簡易檢索 / 詳目顯示

研究生: Ian Dominic Flormata Tabanag
Ian Dominic Flormata Tabanag
論文名稱: 基因改質酵母菌於整合性生物加工程序上之應用: 利用啤酒酵母菌全細胞催化劑水解半纖維素並生產酒精
ENGINEERING YEASTS FOR CONSOLIDATED BIOPROCESSING: BIOETHANOL PRODUCTION FROM HEMICELLULOSE BY SACCHAROMYCES CEREVISIAE WHOLE-CELL BIOCATALYSTS
指導教授: 蔡伸隆
Shen-Long Tsai
口試委員: 李振綱
Cheng-Kang Lee
何明樺
Ming-Hua Ho
蔡伸隆
Shen-Long Tsai
王勝仕
Steven S.S. Wang
沈若樸
Claire Roa-Pu Shen
蘭宜錚
Ethan I. Lan
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 203
中文關鍵詞: 整合性生物加工程序生質酒精酵母菌表面展示木質纖維素半纖維素
外文關鍵詞: consolidated bioprocessing, bioethanol, yeast surface display, lignocellulosic biomass, hemicellulose
相關次數: 點閱:352下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣候變遷是我們在這個時代面臨的最大的問題之一。由於人口不斷增長,人類活動的增加導致我們大量消耗了不可再生的化石資源,以滿足我們日益增長的消費需求。隨之而來的是大量的溫室氣體釋放到大氣中,導致全球氣候變化,如長時間的乾旱與嚴重的洪水等。這些不好的影響給我們的生態系統帶來了突然的壓力,最終導致我們生物多樣性的喪失。為避免我們對不可再生的化石資源的使用依賴,我們有必要將目前的化石經濟轉變為可持續的生物經濟。以生物為基礎的經濟或生物經濟的核心即是將木質纖維素的生物質(一種不與食物競爭的植物原料)轉化成乙醇,這是一種廣泛使用於製造石化商品的平台化學品。由於木質纖維素複雜的生物化學組成,以其為原料的乙醇發酵是相當具有挑戰性的。由於基因修飾的酵母(例如釀酒酵母)具有可以從各種底物有效地產生大量乙醇的能力,因此被認為是用於此程序最理想的主力微生物。這種既能將木質纖維素生物質降解成可發酵糖,又能將可發酵糖代謝轉化成乙醇的理想微生物是整合性生物加工程序(CBP)策略的最終目標。
    本研究的目的主要集中於木質纖維素中半纖維素成分的降解和利用,特別是木聚醣,因為它是半纖維素的主要多醣組分。由於天然釀酒酵母本身不具有在其結構中釋放和消耗木糖的能力,本研究藉由在釀酒酵母中表達異源半纖維素酶,並利用使用混合物實驗設計來描述不同的協同相互作用以確定木聚醣底物水解的最佳製劑,來達成有效的半纖維素降解。此外,透過酵母表面展示技術,本研究亦獲得多株酵母全細胞生物催化劑,藉以改善半纖維素酶混合物的水解活性。為使展示半纖維素酶的全細胞生物催化劑能消耗木糖,本研究亦透過代謝工程表達一最小基因以利木糖能獲得啤酒酵母細胞的使用與代謝。最終,由此研究產生的混合菌叢能夠成功地從兩種不同的木聚醣底物生長並產生乙醇。
    本研究亦針對所建構的酵母菌對於木質纖維素底物的水解與生物乙醇生產效能進行與其他酵母表面展示系統之比較數據分析,由結果可以觀察到,在本研究中使用的表面顯示策略與用於從純半纖維素基質生產乙醇的其他表面顯示系統完全相同。 此外,本文中的定性評估可作為評估不同酵母表面展示策略對木質纖維素生物質的有效降解、利用和乙醇生產的能力和潛力的重要參考依據。


    Climate change is one of the biggest problems we are facing in this era. The increase in human activity due to our ever growing population led us to deplete our non-renewable fossil resources, to satisfy our increased demand of consumer goods derived from them. Along the way, vast amounts of greenhouse gases are released into the atmosphere, inducing a global climate change that cause severe weather changes in the atmosphere (e.g. prolonged droughts, severe flooding). These adverse effects present a sudden pressure to our ecosystems thus leading to an eventual loss of our biodiversity. Because of our incessant use of fossil resources, there is a need for us to shift from our current fossil-based economy into a sustainable bio-based economy. The bio-based economy or bioeconomy is centred on the conversion of lignocellulosic biomass, a plant feedstock that doesn’t compete with food, into ethanol, a widely used platform chemical for manufacturing goods. Ethanol fermentation from this feedstock is quite challenging due to its complex biochemical composition and the ideal workhorse for this formidable process is a microorganism, preferably a modified yeast (e.g. Saccharomyces cerevisiae), which can efficiently yield high amounts of ethanol from a wide range of substrates. This ideal microorganism that can both degrade the lignocellulosic biomass into fermentable sugars, and metabolically convert the fermentable sugars into ethanol is the ultimate goal of the consolidated bioprocessing (CBP) strategy.
    The aim of this work is focused on the degradation and utilization of the hemicellulose component (specifically xylan, which serves as a major polysaccharide component of hemicellulose and mainly consists of linked xylose residues) of lignocellulosic biomass since the yeast S. cerevisiae does not inherently possess the ability to both release and consume the xylose sugar in its structure. By expressing heterologous hemicellulases via secretion in S. cerevisiae, efficient hemicellulose degradation was investigated by using a mixture experimental design to describe the different synergistic interactions and to determine optimum formulations for the hydrolysis of xylan substrates. The hydrolytic activities of the hemicellulase mixtures were then improved via the yeast surface display technology to obtain yeast whole-cell biocatalysts. The whole-cell biocatalysts displaying hemicellulases were metabolically engineered to express the minimum genes to utilize xylose to obtain yeast cells that are capable of displaying hemicellulases and consume xylose. The resulting consortium of strains were then able to grow and produce ethanol from two different xylan substrates.
    The proficiency of the yeast surface display strategy utilized in this work was then assessed with to other yeast surface display systems with respect to bioethanol production from a range of pure lignocellulose to pre-treated plant-based lignocellulosic substrates via comparative data analysis. It can be observed that the surface display strategy utilized in this work performs at par to other surface display systems utilized for the production of ethanol from pure hemicellulosic substrates. Furthermore, the qualitative assessment presented in this work can serve as a reference material on assessing the capability and potential of the different yeast surface display strategies on the efficient degradation, utilization, and ethanol production from lignocellulosic biomass.

