)
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: none
Suryadi Ismadji
none
Felycia Edi Soetaredjo
none
Setiyo Gunawan
none
Truong Chi Thanh
none
Huynh Lien Huong
劉志成
Liu, Jhy-Chern
李振綱
Lee, Cheng-Kang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 100
中文關鍵詞: 布袋蓮次臨界水處理纖維素回收率生質乙醇
外文關鍵詞: Water hyacinth, subcritical water treatment, cellulose recovery, bioethanol
相關次數: 點閱:279下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討四種前處理方法 (水浴法、超音波法、微波法及次臨界水法)對從布袋蓮中回收纖維素之影響 ,結果發現四種方法中次臨界水前處理可得到最高之纖維素回收率:在 165oC、 50 bar及固體對水之比例為10:1 mL/g條件下處理 30 min後纖維素在處理過之樣品中含量為 68.2%,此為未經處理樣品之131.5%。本研究也探討以硫酸做前處理以了解化學藥品對木質纖維素降解之影響,並與利用次臨界水處理之結果做比較。結果發現次臨界水處理不僅是一對環境友善之方法並且可去除木質素以得到高纖維素含量,有利於乙醇之生產。前處理對布袋蓮組成及結構影響之探討則是利用 TGA, FTIR, XRD及 SEM。
    里氏木黴(Trichromdema reesei) 纖維素酶因含有三種主要酵素可以將纖維素轉變成葡萄糖所以本研究用之於水解前處理後之布袋蓮。在最佳條件下,可得葡萄糖含量為631.3 mg/g,此為理論值之83.3%。
    本研究探討兩種發酵方式對利用釀酒酵母(Saccharomyces cerevisiae)發酵之影響:分別水解及發酵(SHF)以及同步糖化及發酵(SSF)。結果發現SSF可得到最高之乙醇濃度(12.35 g/L)及產率( 91.73%)。本研究也探討副產物中抑制物對乙醇發酵之影響。


    In this work, the effects of four physical pretreatment methods (water bath, ultrasound, microwave and subcritical water) on the cellulose recovery of water hyacinth were investigated. Among these methods, subcritical water (SCW) pretreatment gave the best efficiency on cellulose recovery. Under conditions of 165oC, 50 bar, 30 min and solid/water = 10:1 (mL/g), cellulose content in the treated sample was 68.2% which is 131.5% of the untreated sample. Pretreatment using H2SO4 was also carried out in order to understand the effect of the chemical on lignocellulose degradability and compare it with that of SCW pretreatment. The results showed that SCW treatment is not only an environmentally friendly method but also generated high cellulose and removed lignin from water hyacinth which is promising for bioethanol production. The effects of treatments on the composition and structure of water hyacinth were studied by TGA, FTIR, XRD and SEM.
    Trichromdema reesei cellulase was used in the hydrolysis study because it contains three major enzymes which can convert cellulose to glucose efficiently. Under optimized conditions, the glucose content was 631.3 mg/g which is 83.3% of the theoretical value.
    Fermentation by Saccharomyces cerevisiae which was performed in separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF). The result showed that SSF gave the highest ethanol concentration (12.35 g/L) with 91.73% ethanol yield. Byproducts which were considered as inhibitors for ethanol fermentation were also investigated in this study.