    Doctoral Dissertation Advisor Recommendation ii Qualification Form by Degree Examination Committee iii 論文摘要 v ABSTRACT vii Acknowledgement ix Table of Contents xi Index of Abbreviations xv Index of Tables xvii Index of Figures xviii Chapter 1 Introduction 1 1.1 Background of the Study 4 1.2 Objectives of the Study 6 1.3 Scope and Limitations 7 1.4 General Framework 7 Chapter 2 Review of Related Literature 13 2.1 Climate Change, Sustainability, and the Bio-based Economy 14 2.1.1 On Climate Change 14 2.1.2 The Question of Sustainability 17 2.1.3 The Bio-Based Economy 18 2.2 Lignocellulosic Biomass and Consolidated Bio-Processing 21 2.2.1 Lignocellulosic Biomass: The Key to the Bio-based Economy 21 2.2.1.1 On Biomass Feedstocks 21 2.2.1.2 Lignocellulosic Bioethanol Production 26 2.2.2 The Consolidated Bio-Processing Strategy 30 2.3 Hemicellulose and Its Enzymatic Degradation 34 2.4 On Enzymes and Enzyme Immobilization 36 2.5 From Lignocellulosic Biomass to Bioethanol: The Role of Yeast Surface Display in Consolidated BioProcessing 40 2.5.1 The Advancement of Yeast Surface Display 40 2.5.1.1 A Brief Description of the Surface Display Technology 40 2.5.1.2 Yeast Surface Display 41 2.5.1.3 Strategies for the Yeast Surface Display of CBP-Related Enzymes 44 2.5.2 Yeast Surface Display Studies for Bioethanol Production from Lignocellulosic Biomass 47 2.5.2.1 Pure Cellulose Substrates 48 2.5.2.2 Pure Hemicellulose Substrates 57 2.5.2.3 Pre-Treated Lignocellulosic Substrates 61 2.5.3 Comparing the Various Yeast Surface Display Strategies for Bioethanol Fermentation from Lignocellulosic Biomass Substrates 66 2.5.3.1 Cellulosic Bioethanol Fermentation 67 2.5.3.2 Hemicelllulosic Bioethanol Fermentation 67 2.5.3.3 Bioethanol Fermentation from Pre-Treated Lignocellulosic Biomass 68 2.5.4 Avenues of Improvement for Bioethanol Production using Yeast Surface Display 74 2.5.4.1 On the Enzyme Functionality and Display Efficiency 75 2.5.4.2 On Substrate Transport 77 2.5.4.3 On Metabolic Engineering for Improved Ethanol Production 79 2.5.4.4 On Process Parameters 80 2.6 Summary 83 Chapter 3 Methodology 85 3.1 The Statistical Design of Experiments 86 3.1.1 Overview 86 3.1.2 The Mixture Experimental Design 89 3.1.2.1 The Canonical Polynomial Model for Mixture Experimental Designs 92 3.1.2.2 Analysis of Mixture Data 93 3.1 Materials and Methods 94 3.1.1 Strains and Media 94 3.1.2 Molecular Biology Techniques 95 3.1.3 Plasmid Construction and Transformation 96 3.1.4 Expression, Secretion, and Concentration of Hemicellulases by S. cerevisiae 98 3.1.5 Protein Characterization 99 3.1.6 Protein Assay 100 3.1.7 Enzyme Activity Assay 100 3.1.8 Mixture Experimental Design Setup 101 3.1.9 Mixed Culture Fermentation Experiments 101 Chapter 4 Results and Discussion 103 4.1 Results 104 4.1.1 Mixture Design Experiments 104 4.1.1.1 Hemicellulase Mixture Optimization for Xylan Hydrolysis 104 4.1.1.2 Hemicellulase Mixture Optimization for Arabinoxylan Hydrolysis 105 4.1.2 Hemicellulose Hydrolysis Experiments by Whole-Cell Biocatalysts Mixtures 110 4.1.3 A Simple Growth Assay for the Simultaneous Xylose Release and Utilization during Xylan Hydrolysis 112 4.1.4 Ethanol Fermentation of Xylan Substrates by Hemicellulase-Displaying, Xylose-Utilizing Yeast Strains 115 4.2 Discussion 117 4.2.1 Mixture Design Experiments 117 4.2.2 Whole-Cell Biocatalysts for the Hydrolysis of Xylan Substrates 118 4.2.3 Growth Assay for the Simultaneous Xylose Release and Utilization during Xylan Hydrolysis 119 4.2.4 Ethanol Fermentation of Xylan Substrates 119 4.2.5 Comparison to Other Xylan-Utilizing Strains/Studies 120 Chapter 5 Conclusions and Recommendations 123 5.1 Conclusions and Generalizations 124 5.2 Recommendations and Future Work 125 References 127 Appendix A 155 Tables 155 Figures 164 Appendix B: Supplementary Material 1 168 Molecular Cloning 168 Hemicellulase Characterization 171 Mixture Design Experiment Modelling Regression Results 173 Mixture Experimental Design 173 Experimental Data for Hydrolysis of Xylan Substrates with Calculated Degree of Synergy Values 174 Xylan Hydrolysis Model Regression Results 177 Arabinoxylan Hydrolysis Model Regression Results 179 Growth of Constructed Yeast Strains on Xylose Minimal Medium 182 Works Cited 183

    1. Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate change 2013: The physical science basis: Working group 1 contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press: 2014.
    2. Dessler, A.; Parson, E.A. The science and politics of global climate change: A guide to the debate. Cambridge University Press: 2010.
    3. Ronzon, T.; Lusser, M.; Klinkenberg, M.; Landa, L.; Lopez, J.S.; M’Barek, R.; Hadjamu, G.; Belward, A.; Camia, A.; Giuntoli, J., et al. Bioeconomy report 2016; 978-92-79-65712-2 (print) - 978-92-79-65711-5 (pdf); 2017.
    4. Wertz, J.L.; Bédué, O. Lignocellulosic biorefineries. EFPL Press: 2013.
    5. Ros, J.; Olivier, J.; Notenboom, J.; Croezen, H.; Bergsma, G. Sustainability of biomass in a bio-based economy. A quick-scan analysis of the biomass demand of a bio-based economy in 2012, 2030.
    6. Langeveld, H.; Sanders, J.; Meeusen, M. The biobased economy: Biofuels, materials and chemicals in the post-oil era. Earthscan LLC: 2012.
    7. Haan, R.; Rensburg, E.; Rose, S.H.; Görgens, J.F.; Zyl, W.H. Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. Curr. Opin. Biotechnol. 2015, 33.
    8. Hasunuma, T.; Yamada, R.; Kondo, A. Ethanol production from yeasts. In Bioprocessing of renewable resources to commodity bioproducts, John Wiley & Sons, Inc.: 2014; pp 201-226.
    9. Schuster, B.; Chinn, M. Consolidated bioprocessing of lignocellulosic feedstocks for ethanol fuel production. BioEnergy Research 2013, 6, 416-435.
    10. Olson, D.G.; McBride, J.E.; Shaw, A.J.; Lynd, L.R. Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 2012, 23, 396-405.
    11. Lynd, L.R.; van Zyl, W.H.; McBride, J.E.; Laser, M. Consolidated bioprocessing of cellulosic biomass: An update. Curr Opin Biotechnol 2005, 16, 577-583.
    12. Lynd, L.R.; Weimer, P.J.; van Zyl, W.H.; Pretorius, I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506-577.
    13. Long, D. Global warming. Facts on File: 2004.
    14. Mitchell, J.F.B. The “greenhouse” effect and climate change. Rev. Geophys. 1989, 27, 115-139.
    15. Hatti-Kaul, R. Biorefineries–a path to sustainability? Crop Sci. 2010, 50, S-152-S-156.
    16. Fantini, J.G.; Alvino, M. 2017 opec world oil outlook; Organization of the Petroleum Exporting Countries: 2017.
    17. Meadows, D.; Randers, J.; Meadows, D. Limits to growth: The 30-year update. Chelsea Green Publishing: 2004.
    18. Brundtland, G.H. Our common future—call for action. Environ. Conserv. 1987, 14, 291-294.
    19. Commission, E. Innovating for sustainable grow th: A bioeconomy for europe; 2012.
    20. de Jong, E. Bio-based chemicals value added products from biorefineries; IEA Bioenergy - Task42 Biorefinery: 2012.
    21. Robertson, G.P.; Hamilton, S.K.; Barham, B.L.; Dale, B.E.; Izaurralde, R.C.; Jackson, R.D.; Landis, D.A.; Swinton, S.M.; Thelen, K.D.; Tiedje, J.M. Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes. Science 2017, 356.
    22. Lynd, L.R. The grand challenge of cellulosic biofuels. Nat. Biotechnol. 2017, 35, 912.
    23. Sigoillot, J.-C.; Faulds, C. Second generation bioethanol. In Green fuels technology: Biofuels, Soccol, R.C.; Brar, K.S.; Faulds, C.; Ramos, P.L., Eds. Springer International Publishing: Cham, 2016; pp 213-239.
    24. Long, S.P.; Karp, A.; Buckeridge, M.; Davis, S.; Jaiswal, D.; Moore, P.; Moose, S.; Murphy, D.; Onwona-Agyeman, S.; Vonshak, A. Feedstocks for biofuels and bioenergy. Bioenergy & Sustainability: bridging the gaps 2015, 302-347.
    25. Souza, G.M.; Victoria, R.L.; Joly, C.A.; Verdade, L.M. Bioenergy & sustainability: Bridging the gaps.
    26. Kricka, W.; Fitzpatrick, J.; Bond, U. Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: A perspective. Front. Microbiol. 2014, 5, 174.
    27. McGovern, P.E.; Zhang, J.; Tang, J.; Zhang, Z.; Hall, G.R.; Moreau, R.A.; Nuñez, A.; Butrym, E.D.; Richards, M.P.; Wang, C.-s., et al. Fermented beverages of pre- and proto-historic china. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 17593-17598.
    28. Ingram, L.O.N.; Buttke, T.M. Effects of alcohols on micro-organisms. In Adv. Microb. Physiol., Rose, A.H.; Tempest, D.W., Eds. Academic Press: 1985; Vol. 25, pp 253-300.
    29. Piper, P.; Mahé, Y.; Thompson, S.; Pandjaitan, R.; Holyoak, C.; Egner, R.; Mühlbauer, M.; Coote, P.; Kuchler, K. The pdr12 abc transporter is required for the development of weak organic acid resistance in yeast. The EMBO Journal 1998, 17, 4257-4265.
    30. Casey, G.P.; Ingledew, W.M.M. Ethanol tolerance in yeasts. CRC Crit. Rev. Microbiol. 1986, 13, 219-280.
    31. Narendranath, N.V.; Thomas, K.C.; Ingledew, W.M. Effects of acetic acid and lactic acid on the growth of saccharomyces cerevisiae in a minimal medium. J. Ind. Microbiol. Biotechnol. 2001, 26, 171-177.
    32. Goffeau, A.; Barrell, B.G.; Bussey, H.; Davis, R.W.; Dujon, B.; Feldmann, H.; Galibert, F.; Hoheisel, J.D.; Jacq, C.; Johnston, M., et al. Life with 6000 genes. Science 1996, 274, 546-567.
    33. Lockhart, D.J.; Dong, H.; Byrne, M.C.; Follettie, M.T.; Gallo, M.V.; Chee, M.S.; Mittmann, M.; Wang, C.; Kobayashi, M.; Norton, H., et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 1996, 14, 1675.
    34. Association, R.F. Ethanol industry outlook. Renewable Fuels Association 2017, 1-40.
    35. Janssen, R.; Turhollow, A.F.; Rutz, D.; Mergner, R. Production facilities for second-generation biofuels in the USA and the eu – current status and future perspectives. Biofuels, Bioproducts and Biorefining 2013, 7, 647-665.
    36. van Zyl, W.; Lynd, L.; den Haan, R.; McBride, J. Consolidated bioprocessing for bioethanol production using saccharomyces cerevisiae. In Biofuels, Olsson, L., Ed. Springer Berlin Heidelberg: 2007; Vol. 108, pp 205-235.
    37. Fitzpatrick, J.; Kricka, W.; James, T.C.; Bond, U. Expression of three trichoderma reesei cellulase genes in saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose. J. Appl. Microbiol. 2014, n/a-n/a.
    38. Yanase, S.; Hasunuma, T.; Yamada, R.; Tanaka, T.; Ogino, C.; Fukuda, H.; Kondo, A. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast kluyveromyces marxianus displaying cellulolytic enzymes. Appl. Microbiol. Biotechnol. 2010, 88, 381-388.
    39. Den Haan, R.; Rose, S.H.; Lynd, L.R.; van Zyl, W.H. Hydrolysis and fermentation of amorphous cellulose by recombinant saccharomyces cerevisiae. Metab. Eng. 2007, 9, 87-94.
    40. Yamada, R.; Taniguchi, N.; Tanaka, T.; Ogino, C.; Fukuda, H.; Kondo, A. Direct ethanol production from cellulosic materials using a diploid strain of saccharomyces cerevisiae with optimized cellulase expression. Biotechnology for Biofuels 2011, 4, 8.
    41. Ryu, S.; Karim, M.N. A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates. Appl. Microbiol. Biotechnol. 2011, 91, 529-542.
    42. Fujita, Y.; Ito, J.; Ueda, M.; Fukuda, H.; Kondo, A. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl. Environ. Microbiol. 2004, 70, 1207-1212.
    43. Fan, L.-H.; Zhang, Z.-J.; Yu, X.-Y.; Xue, Y.-X.; Tan, T.-W. Self-surface assembly of cellulosomes with two miniscaffoldins on saccharomyces cerevisiae for cellulosic ethanol production. Proceedings of the National Academy of Sciences 2012, 109, 13260-13265.
    44. Wen, F.; Sun, J.; Zhao, H. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Applied and Environmental Microbiology 2010, 76, 1251-1260.
    45. Tsai, S.-L.; Goyal, G.; Chen, W. Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Appl. Environ. Microbiol. 2010, 76, 7514-7520.
    46. Kato, H.; Matsuda, F.; Yamada, R.; Nagata, K.; Shirai, T.; Hasunuma, T.; Kondo, A. Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in saccharomyces cerevisiae. J. Biosci. Bioeng. 2013, 116, 333-336.
    47. Hector, R.E.; Dien, B.S.; Cotta, M.A.; Mertens, J.A. Growth and fermentation of d-xylose by saccharomyces cerevisiae expressing a novel d-xylose isomerase originating from the bacterium prevotella ruminicola tc2-24. Biotechnol Biofuels 2013, 6, 84.
    48. Demeke, M.; Dietz, H.; Li, Y.; Foulquie-Moreno, M.; Mutturi, S.; Deprez, S.; Den Abt, T.; Bonini, B.; Liden, G.; Dumortier, F., et al. Development of a d-xylose fermenting and inhibitor tolerant industrial saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnology for Biofuels 2013, 6, 89.
    49. Ma, T.-Y.; Lin, T.-H.; Hsu, T.-C.; Huang, C.-F.; Guo, G.-L.; Hwang, W.-S. An improved method of xylose utilization by recombinant saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 2012, 39, 1477-1486.
    50. Fujitomi, K.; Sanda, T.; Hasunuma, T.; Kondo, A. Deletion of the pho13 gene in saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresour. Technol. 2012, 111, 161-166.
    51. Usher, J.; Balderas-Hernandez, V.; Quon, P.; Gold, N.D.; Martin, V.J.J.; Mahadevan, R.; Baetz, K. Chemical and synthetic genetic array analysis identifies genes that suppress xylose utilization and fermentation in saccharomyces cerevisiae. G3: Genes, Genomes, Genetics 2011, 1, 247-258.
    52. Bera, A.; Ho, N.; Khan, A.; Sedlak, M. A genetic overhaul of saccharomyces cerevisiae 424a(lnh-st) to improve xylose fermentation. J Ind Microbiol Biot 2011, 38, 617 - 626.
    53. Matsushika, A.; Inoue, H.; Kodaki, T.; Sawayama, S. Ethanol production from xylose in engineered saccharomyces cerevisiae strains: Current state and perspectives. Appl. Microbiol. Biotechnol. 2009, 84, 37-53.
    54. Karhumaa, K.; Garcia Sanchez, R.; Hahn-Hagerdal, B.; Gorwa-Grauslund, M. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant saccharomyces cerevisiae. Microb Cell Fact 2007, 6, 5.
    55. Moon, J.; Lewis Liu, Z.; Ma, M.; Slininger, P.J. New genotypes of industrial yeast saccharomyces cerevisiae engineered with yxi and heterologous xylose transporters improve xylose utilization and ethanol production. Biocatalysis and Agricultural Biotechnology 2013, 2, 247-254.
    56. Young, E.M.; Comer, A.D.; Huang, H.; Alper, H.S. A molecular transporter engineering approach to improving xylose catabolism in saccharomyces cerevisiae. Metab. Eng. 2012, 14, 401-411.
    57. Tanino, T.; Ito, T.; Ogino, C.; Ohmura, N.; Ohshima, T.; Kondo, A. Sugar consumption and ethanol fermentation by transporter-overexpressed xylose-metabolizing saccharomyces cerevisiae harboring a xyloseisomerase pathway. J. Biosci. Bioeng. 2012, 114, 209-211.