    Recommendation Letter ii Qualification Letter iii 摘要 iv Abstract v Acknowledgement vi Table of Contents vii List of Abbreviations xii List of Tables xiii List of Figures xiv Chapter 1. Introduction 1 1.1 Background 1 1.2 Objective 3 Chapter 2. Literature Review 4 2.1 Biofuels 4 2.2 Bioethanol 4 2.3 Lignocellulosic biomass and water hyacinth 5 2.3.1 Lignocellulosic biomass 5 2.3.1.1 Cellulose 6 2.3.1.2 Hemicellulose 8 2.3.1.3 Lignin 9 2.3.2 Water hyacinth 11 2.4 Lignocellulosic biomass pretreatment 13 2.4.1 Physical pretreatment 14 2.4.1.1 Steam explosion 14 2.4.1.2 Liquid hot water 14 2.4.1.3 Subcritical water 14 2.4.2 Chemical pretreatment 15 2.4.2.1 Acid pretreatment 15 2.4.2.2 Alkaline pretreatment 16 2.4.2.3 Ion liquid pretreatment 16 2.4.3 Biological pretreatment 17 2.5 Enzymatic hydrolysis and fermentation 18 Chapter 3. Experimental 21 3.1 Materials 21 3.2 Apparatus and equipment 22 3.3 Data analysis 23 3.4 Methodology 23 3.4.1 Pretreatments 23 3.4.1.1 Water bath pretreatment 23 3.4.1.2 Ultrasound pretreatment 23 3.4.1.3 Microwave pretreatment 24 3.4.1.4 Subcritical water pretreatment 24 3.4.1.5 Subcritical H2SO4 (SC H2SO4) pretreatment 25 3.4.2 Hydrolysis of SCW treated water hyacinth 25 3.4.3 Ethanol production - Separate hydrolysis and fermentation 26 3.4.3.1 Inoculum preparation 26 3.4.3.2 Fermentation 26 3.4.4 Ethanol production – Simultaneous saccharification and fermentation 27 3.4.5 TGA analysis 28 3.4.6 SEM analysis 28 3.4.7 FTIR analysis 28 3.4.8 XRD analysis 29 Chapter 4. Results and Discussion 30 4.1 Effect of pretreatments on RDS and lignocellulose content 30 4.1.1 Effect of temperature on RDS and lignocellulose content 31 4.1.2 Effect of time on RDS and cellulose content 34 4.1.3 Effect of pressure on RDS and cellulose content 35 4.1.4 Effect of water to dried biomass ratio on RDS and cellulose content 37 4.1.5 Comparison of effectiveness for cellulose recovery between SCW pretreatment and SC H2SO4 pretreatment 38 4.2 Hydrolysis of SCW treated water hyacinth – optimization of sugar yield 39 4.2.1 Effect of cellulase concentration and hydrolysis time 39 4.2.2 Effect of pH value on glucose production and saccharification 41 4.2.3 Effect of temperature on glucose production and saccharification 43 4.3 Ethanol production – Separated hydrolysis and fermentation 44 4.4 Ethanol production - Simultaneous saccharification and fermentation 48 4.4.1 Effect of solid loading 48 4.4.2 Time courses of SSF 51 4.4.3 Effect of agitation 53 4.4.4 Effect of temperature 56 4.4.5 Effect of inhibitors 58 4.5 Thermogravimetric analysis (TGA) 61 4.6 Impact of pretreatments on sample’s morphology: SEM study 65 4.7 FTIR studies 70 4.8 XRD studies 75 Chapter 5. Conclusion and future prospects 79 References 81 Appendix 92

    Abdel-Fattah A.F., Abdel-Naby M.A., 2012. Pretreatment and enzymic saccharification of water hyacinth cellulose. Carbohydrate Polymers, 87(3), 2109-2113.
    Abral H., Kadriadi D., Rodianus A., Mastariyanto P., Ilhamdi, Arief S., Sapuan S.M., Ishak M.R., 2014. Mechanical properties of water hyacinth fibers – polyester composites before and after immersion in water. Materials & Design, 58, 125-129.
    Ahmed I.N., 2013. Bioethanol production from Melaleuca Leucadenron shedding bark: Assessing pretreatments, solid and enzyme loading. Thesis: National Taiwan University of Science and Technology.
    Alriksson B., 2006. Ethanol from lignocellulose-Alkali detoxification of dilute-acid spruce hydrolysates. Thesis: Karlstad University Faculty of Technology and Science Biochemistry, 1-46.
    Alrumman S.A., 2016. Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Brazilian journal of Microbiology, 47(1), 110-9.
    Anwar Z., Gulfraz M., Irshad M., 2014. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences, 7(2), 163-173.
    Aswathy U.S., Sukumaran R.K., Devi G.L., Rajasree K.P., Singhania R.R., Pandey A., 2010. Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy. Bioresource Technology, 101(3), 925-930.
    Bayrakci A.G., Koçar G., 2014. Second-generation bioethanol production from water hyacinth and duckweed in Izmir: A case study. Renewable and Sustainable Energy Reviews, 30, 306-316.
    Breisha G.Z., 2010. Production of 16% ethanol from 35% sucrose. Biomass and Bioenergy, 34(8), 1243-1249.
    Cantarella M., Cantarella L., Gallifuoco A., Spera A., Alfanifuoco F., 2004. Effect of Inhibitors released during steam-xxplosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnology Progress, 20, 200-206.
    Cantero D.A., Sánchez Tapia Á., Bermejo M.D., Cocero M.J., 2015. Pressure and temperature effect on cellulose hydrolysis in pressurized water. Chemical Engineering Journal, 276, 145-154.
    Cara C., Moya M., Ballesteros I., Negro M.J., Gonza´lez A., Ruiz E., 2007. Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochemistry, 42(2007), 1003–1009.
    Cheng J., Lin R., Song W., Xia A., Zhou J., Cen K., 2015. Enhancement of fermentative hydrogen production from hydrolyzed water hyacinth with activated carbon detoxification and bacteria domestication. International Journal of Hydrogen Energy, 40(6), 2545-2551.
    Ciftci D., Saldana M.D., 2015. Hydrolysis of sweet blue lupin hull using subcritical water technology. Bioresource Technology, 194, 75-82.
    Ciolaucu D., Ciolaucu F., Pola V.I., 2010. Amorphous cellulose –structure and characterization, Cellulose Chemistry and Technology, 45(1-2), 13-21.
    Deguchi S., Tsujii K., Horikoshi K., 2008. Crystalline-to-amorphous transformation of cellulose in hot and compressed water and its implications for hydrothermal conversion. Green Chemistry, 10(2), 191-196.
    Demirbas A., 2009. Political, economic and environmental impacts of biofuels: A review. Applied Energy, 86, S108-S117.
    Fang J.M., Sun R.C., Tomkinson J., 2000. Isolation and characterization of hemicelluloses and cellulose from rye straw by alkaline peroxide extraction. Cellulose, 7, 87–107.
    Forrest A.K., Hernandez J., Holtzapple M.T., 2010. Effects of temperature and pretreatment conditions on mixed-acid fermentation of water hyacinths using a mixed culture of thermophilic microorganisms. Bioresource Technology, 101(19), 7510-5.
    Ganguly A., Chatterjee P.K., Dey A., 2012. Studies on ethanol production from water hyacinth—A review. Renewable and Sustainable Energy Reviews, 16(1), 966-972.
    Gao J., Chen L., Yan Z., Wang L., 2013a. Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhornia crassipes). Bioresource Technology, 132, 361-4.
    Gao Y., Wang X., Wang J., Li X., Cheng J., Yang H., Chen H., 2013b. Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy, 58, 376-383.
    Ge L., Wang P., Mou H., 2011. Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renewable Energy, 36(1), 84-89.
    Ghose T.K., 1987. Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257-268.
    Gladis A., Bondesson P.M., Galbe M., Zacchi G., 2015. Influence of different SSF conditions on ethanol production from corn stover at high solids loadings. Energy Science & Engineering, 3(5), 481-489.
    Gu H., Zhang J., Bao J., 2014. Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues. Bioresource Technology, 157, 6-13.
    Guragain Y.N., De Coninck J., Husson F., Durand A., Rakshit S.K., 2011. Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth. Bioresource Technology, 102(6), 4416-24.
    Hanim S.S., Norsyabilah R., Suhaila M.H.N., Noraishah A., Kartina A.K.S., 2012. Effects of Temperature, Time and Pressure on the Hemicelluloses Yield Extracted Using Subcritical Water Extraction. Procedia Engineering, 42, 562-565.