    58. Young, E.; Poucher, A.; Comer, A.; Bailey, A.; Alper, H. Functional survey for heterologous sugar transport proteins, using saccharomyces cerevisiae as a host. Appl. Environ. Microbiol. 2011, 77, 3311-3319.
    59. Runquist, D.; Hahn-Hagerdal, B.; Radstrom, P. Comparison of heterologous xylose transporters in recombinant saccharomyces cerevisiae. Biotechnol Biofuels 2010, 3, 5.
    60. Du, J.; Li, S.; Zhao, H. Discovery and characterization of novel d-xylose-specific transporters from neurospora crassa and pichia stipitis. Mol. Biosyst. 2010, 6, 2150-2156.
    61. Sakamoto, T.; Hasunuma, T.; Hori, Y.; Yamada, R.; Kondo, A. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing saccharomyces cerevisiae cells. J. Biotechnol. 2012, 158, 203-210.
    62. Yeasmin, S.; Kim, C.; Park, H.; Sheikh, M.; Lee, J.; Kim, J.; Back, K.; Kim, S. Cell surface display of cellulase activity–free xylanase enzyme on saccharomyces cerevisiae eby100. Appl. Biochem. Biotechnol. 2011, 164, 294-304.
    63. Katahira, S.; Fujita, Y.; Mizuike, A.; Fukuda, H.; Kondo, A. Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 2004, 70, 5407-5414.
    64. Fujita, Y.; Katahira, S.; Ueda, M.; Tanaka, A.; Okada, H.; Morikawa, Y.; Fukuda, H.; Kondo, A. Construction of whole-cell biocatalyst for xylan degradation through cell-surface xylanase display in saccharomyces cerevisiae. Journal of Molecular Catalysis B: Enzymatic 2002, 17, 189-195.
    65. Srikrishnan, S.; Chen, W.; Da Silva, N.A. Functional assembly and characterization of a modular xylanosome for hemicellulose hydrolysis in yeast. Biotechnology and Bioengineering 2013, 110, 275-285.
    66. Sun, J.; Wen, F.; Si, T.; Xu, J.-H.; Zhao, H. Direct conversion of xylan to ethanol by recombinant saccharomyces cerevisiae strains displaying an engineered minihemicellulosome. Appl. Environ. Microbiol. 2012, 78, 3837-3845.
    67. McClendon, S.; Mao, Z.; Shin, H.-D.; Wagschal, K.; Chen, R. Designer xylanosomes: Protein nanostructures for enhanced xylan hydrolysis. Appl Biochem Biotechnol 2012, 167, 395-411.
    68. Jiang, Z.; Deng, W.; Yan, Q.; Zhai, Q.; Li, L.; Kusakabe, I. Subunit composition of a large xylanolytic complex (xylanosome) from streptomyces olivaceoviridis e-86. J. Biotechnol. 2006, 126, 304-312.
    69. Jiang, Z.Q.; Deng, W.; Li, X.T.; Ai, Z.L.; Li, L.T.; Kusakabe, I. Characterization of a novel, ultra-large xylanolytic complex (xylanosome) from streptomyces olivaceoviridis e-86. Enzyme Microb. Technol. 2005, 36, 923-929.
    70. Kondo, A.; Ueda, M. Yeast cell-surface display—applications of molecular display. Appl. Microbiol. Biotechnol. 2004, 64, 28-40.
    71. Jiang, Z.-Q.; Deng, W.; Li, L.-T.; Ding, C.-H.; Kusakabe, I.; Tan, S.-S. A novel, ultra-large xylanolytic complex (xylanosome) secreted by streptomyces olivaceoviridis. Biotechnol. Lett. 2004, 26, 431-436.
    72. Salles-Filho, S.L.M.; Cortez, L.A.B.; da Silveira, J.M.F.J.; Trindade, S.; da Graça Derengowski Fonseca, M. Global bioethanol: Evolution, risks, and uncertainties. Elsevier Science: 2016.
    73. Kumar, R.; Wyman, C.E. Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol. Prog. 2009, 25, 302-314.
    74. Nidetzky, B.; Steiner, W.; Hayn, M.; Claeyssens, M. Cellulose hydrolysis by the cellulases from trichoderma reesei: A new model for synergistic interaction. Biochem. J. 1994, 298, 705-710.
    75. Bhattacharya, A.S.; Bhattacharya, A.; Pletschke, B.I. Synergism of fungal and bacterial cellulases and hemicellulases: A novel perspective for enhanced bio-ethanol production. Biotechnol. Lett. 2015, 37, 1117-1129.
    76. Van Dyk, J.S.; Pletschke, B.I. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 2012, 30, 1458-1480.
    77. Meyer, A.S.; Rosgaard, L.; Sørensen, H.R. The minimal enzyme cocktail concept for biomass processing. Journal of Cereal Science 2009, 50, 337-344.
    78. Collins, T.; Gerday, C.; Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 2005, 29, 3-23.
    79. Moreira, L.R.S.; Filho, E.X.F. Insights into the mechanism of enzymatic hydrolysis of xylan. Appl. Microbiol. Biotechnol. 2016, 100, 5205-5214.
    80. Kam, D.K.; Jun, H.-S.; Ha, J.K.; Inglis, G.D.; Forsberg, C.W. Characteristics of adjacent family 6 acetylxylan esterases from fibrobacter succinogenes and the interaction with the xyn10e xylanase in hydrolysis of acetylated xylan. Can. J. Microbiol. 2005, 51, 821-832.
    81. Gasparic, A.; Martin, J.; Daniel, A.S.; Flint, H.J. A xylan hydrolase gene cluster in prevotella ruminicola b(1)4: Sequence relationships, synergistic interactions, and oxygen sensitivity of a novel enzyme with exoxylanase and beta-(1,4)-xylosidase activities. Appl. Environ. Microbiol. 1995, 61, 2958-2964.
    82. McClendon, S.D.; Shin, H.-D.; Chen, R.R. Novel bacterial ferulic acid esterase from cellvibrio japonicus and its application in ferulic acid release and xylan hydrolysis. Biotechnol. Lett. 2011, 33, 47-54.
    83. Vardakou, M.; Katapodis, P.; Topakas, E.; Kekos, D.; Macris, B.J.; Christakopoulos, P. Synergy between enzymes involved in the degradation of insoluble wheat flour arabinoxylan. Innov. Food Sci. Emerg. Technol. 2004, 5, 107-112.
    84. Raweesri, P.; Riangrungrojana, P.; Pinphanichakarn, P. Α-l-arabinofuranosidase from streptomyces sp. Pc22: Purification, characterization and its synergistic action with xylanolytic enzymes in the degradation of xylan and agricultural residues. Bioresour. Technol. 2008, 99, 8981-8986.
    85. Sørensen, H.R.; Meyer, A.S.; Pedersen, S. Enzymatic hydrolysis of water-soluble wheat arabinoxylan. 1. Synergy between α-l-arabinofuranosidases, endo-1,4-β-xylanases, and β-xylosidase activities. Biotechnol. Bioeng. 2003, 81, 726-731.
    86. Sørensen, H.R.; Pedersen, S.; Meyer, A.S. Characterization of solubilized arabinoxylo-oligosaccharides by maldi-tof ms analysis to unravel and direct enzyme catalyzed hydrolysis of insoluble wheat arabinoxylan. Enzyme Microb. Technol. 2007, 41, 103-110.
    87. Sørensen, H.R.; Pedersen, S.; Meyer, A.S. Synergistic enzyme mechanisms and effects of sequential enzyme additions on degradation of water insoluble wheat arabinoxylan. Enzyme Microb. Technol. 2007, 40, 908-918.
    88. Christakopoulos, P.; Katapodis, P.; Hatzinikolaou, D.G.; Kekos, D.; Macris, B.J. Purification and characterization of an extracellular α-l-arabinofuranosidase from fusarium oxysporum. Appl. Biochem. Biotechnol. 2000, 87, 127-133.