    Harmsen P.F.H., Huijgen W.J.J., López L.M. B., Bakke R.R.C., 2010. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Food & Biobased Research, 10(013), 2-49.
    Harun M.Y., Dayang Radiah A.B., Zainal Abidin Z., Yunus R., 2011. Effect of physical pretreatment on dilute acid hydrolysis of water hyacinth (Eichhornia crassipes). Bioresource Technology, 102(8), 5193-9.
    Hazan R., Que Y.A., Maura D., Rahme L.G., 2012. A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC Microbiol, 12, 259.
    Ibbett R., Gaddipati S., Davies S., Hill S., Tucker G., 2011. The mechanisms of hydrothermal deconstruction of lignocellulose: new insights from thermal-analytical and complementary studies. Bioresource Technology, 102(19), 9272-8.
    Ikwebe J., 2012. Intensification of bioethanol production by simultaneous saccharification and fermentation in an oscillatory baffled reactor. Thesis: Newcastle University, Newcastle University, 1-161.
    Istirokhatun T., Rokhati N., Rachmawaty R., Meriyani M., Priyanto S., Susanto H., 2015. Cellulose Isolation from Tropical Water Hyacinth for Membrane Preparation. Procedia Environmental Sciences, 23, 274-281.
    Kang L., Wang W., Pallapolu V.R., Lee Y.Y., 2011. Enhenced ethanol production form de-ashed paper sludge by simultaneous saccharification and fermentation and simultaneous saccharification and co-fermentation. Bioresourse, 6(4), 3791-3808.
    Kassim M.A., Bakar N.A., Khaeng L.S., 2011. Influence of solid concentrations, inoculum size and nitrogen sources on ethanol production from empty fruit bunches (EFB) hydrolysate in separate hydrolysis and fermentation. Research journal of Applied sciences, 6(5), 310-319.
    Li X., Kim T.H., Nghiem N.P., 2010. Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneous saccharification and fermentation (TPSSF). Bioresource Technology, 101(15), 5910-6.
    Li X., Lu J., Zhao J., Qu Y., 2014. Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production. PLos One, 9(4), 1-11.
    Lin R., Cheng J., Song W., Ding L., Xie B., Zhou J., Cen K., 2015. Characterisation of water hyacinth with microwave-heated alkali pretreatment for enhanced enzymatic digestibility and hydrogen/methane fermentation. Bioresource Technology, 182, 1-7.
    Liu Z. H., Qin L., Zhu J.Q., Li B.Z., Yuan Y.Z., 2014. Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnology for Biofuels, 7, 1-16.
    Lu J., Li X., Zhao J., Qu Y., 2012. Enzymatic saccharification and ethanol fermentation of reed pretreated with liquid hot water. Journal of Biomedicine and Biotechnology, 2012, 1-9.
    Ma F., Yang N., Xu C., Yu H., Wu J., Zhang X., 2010. Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresource Technology, 101(24), 9600-4.
    Mahamud M.R., Gomes D.J., 2011. Enzymatic Saccharification of Sugar Cane Bagasse by the Crude Enzyme from Indigenous Fungi. Journal of Scientific Research, 4(1).
    Millers G.L., 1959. Use of dinitrosalicylic acid reagent for the determination of reducing sugars. Analytical Chemistry, 31, 426-428.
    Mishima D., Kuniki M., Sei K., Soda S., Ike M., Fujita M., 2008. Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresource Technology, 99(7), 2495-500.
    Mohan B.R.B., Reddy O.V.S., 2012. Production and optimization of ethanol from pretreated sugarcane bagasse using saccharomyces bayanus in simultaneous saccharification and fermentation. Microbiology Journal, 2(2), 52-63.
    Nguyen C., 2010. Enzymatic conversion of cellulosic biomass to cellulosic ethanol- A review. Chemical Information Retrieval, 2010, 2-7.