    89. Shi, P.; Li, N.; Yang, P.; Wang, Y.; Luo, H.; Bai, Y.; Yao, B. Gene cloning, expression, and characterization of a family 51 α-l-arabinofuranosidase from streptomyces sp. S9. Appl. Biochem. Biotechnol. 2010, 162, 707-718.
    90. Goldbeck, R.; Damásio, A.R.L.; Gonçalves, T.A.; Machado, C.B.; Paixão, D.A.A.; Wolf, L.D.; Mandelli, F.; Rocha, G.J.M.; Ruller, R.; Squina, F.M. Development of hemicellulolytic enzyme mixtures for plant biomass deconstruction on target biotechnological applications. Appl. Microbiol. Biotechnol. 2014, 98, 8513-8525.
    91. Dyk, J.S.; Pletschke, B.I. Enzyme synergy for enhanced degradation of lignocellulosic waste. In Advances in enzyme biotechnology, Shukla, P.; Pletschke, I.B., Eds. Springer India: New Delhi, 2013; pp 57-65.
    92. Kovacs, K. Production of cellulolytic enzymes with trichoderma atroviride mutants for the biomass-to-bioethanol process. Sweden: Lund University 2009.
    93. Adelsberger, H.; Hertel, C.; Glawischnig, E.; Zverlov, V.V.; Schwarz, W.H. Enzyme system of clostridium stercorarium for hydrolysis of arabinoxylan: Reconstitution of the in vivo system from recombinant enzymes. Microbiology 2004, 150, 2257-2266.
    94. Selig, M.J.; Adney, W.S.; Himmel, M.E.; Decker, S.R. The impact of cell wall acetylation on corn stover hydrolysis by cellulolytic and xylanolytic enzymes. Cellulose 2009, 16, 711-722.
    95. de Vries, R.P.; Kester, H.C.M.; Poulsen, C.H.; Benen, J.A.E.; Visser, J. Synergy between enzymes from aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr. Res. 2000, 327, 401-410.
    96. La Grange, D.C.; Pretorius, I.S.; Claeyssens, M.; van Zyl, W.H. Degradation of xylan to d-xylose by recombinant saccharomyces cerevisiae coexpressing the aspergillus niger beta-xylosidase (xlnd) and the trichoderma reesei xylanase ii (xyn2) genes. Appl. Environ. Microbiol. 2001, 67, 5512-5519.
    97. Srikrishnan, S.; Chen, W.; Da Silva, N.A. Functional assembly and characterization of a modular xylanosome for hemicellulose hydrolysis in yeast. Biotechnol. Bioeng. 2013, 110, 275-285.
    98. Tabañag, I.D.F.; Tsai, S.L. Biological strategies in nanobiocatalyst assembly. In Biocatalysis and nanotechnology, Grunwald, P., Ed. CRC Press: 2017; pp 151-241.
    99. Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry. W. H. Freeman: 2007.
    100. Wong, C.-H.; Whitesides, G.M. Enzymes in synthetic organic chemistry. Academic Press: 1994; Vol. 12.
    101. Bornscheuer, U.T.; Buchholz, K. Highlights in biocatalysis - historical landmarks and current trends. Eng. Life Sci. 2005, 5, 309-323.
    102. Sheldon, R.A.; van Rantwijk, F. Biocatalysis for sustainable organic synthesis. Aust. J. Chem. 2004, 57, 281-289.
    103. Guisan, J.M. Immobilization of enzymes and cells. Springer: 2006; Vol. 22.
    104. Kim, H.; Sun, Q.; Liu, F.; Tsai, S.L.; Chen, W. Biologically assembled nanobiocatalysts. Topics in Catalysis 2012, 55, 1138-1145.
    105. Katchalski-Katzir, E. Immobilized enzymes—learning from past successes and failures. Trends Biotechnol. 1993, 11, 471-478.
    106. Bickerstaff Jr, G.F. Immobilization of enzymes and cells. Springer: 1997.
    107. Hartmeier, W. Immobilized biocatalysts. An introduction 1988.
    108. Khan, A.A.; Alzohairy, M.A. Recent advances and applications of immobilized enzyme technologies: A review. Res. J. Biol. Sci 2010, 5, 565-575.
    109. Brena, B.; González-Pombo, P.; Batista-Viera, F. Immobilization of enzymes: A literature survey. In Immobilization of enzymes and cells, Guisan, J.M., Ed. Humana Press: 2013; Vol. 1051, pp 15-31.
    110. Kim, J.; Grate, J.W.; Wang, P. Nanobiocatalysis and its potential applications. Trends Biotechnol. 2008, 26, 639-646.
    111. Chiswell, D.J.; McCaffery, J. Phage antibodies: Will new ‘coliclonal’ antibodies replace monoclonal antibodies? Trends Biotechnol. 1992, 10, 80-84.
    112. Scott, J.K.; Smith, G.P. Searching for peptide ligands with an epitope library. Science 1990, 249, 386-390.
    113. Georgiou, G.; Stathopoulos, C.; Daugherty, P.S.; Nayak, A.R.; Iverson, B.L.; Iii, R.C. Display of heterologous proteins on the surface of microorganisms: From the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 1997, 15, 29.
    114. Little, M.; Fuchs, P.; Breitling, F.; Dübel, S. Bacterial surface presentation of proteins and peptides: An alternative to phage technology? Trends Biotechnol. 1993, 11, 3-5.
    115. Georgiou, G.; Poetschke, H.L.; Stathopoulos, C.; Francisco, J.A. Practical applications of engineering gram-negative bacterial cell surfaces. Trends Biotechnol. 1993, 11, 6-10.
    116. Michon, C.; Langella, P.; Eijsink, V.G.H.; Mathiesen, G.; Chatel, J.M. Display of recombinant proteins at the surface of lactic acid bacteria: Strategies and applications. Microbial Cell Factories 2016, 15, 70.
    117. Schüürmann, J.; Quehl, P.; Festel, G.; Jose, J. Bacterial whole-cell biocatalysts by surface display of enzymes: Toward industrial application. Appl. Microbiol. Biotechnol. 2014, 98, 8031-8046.
    118. Desvaux, M.; Dumas, E.; Chafsey, I.; Hébraud, M. Protein cell surface display in gram-positive bacteria: From single protein to macromolecular protein structure. FEMS Microbiol. Lett. 2006, 256, 1-15.
    119. Lee, S.Y.; Choi, J.H.; Xu, Z. Microbial cell-surface display. Trends Biotechnol. 2003, 21, 45-52.
    120. Ståhl, S.; Uhlén, M. Bacterial surface display: Trends and progress. Trends Biotechnol. 1997, 15, 185-192.
    121. van Bloois, E.; Winter, R.T.; Kolmar, H.; Fraaije, M.W. Decorating microbes: Surface display of proteins on escherichia coli. Trends Biotechnol. 2011, 29, 79-86.
    122. Wittrup, K.D. Protein engineering by cell-surface display. Curr. Opin. Biotechnol. 2001, 12, 395-399.
    123. Murai, T.; Ueda, M.; Shibasaki, Y.; Kamasawa, N.; Osumi, M.; Imanaka, T.; Tanaka, A. Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Appl. Microbiol. Biotechnol. 1999, 51, 65-70.
    124. Ueda, M.; Tanaka, A. Cell surface engineering of yeast: Construction of arming yeast with biocatalyst. J. Biosci. Bioeng. 2000, 90, 125-136.
    125. Ueda, M.; Tanaka, A. Genetic immobilization of proteins on the yeast cell surface. Biotechnol. Adv. 2000, 18, 121-140.
    126. Tanaka, T.; Yamada, R.; Ogino, C.; Kondo, A. Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl. Microbiol. Biotechnol. 2012, 95, 577-591.
    127. Hasunuma, T.; Kondo, A. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol. Adv. 2012, 30, 1207-1218.
    128. Kuroda, K.; Ueda, M. Arming technology in yeast—novel strategy for whole-cell biocatalyst and protein engineering. Biomolecules 2013, 3, 632.