    Nguyen Thi B.T., Luong H.V.T., Lan T.N.P., Thuy N.T.D., Ju Y.H., 2017. Comparison of some pretreatment methods on cellulose recovery from water wyacinth (Eichhornia crassipe). Journal of Clean Energy Technologies, 5(4), 274-297.
    Ohgren K., Bengtsson O., Gorwa-Grauslund M.F., Galbe M., Hahn-Hagerdal B., Zacchi G., 2006. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. Journal of Biotechnology, 126(4), 488-98.
    Ouyang J., Li Z., Li X., Ying H., Yong Q., 2009. Enhanced enzymatic conversion and glucose production via two step enzymatic hydrolysis of corncob residue from xylo-oligosaccharides product’s waste. Bioresources, 4(4), 1586-1599.
    Park E.Y., Naruse K., Kato T., 2012. One-pot bioethanol production from cellulose byco-culture of Acremonium cellulolyticus and saccharomyces cerevisiae. Biotechnology for Biofuels, 5(64), 1-11.
    Pérez J.A., Ballesteros I., Ballesteros M., Sáez F., Negro M.J., Manzanares P., 2008. Optimizing Liquid Hot Water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel, 87(17-18), 3640-3647.
    Pessani N.K., Atiyeh H.K., Wilkins M.R., Bellmer D.D., Banat I.M., 2011. Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant Kluyveromyces marxianus IMB3: the effect of enzyme loading, temperature and higher solid loadings. Bioresource Technology, 102(22), 10618-10624.
    Pietrzak W., Rygielska J.K., 2014. Ethanol fermentation of waste bread using granular starch hydrolyzing enzyme: Effect of raw material pretreatment. Fuel, 134, 250-256.
    Pronyk C., Mazza G., 2012. Fractionation of triticale, wheat, barley, oats, canola, and mustard straws for the production of carbohydrates and lignins. Bioresource Technology, 106, 117-24.
    Pronyk C., Mazza G., 2011. Optimization of processing conditions for the fractionation of triticale straw using pressurized low polarity water. Bioresource Technology, 102(2), 2016-25.
    Pronyk C., Mazza G., 2010. Kinetic modeling of hemicellulose hydrolysis from triticale straw in a pressurized low polarity water flow-through eeactor. Industrial & Engineering Chemistry Research, 49, 6367–6375.
    Rodmui A., Kongkiattikajorn J., Dandusitapun Y., 2008. Optimization of agitation conditions for maximum ethanol production by coculture. The Kasetsart Journal, 42(5), 285-293.
    Ruel K., Nishiyama Y., Joseleau J.P., 2012. Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. Plant Science, 193-194, 48-61.
    Ruzin, 1999. Buffer tables. Plant Microtechnique and Microscopy, 3-6.
    Sadavisam S., Manickam A., 2005. Carbohydrates. In: Sadavisam S (Ed.), editor. Biochemical methods, India, Chaman Offset New Delhi, 6-7.
    Santos J.R.A., Lucena M.S., Gusmão N.B., Gouveia E.R., 2012. Optimization of ethanol production by Saccharomyces cerevisiae UFPEDA 1238 in simultaneous saccharification and fermentation of delignified sugarcane bagasse. Industrial Crops and Products, 36(1), 584-588.
    Sassner P., Galbe M., Zacchi G., 2006. Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated Salix at high dry-matter content. Enzyme and Microbial Technology, 39(4), 756-762.
    Seiboth B., Ivanova C., Seidl-Seiboth V., 2011. Trichoderma reesei: A fungal enzyme producer for cellulosic biofuels. Biofuel Production-Recent Developments and Prospects, 311-340.
    Silva G.M., Giordano R. L. C., Cruz A. J. G., Ramachandriya K. D., Banat I. M., Wilkins M.R., 2015. Ethanol Production from Sugarcane Bagasse Using SSF Process and Thermotolerant Yeast. Transactions of the ASABE, 58(2), 193-200.
    Singh A., Bishnoi N.R., 2013a. Comparative study of various pretreatment techniques for ethanol production from water hyacinth. Industrial Crops and Products, 44, 283-289.
    Singh A., Bishnoi N.R., 2013b. Ethanol production from pretreated wheat straw hydrolyzate by Saccharomyces cerevisiae via sequential statistical optimization. Industrial Crops and Products, 41, 221-226.
    Srinorakutara T., Suttikul S., Kanhanont T., Siriniwatkul J., 2014. Simultaneous saccharification and fermentation of alkali-acid pretreated sugarcane trash to Ethanol. The 26 th annual metting of the Thai Society of biotechnololy and International conference, 6-12.
    Sundari, M.T.R., 2012. Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth—Eichhornia crassipes. Carbohydrate Polymers, 87(2), 1701-1705.
    Suriyachai N., Weerasaia K., Laosiripojana N., Champreda V. 2013. Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments. Bioresource Technology, 142(2013), 171-178.
    Tahir A., Aftab M., Farasat T., 2010. Effect of culltural conditions on ethanol production by locally isolated saccharomyces cerevisiae Bio -07. Journal of Applied Pharmacy, 3(2), 72-78.
    Turhan I., Bialka K.L., Demirci A., Karhan M., 2010. Ethanol production from carob extract by using Saccharomyces cerevisiae. Bioresource Technology, 101(14), 5290-6.
    Velmurugan R., Muthukumar K., 2011. Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Bioresource Technology, 102(14), 7119-23.
    Wahono S.K., Darsih C., Rosyda V.T., Maryana R., Pratiwi W., 2014. Optimization of cellulose enzyme in the simultaneous saccharification and fermentation of sugarcane bagasse on the second generation bioethanol production technology. Energy Procedia 47(2014), 268-272.
    Wang, Z., Zhe L., Yang, X., Tian S., 2013. Fed-batch mode optimization of SSF for cellulosic ethanol production from steam exploded corn stover. Bioresources, 8(4), 5773-5782.
    Wei W., Wu S., Liu L., 2013. Combination of liquid hot water pretreatment and wet disk milling to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Bioresource Technology, 128, 725-30.
    Xia A., Cheng J., Song W., Yu C., Zhou J., Cen K., 2013. Enhancing enzymatic saccharification of water hyacinth through microwave heating with dilute acid pretreatment for biomass energy utilization. Energy, 61, 158-166.
    Xu F., Chen L., Wang A., Yan Z., 2016. Influence of surfactant-free ionic liquid microemulsions pretreatment on the composition, structure and enzymatic hydrolysis of water hyacinth. Bioresource Technology, 208, 19-23.
    Yabefa J.A., Ocholi Y., Odubo G. F., 2014. Effect of temperature and changes in medium pH on enzymatic hydrolysis of β(1-4) glycosidic bond in orange mesocarp. Asian Journal of Plant Science and Research 4 (4), 21-24.
    Yan J., Wei Z., Wang Q., He M., Li S., Irbis C., 2015. Bioethanol production from sodium hydroxide/hydrogen peroxide-pretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermotolerant Kluyveromyces marxianu strain. Bioresource Technology, 193, 103-9.
    Zhang J., Li J., Tang Y., Xue G., 2013. Rapid method for the determination of 5-hydroxymethylfurfural and levulinic acid using a double-wavelength UV spectroscopy. Scientific World Journal, 2013, 1-6.
    Zhang K., 2011. Removal of the fermentation inhibitor, Furfural, using activated carbon in cellulosic-ethanol production. Thesis: School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 67-68.
    Zhang L., Zhao H., Gan M., Jin Y., Gao X., Chen Q., Guan J., Wang Z., 2011. Application of simultaneous saccharification and fermentation (SSF) from viscosity reducing of raw sweet potato for bioethanol production at laboratory, pilot and industrial scales. Bioresource Technology, 102(6), 4573-4579.
    Zhu M., Li P., Gong X., Wang J., 2012. A comparison of the production of ethanol between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using unpretreated cassava pulp and enzyme cocktail. Bioscience, Biotechnology and Biochemistry , 76(4), 671-678.

    QR CODE