    129. Tanaka, T.; Kondo, A. Cell-surface display of enzymes by the yeast saccharomyces cerevisiae for synthetic biology. FEMS Yeast Res. 2015, 15, 1-9.
    130. Ueda, M. Establishment of cell surface engineering and its development. Biosci., Biotechnol., Biochem. 2016, 80, 1243-1253.
    131. Wang, Z.; Mathias, A.; Stavrou, S.; Neville, J.D.M. A new yeast display vector permitting free scfv amino termini can augment ligand binding affinities. Protein Engineering, Design and Selection 2005, 18, 337-343.
    132. Sato, N.; Matsumoto, T.; Ueda, M.; Tanaka, A.; Fukuda, H.; Kondo, A. Long anchor using flo1 protein enhances reactivity of cell surface-displayed glucoamylase to polymer substrates. Appl. Microbiol. Biotechnol. 2002, 60, 469-474.
    133. Matsumoto, T.; Fukuda, H.; Ueda, M.; Tanaka, A.; Kondo, A. Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the flo1p flocculation functional domain. Appl. Environ. Microbiol. 2002, 68, 4517-4522.
    134. Cherry, J.M.; Hong, E.L.; Amundsen, C.; Balakrishnan, R.; Binkley, G.; Chan, E.T.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R., et al. Saccharomyces genome database: The genomics resource of budding yeast. Nucleic Acids Res. 2012, 40, D700-705.
    135. Lamed, R.; Setter, E.; Bayer, E.A. Characterization of a cellulose-binding, cellulase-containing complex in clostridium thermocellum. Journal of bacteriology 1983, 156, 828-836.
    136. Doi, R.H.; Kosugi, A. Cellulosomes: Plant-cell-wall-degrading enzyme complexes. Nat. Rev. Microbiol. 2004, 2, 541-551.
    137. Artzi, L.; Bayer, E.A.; Morais, S. Cellulosomes: Bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Micro 2017, 15, 83-95.
    138. Mitsuzawa, S.; Kagawa, H.; Li, Y.; Chan, S.L.; Paavola, C.D.; Trent, J.D. The rosettazyme: A synthetic cellulosome. J. Biotechnol. 2009, 143, 139-144.
    139. Fujita, Y.; Takahashi, S.; Ueda, M.; Tanaka, A.; Okada, H.; Morikawa, Y.; Kawaguchi, T.; Arai, M.; Fukuda, H.; Kondo, A. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl. Environ. Microbiol. 2002, 68, 5136-5141.
    140. Kotaka, A.; Bando, H.; Kaya, M.; Kato-Murai, M.; Kuroda, K.; Sahara, H.; Hata, Y.; Kondo, A.; Ueda, M. Direct ethanol production from barley β-glucan by sake yeast displaying aspergillus oryzae β-glucosidase and endoglucanase. J. Biosci. Bioeng. 2008, 105, 622-627.
    141. Liu, Z.; Inokuma, K.; Ho, S.-H.; Haan, R.d.; Hasunuma, T.; Zyl, W.H.; Kondo, A. Combined cell-surface display- and secretion-based strategies for production of cellulosic ethanol with saccharomyces cerevisiae. Biotechnology for Biofuels 2015, 8, 1-12.
    142. Liu, Z.; Ho, S.-H.; Sasaki, K.; den Haan, R.; Inokuma, K.; Ogino, C.; van Zyl, W.H.; Hasunuma, T.; Kondo, A. Engineering of a novel cellulose-adherent cellulolytic saccharomyces cerevisiae for cellulosic biofuel production. Sci. Rep. 2016, 6, 24550.
    143. Liu, Z.; Ho, S.-H.; Hasunuma, T.; Chang, J.-S.; Ren, N.-Q.; Kondo, A. Recent advances in yeast cell-surface display technologies for waste biorefineries. Bioresour. Technol. 2016, 215, 324-333.
    144. Yamada, R.; Taniguchi, N.; Tanaka, T.; Ogino, C.; Fukuda, H.; Kondo, A. Cocktail delta-integration: A novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Fact 2010, 9, 32.
    145. Yamada, R.; Tanaka, T.; Ogino, C.; Fukuda, H.; Kondo, A. Novel strategy for yeast construction using δ-integration and cell fusion to efficiently produce ethanol from raw starch. Appl. Microbiol. Biotechnol. 2010, 85, 1491-1498.
    146. Apiwatanapiwat, W.; Murata, Y.; Kosugi, A.; Yamada, R.; Kondo, A.; Arai, T.; Rugthaworn, P.; Mori, Y. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase. Appl. Microbiol. Biotechnol. 2011, 90, 377-384.
    147. Yamada, R.; Nakatani, Y.; Ogino, C.; Kondo, A. Efficient direct ethanol production from cellulose by cellulase-and cellodextrin transporter-co-expressing saccharomyces cerevisiae. AMB Express 2013, 3.
    148. Liu, Z.; Inokuma, K.; Ho, S.-H.; den Haan, R.; van Zyl, W.H.; Hasunuma, T.; Kondo, A. Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic saccharomyces cerevisiae. Biotechnol. Bioeng. 2017, 114, 1201-1207.
    149. Baek, S.-H.; Kim, S.; Lee, K.; Lee, J.-K.; Hahn, J.-S. Cellulosic ethanol production by combination of cellulase-displaying yeast cells. Enzyme Microb. Technol. 2012, 51, 366-372.
    150. Ito, J.; Kosugi, A.; Tanaka, T.; Kuroda, K.; Shibasaki, S.; Ogino, C.; Ueda, M.; Fukuda, H.; Doi, R.H.; Kondo, A. Regulation of the display ratio of enzymes on the saccharomyces cerevisiae cell surface by the immunoglobulin g and cellulosomal enzyme binding domains. Appl. Environ. Microbiol. 2009, 75, 4149-4154.
    151. Lilly, M.; Fierobe, H.-P.; Van Zyl, W.H.; Volschenk, H. Heterologous expression of a clostridium minicellulosome in saccharomyces cerevisiae. FEMS Yeast Res. 2009, 9, 1236-1249.
    152. Tsai, S.-L.; Oh, J.; Singh, S.; Chen, R.; Chen, W. Functional assembly of minicellulosomes on the saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl. Environ. Microbiol. 2009, 75, 6087-6093.
    153. Wen, F.; Sun, J.; Zhao, H. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl. Environ. Microbiol. 2010, 76, 1251-1260.
    154. Kim, S.; Baek, S.-H.; Lee, K.; Hahn, J.-S. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Microbial Cell Factories 2013, 12, 1-8.
    155. Fan, L.H.; Zhang, Z.J.; Yu, X.Y.; Xue, Y.X.; Tan, T.W. Self-surface assembly of cellulosomes with two miniscaffoldins on saccharomyces cerevisiae for cellulosic ethanol production. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 13260-13265.
    156. Tsai, S.L.; DaSilva, N.A.; Chen, W. Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth Biol 2013, 2, 14-21.
    157. Fan, L.-H.; Zhang, Z.-J.; Mei, S.; Lu, Y.-Y.; Li, M.; Wang, Z.-Y.; Yang, J.-G.; Yang, S.-T.; Tan, T.-W. Engineering yeast with bifunctional minicellulosome and cellodextrin pathway for co-utilization of cellulose-mixed sugars. Biotechnology for Biofuels 2016, 9, 137.
    158. Belgacem, M.N.; Gandini, A. Monomers, polymers and composites from renewable resources. Elsevier Science: 2011.
    159. Akpinar, O.; Erdogan, K.; Bostanci, S. Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydr. Res. 2009, 344, 660-666.
    160. Ho, N.W.; Chen, Z.; Brainard, A.P. Genetically engineered saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 1998, 64, 1852-1859.
    161. Kuyper, M.; Winkler, A.A.; van Dijken, J.P.; Pronk, J.T. Minimal metabolic engineering of saccharomyces cerevisiae for efficient anaerobic xylose fermentation: A proof of principle. FEMS Yeast Res. 2004, 4, 655-664.
    162. Kuyper, M.; Harhangi, H.; Stave, A.; Winkler, A.; Jetten, M.; De-Laat, W.; Den-Ridder, J.; Op den Camp, H.; van Dijken, J.; Pronk, J. High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by saccharomyces cerevisiae? FEMS Yeast Res. 2003, 4, 69 - 78.
    163. Harhangi, H.; Akhmanova, A.; Emmens, R.; van der-Drift, C.; De-Laat, W.; Van-Dijken, J.; Jetten, M.; Pronk, J.; Op den Camp, H. Xylose metabolism in the anaerobic fungus piromyces sp. Strain e2 follows the bacterial pathway. Arch. Microbiol. 2003, 180, 134 - 141.
    164. Tabañag, I.D.; Tsai, S.-L. Hemicellulose degradation and utilization by a synthetic <em>saccharomyces cerevisiae</em> consortium. bioRxiv 2018.
    165. Ishii, J.; Okazaki, F.; Djohan, A.C.; Hara, K.Y.; Asai-Nakashima, N.; Teramura, H.; Andriani, A.; Tominaga, M.; Wakai, S.; Kahar, P., et al. From mannan to bioethanol: Cell surface co-display of β-mannanase and β-mannosidase on yeast saccharomyces cerevisiae. Biotechnology for Biofuels 2016, 9, 188.
    166. Malgas, S.; van Dyk, J.S.; Pletschke, B.I. A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase. World Journal of Microbiology and Biotechnology 2015, 31, 1167-1175.
    167. Spivey, H.O.; Ovadi, J. Substrate channeling. Methods 1999, 19, 306-321.
    168. Harmsen, P.; Huijgen, W.; Bermudez, L.; Bakker, R. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass; 9085857570; Wageningen UR Food & Biobased Research: 2010.
    169. Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673-686.
    170. Matano, Y.; Hasunuma, T.; Kondo, A. Display of cellulases on the cell surface of saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresour. Technol. 2012, 108, 128-133.
    171. Matano, Y.; Hasunuma, T.; Kondo, A. Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing. Bioresour. Technol. 2013, 135, 403-409.
    172. Guirimand, G.; Sasaki, K.; Inokuma, K.; Bamba, T.; Hasunuma, T.; Kondo, A. Cell surface engineering of saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate. Appl. Microbiol. Biotechnol. 2016, 100, 3477-3487.
    173. Katahira, S.; Mizuike, A.; Fukuda, H.; Kondo, A. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl. Microbiol. Biotechnol. 2006, 72, 1136-1143.
    174. van Dyk, J.S.; Pletschke, B.I. Enzyme synergy for enhanced degradation of lignocellulosic waste. In Advances in enzyme biotechnology, Shukla, P.; Pletschke, I.B., Eds. Springer India: New Delhi, 2013; pp 57-65.
    175. Gao, G.; Mao, R.-Q.; Xiao, Y.; Zhou, J.; Liu, Y.-H.; Li, G. Efficient yeast cell-surface display of an endoglucanase of aspergillus flavus and functional characterization of the whole-cell enzyme. World Journal of Microbiology and Biotechnology 2017, 33, 114.
    176. Fukuda, T.; Kato-Murai, M.; Kadonosono, T.; Sahara, H.; Hata, Y.; Suye, S.-i.; Ueda, M. Enhancement of substrate recognition ability by combinatorial mutation of β-glucosidase displayed on the yeast cell surface. Appl. Microbiol. Biotechnol. 2007, 76, 1027-1033.
    177. Haan, R.; Kroukamp, H.; Zyl, J.H.-D.; Zyl, W.H. Cellobiohydrolase secretion by yeast: Current state and prospects for improvement. Process Biochem. 2013, 48.
    178. Tang, H.; Song, M.; He, Y.; Wang, J.; Wang, S.; Shen, Y.; Hou, J.; Bao, X. Engineering vesicle trafficking improves the extracellular activity and surface display efficiency of cellulases in saccharomyces cerevisiae. Biotechnology for Biofuels 2017, 10, 53.
    179. Kotaka, A.; Sahara, H.; Kuroda, K.; Kondo, A.; Ueda, M.; Hata, Y. Enhancement of β-glucosidase activity on the cell-surface of sake yeast by disruption of sed1. J. Biosci. Bioeng. 2010, 109, 442-446.
    180. Matsuoka, H.; Hashimoto, K.; Saijo, A.; Takada, Y.; Kondo, A.; Ueda, M.; Ooshima, H.; Tachibana, T.; Azuma, M. Cell wall structure suitable for surface display of proteins in saccharomyces cerevisiae. Yeast 2014, 31, 67-76.
    181. Wentz, A.E.; Shusta, E.V. A novel high-throughput screen reveals yeast genes that increase secretion of heterologous proteins. Appl. Environ. Microbiol. 2007, 73, 1189-1198.
    182. Shuler, M.L.; Kargi, F. Bioprocess engineering: Basic concepts. Prentice Hall: 2002.
    183. Özcan, S.; Johnston, M. Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 1999, 63, 554-569.
    184. André, B. An overview of membrane transport proteins in saccharomyces cerevisiae. Yeast 1995, 11, 1575-1611.
    185. Bisson, L.F.; Coons, D.M.; Kruckeberg, A.L.; Lewis, D.A. Yeast sugar transporters. Crit. Rev. Biochem. Mol. Biol. 1993, 28, 259-308.
    186. Wieczorke, R.; Krampe, S.; Weierstall, T.; Freidel, K.; Hollenberg, C.P.; Boles, E. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in saccharomyces cerevisiae. FEBS Lett. 1999, 464, 123-128.
    187. Solis-Escalante, D.; van den Broek, M.; Kuijpers, N.G.A.; Pronk, J.T.; Boles, E.; Daran, J.-M.; Daran-Lapujade, P. The genome sequence of the popular hexose-transport-deficient saccharomyces cerevisiae strain eby.Vw4000 reveals loxp/cre-induced translocations and gene loss. FEMS Yeast Res. 2015, 15, fou004-fou004.
    188. Hara, K.Y.; Kobayashi, J.; Yamada, R.; Sasaki, D.; Kuriya, Y.; Hirono-Hara, Y.; Ishii, J.; Araki, M.; Kondo, A. Transporter engineering in biomass utilization by yeast. FEMS Yeast Res. 2017, 17, fox061-fox061.
    189. Kuijper, S.M. Engineering of saccharomyces cerevisiae for the production of fuel ethanol from xylose. TU Delft, Delft University of Technology: 2006.
    190. Kuyper, M.; Hartog, M.; Toirkens, M.; Almering, M.; Winkler, A.; Van-Dijken, J.; Pronk, J. Metabolic engineering of a xylose-isomerase-expressing saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 2005, 5, 399 - 409.
    191. Lee, S.-M.; Jellison, T.; Alper, H. Systematic and evolutionary engineering of a xylose isomerase-based pathway in saccharomyces cerevisiae for efficient conversion yields. Biotechnology for Biofuels 2014, 7, 1-8.
    192. Kim, S.R.; Skerker, J.M.; Kang, W.; Lesmana, A.; Wei, N.; Arkin, A.P.; Jin, Y.-S. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in <italic>saccharomyces cerevisiae</italic>. PLoS One 2013, 8, e57048.
    193. Zhou, H.; Cheng, J.; Wang, B.; Fink, G.; Stephanopoulos, G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by saccharomyces cerevisiae. Metab. Eng. 2012, 14, 611 - 622.
    194. Lee, S.-M.; Jellison, T.; Alper, H.S. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast saccharomyces cerevisiae. Appl. Environ. Microbiol. 2012, 78, 5708-5716.
    195. Khatun, M.M.; Liu, C.-G.; Zhao, X.-Q.; Yuan, W.-J.; Bai, F.-W. Consolidated ethanol production from jerusalem artichoke tubers at elevated temperature by saccharomyces cerevisiae engineered with inulinase expression through cell surface display. J. Ind. Microbiol. Biotechnol. 2017, 44, 295-301.
    196. Nakanishi, A.; Bae, J.G.; Fukai, K.; Tokumoto, N.; Kuroda, K.; Ogawa, J.; Nakatani, M.; Shimizu, S.; Ueda, M. Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation. Appl. Microbiol. Biotechnol. 2012, 94, 939-948.
    197. Montgomery, D.C. Design and analysis of experiments, 8th edition. John Wiley & Sons, Incorporated: 2012.
    198. Cornell, J.A. A primer on experiments with mixtures. John Wiley & Sons: 2011; Vol. 854.
    199. Minitab, I. Minitab release 17: Statistical software for windows. Minitab Inc, USA 2014.
    200. Cornell, J.A. A review of least squares and the analysis of variance. In A primer on experiments with mixtures, John Wiley & Sons, Inc.: 2011; pp 285-298.
    201. Piepel, G.F. 50 years of mixture experiment research: 1955–2004. In Response surface methodology and related topics, WORLD SCIENTIFIC: 2012; pp 283-327.
    202. Cornell, J.A. The analysis of mixture data. In A primer on experiments with mixtures, John Wiley & Sons, Inc.: 2011; pp 159-199.
    203. Mary, M.; James, W. The production of cellulases. In Cellulases and their applications, AMERICAN CHEMICAL SOCIETY: 1969; Vol. 95, pp 391-414.
    204. Tsai, S.L.; Oh, J.; Singh, S.; Chen, R.; Chen, W. Functional assembly of minicellulosomes on the saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl. Environ. Microbiol. 2009, 75, 6087-6093.
    205. Bergkessel, M.; Guthrie, C. Chapter twenty six - chemical transformation of yeast. In Methods enzymol., Jon, L., Ed. Academic Press: 2013; Vol. Volume 529, pp 311-320.
    206. Fang, F.; Salmon, K.; Shen, M.W.Y.; Aeling, K.A.; Ito, E.; Irwin, B.; Tran, U.P.C.; Hatfield, G.W.; Da Silva, N.A.; Sandmeyer, S. A vector set for systematic metabolic engineering in saccharomyces cerevisiae. Yeast 2011, 28, 123-136.
    207. Brunelle, J.L.; Green, R. One-dimensional sds-polyacrylamide gel electrophoresis (1d sds-page). Methods Enzymol. 2014, 541, 151-159.
    208. Alegria-Schaffer, A. Chapter nineteen - western blotting using chemiluminescent substrates. In Methods enzymol., Jon, L., Ed. Academic Press: 2014; Vol. Volume 541, pp 251-259.
    209. Vazana, Y.; Moraïs, S.; Barak, Y.; Lamed, R.; Bayer, E.A. Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. Methods Enzymol. 2012, 510, 429-452.
    210. Wood, T.M.; Bha, K. Methods for measuring cellulase activities. 1988.
    211. Laothanachareon, T.; Bunterngsook, B.; Suwannarangsee, S.; Eurwilaichitr, L.; Champreda, V. Synergistic action of recombinant accessory hemicellulolytic and pectinolytic enzymes to trichoderma reesei cellulase on rice straw degradation. Bioresour. Technol. 2015, 198, 682-690.
    212. Suwannarangsee, S.; Bunterngsook, B.; Arnthong, J.; Paemanee, A.; Thamchaipenet, A.; Eurwilaichitr, L.; Laosiripojana, N.; Champreda, V. Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design. Bioresour. Technol. 2012, 119, 252-261.
    213. Sørensen, H.R.; Pedersen, S.; Viksø-Nielsen, A.; Meyer, A.S. Efficiencies of designed enzyme combinations in releasing arabinose and xylose from wheat arabinoxylan in an industrial ethanol fermentation residue. Enzyme Microb. Technol. 2005, 36, 773-784.
    214. Berlin, A.; Maximenko, V.; Gilkes, N.; Saddler, J. Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol. Bioeng. 2007, 97, 287-296.
    215. Carapito, R.; Carapito, C.; Jeltsch, J.-M.; Phalip, V. Efficient hydrolysis of hemicellulose by a fusarium graminearum xylanase blend produced at high levels in escherichia coli. Bioresour. Technol. 2009, 100, 845-850.
    216. Sørensen, H.R.; Pedersen, S.; Meyer, A.S. Optimization of reaction conditions for enzymatic viscosity reduction and hydrolysis of wheat arabinoxylan in an industrial ethanol fermentation residue. Biotechnol. Prog. 2006, 22, 505-513.
    217. Grunwald, P. Biocatalysis and nanotechnology. CRC Press: 2017.
    218. Goyal, G.; Tsai, S.L.; Madan, B.; DaSilva, N.A.; Chen, W. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Fact 2011, 10, 89.
    219. Tsai, S.L.; Goyal, G.; Chen, W. Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Appl. Environ. Microbiol. 2010, 76, 7514-7520.
    220. Brethauer, S.; Studer, M.H. Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy Environ. Sci. 2014, 7, 1446-1453.
    221. Zuroff, T.R.; Curtis, W.R. Developing symbiotic consortia for lignocellulosic biofuel production. Appl. Microbiol. Biotechnol. 2012, 93, 1423-1435.
    222. Panagiotou, G.; Topakas, E.; Moukouli, M.; Christakopoulos, P.; Olsson, L. Studying the ability of fusarium oxysporum and recombinant saccharomyces cerevisiae to efficiently cooperate in decomposition and ethanolic fermentation of wheat straw. Biomass Bioenergy 2011, 35, 3727-3732.
    223. Courtin, C.M.; Delcour, J.A. Arabinoxylans and endoxylanases in wheat flour bread-making. Journal of Cereal Science 2002, 35, 225-243.
    224. Courtin, C.M.; Delcour, J.A. Relative activity of endoxylanases towards water-extractable and water-unextractable arabinoxylan. Journal of Cereal Science 2001, 33, 301-312.
    225. Andrewartha, K.A.; Phillips, D.R.; Stone, B.A. Solution properties of wheat-flour arabinoxylans and enzymically modified arabinoxylans. Carbohydr. Res. 1979, 77, 191-204.
    226. Chen, X. Yeast cell surface display: An efficient strategy for improvement of bioethanol fermentation performance. Bioengineered 2017, 8, 115-119.
    227. Ábrego, U.; Chen, Z.; Wan, C. Chapter three - consolidated bioprocessing systems for cellulosic biofuel production. In Advances in bioenergy, Li, Y.; Ge, X., Eds. Elsevier: 2017; Vol. 2, pp 143-182.
    228. Favaro, L.; Viktor, M.J.; Rose, S.H.; Viljoen-Bloom, M.; van Zyl, W.H.; Basaglia, M.; Cagnin, L.; Casella, S. Consolidated bioprocessing of starchy substrates into ethanol by industrial saccharomyces cerevisiae strains secreting fungal amylases. Biotechnol. Bioeng. 2015, n/a-n/a.
    229. Sasaki, Y.; Takagi, T.; Motone, K.; Kuroda, K.; Ueda, M. Enhanced direct ethanol production by cofactor optimization of cell surface-displayed xylose isomerase in yeast. Biotechnol. Prog. 2017, 33, 1068-1076.
    230. Lee, S.-M.; Jellison, T.; Alper, H.S. Xylan catabolism is improved by blending bioprospecting and metabolic pathway engineering in saccharomyces cerevisiae. Biotechnol. J. 2015, 10, 575-575.
    231. Scalcinati, G.; Otero, J.; Van-Vleet, J.; Jeffries, T.; Olsson, L.; Nielsen, J. Evolutionary engineering of saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Res. 2012, 12, 582 - 597.
    232. Mert, M.J.; la Grange, D.C.; Rose, S.H.; van Zyl, W.H. Engineering of saccharomyces cerevisiae to utilize xylan as a sole carbohydrate source by co-expression of an endoxylanase, xylosidase and a bacterial xylose isomerase. J. Ind. Microbiol. Biotechnol. 2016, 1-10.

    QR CODE