簡易檢索 / 詳目顯示

研究生: 郭家宏
Chia-hung Kuo
論文名稱: 纖維素之溶解對其酵素醣化及發酵應用之研究
Cellulose dissolution for its enzymatic saccharification and fermentation applications
指導教授: 李振綱
Cheng-kang Lee
口試委員: 朱義旭
Yi-hsu Ju
徐敬衡
Chin-hang Shu
劉懷勝
Hwai-shen Liu
蔣丙煌
Been-huang Chiang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 213
中文關鍵詞: 纖維素溶解前處理醣化發酵甘蔗渣廢織物細菌纖維素同步醣化發酵磷酸離子溶液酵素水解纖維素酶生質酒精
外文關鍵詞: saccharification, bagasse, enzyme hydrolysis, NMMO
相關次數: 點閱:224下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了解決石化能源竭盡所衍生的社會需求,生質或生質廢棄物的生物精煉是一個很好的解決方案,生物精煉的主要程序之一為將生質中的纖維素經由酵素水解轉化成可發酵的醣再利用微生物發酵轉化成其他化學品如酒精等。其中酵素水解為整個程序中的關鍵步驟,主要原因在於纖維素的高度結晶性與緊密排列堆積使得醣化水解非常困難。
    本論文研究以新一代纖維素溶劑進行生質材料的前處理,來破壞其中纖維素的結晶度,並大幅暴露出纖維素的表面積,以增進纖維素酵素水解效率,能在短時間內完成同步醣化發酵,所使用的纖維素溶劑包含有N-Methylmorpholine N-oxide (NMMO)、離子溶液1-n-butyl-3- methylimidazolium chloride ([Bmim]Cl)、NaOH/Urea溶液及85%濃磷酸。而生質材料則包含有蔗渣、棉纖維、廢織物及細菌纖維素。
    首先應用NMMO於甘蔗渣的前處理,20 wt%的甘蔗渣可在130℃ 1小時內被NMMO.H2O所溶解,再加入過量的水後可得到多孔性與無定型結構的再生甘蔗渣,而還原醣釋放速率與產率為未處理的甘蔗渣的兩倍以上,其中所含的纖維素經過cellulase AP3水解72小時後可完全轉化成葡萄醣。回收的NMMO能與新的NMMO一樣有效的前處理甘蔗渣,以再生甘蔗渣混合cellulase AP3與Zymomonas mobilis可直接進行同步醣化發酵生產酒精,其酒精收率約為0.15 g酒精/g甘蔗渣。
    研究溶解前處理對纖維素酵素水解影響方面,除NMMO外,NaOH/Urea溶液、[BMIM]Cl與85%磷酸也被應用於溶解脫脂棉,在溫度<130℃與大氣壓下,即可將纖維素溶解,再生之纖維素其醣化初速率,大約可增加有2.7~4.6倍,最終之醣化收率均可在87~96%之間,而未處理的纖維素僅有23%。增進NaOH/Urea再生纖維素的酵素水解的主要原因為其結晶結構由纖維素一型結構轉變成纖維素二型結構;增進NMMO與[BMIM]Cl再生之纖維素酵素水解的主要原因在於其無定型結構;磷酸溶解再生的纖維素則有較的高結晶度,但卻有最高的醣化速率與產率,可歸因於其高表面積與低聚合度所致。
    一般廢織物多為染色之棉布與聚酯纖維混紡之棉布,廢織物可被纖維素溶劑溶解再生而(1)暴露出原本在表面染料纖維下的可分解纖維素;(2)將纖維素與不可分解的聚酯纖維分離;(3)降低纖維素纖維的尺寸;(4)減少纖維素的結晶度,因此經溶解前處理後可提升約4倍的醣化初速率和產率,有色水解液可於用Gluconacetobacter xylinus之發酵產生細菌纖維素,靜置培養7天後可得到1.8 g/L的細菌纖維素與約8%的還原醣轉化率。100 g的廢織物約可產生6 g的奈米細菌纖維素。
    85%磷酸在50℃下即可溶解纖維素,因此以85%磷酸對廢織物進行溶解前處理後,再以同步醣化發酵來生產酒精,在24小時內可達到的酒精濃度49.5 g/L,酒精的收率為0.47 g酒精/g葡萄醣,為理論產率的94%,相當於1噸的廢棉織物可產生約413kg或516公升的酒精。由廢織物水解所得到的有顏色的醣化產物並不會影響Zymomonas mobilis的生長與發酵酒精。
    溶解法前處理不僅能應用在纖維素的溶解與再製方面,亦可用在木質纖維素與廢織物的前處理,大幅減少了酵素水解所需的時間、並提高了水解轉化率,讓同步醣化發酵能有效的進行,在短時間內得到高產量的酒精。而廢織物的水解液也證實了可用來生產酒精與細菌纖維素。


    One of the key steps in bio-refinery processes is the pretreatment of lignocelluloses because the high order structure, crystallinity of cellulose, complexity of lignin and hemicellulose makes it recalcitrant to hydrolysis.
    The pretreatment involving cellulose solvent was study in this thesis. The cellulose dissolution pretreatment disrupt cellulose crystalline, expose the cellulose structure and increase surface area. The enzymatic hydrolysis of cellulose will be significant enhanced so that simultaneous saccharification and fermentation of the dissolution pretreated cellulose can be accomplished in a short time. The cellulose solvent use in this study include N-Methylmorpholine N-oxide (NMMO) monohydrate, 1-n-butyl-3- methylimidazolium chloride ([Bmim]Cl), NaOH/Urea and 85% phosphoric acid. The biomass materials studied include sugarcan bagasse, cotton, waste textiles and bacterial cellulose.
    The cellulose solvent NMMO used in an industrial Lyocell process for cellulose fiber preparation, it was also demonstrated to be an effective agent for sugarcane bagasse dissolution pretreatment. Bagasse of 20 wt% was readily dissolved in NMMO monohydrate at 130℃ within 1 h. After dissolution, bagasse could be regenerated by rapid precipitation with water as a porous and amorphous mixture of its original components. The regenerated bagasse exhibited a significant enhancement on enzymatic hydrolysis kinetic. Not only the reducing sugars releasing rate but also hydrolysis yield was enhanced at least twofold as compared with that of untreated bagasse. The cellulose fraction of regenerated bagasse was nearly hydrolyzed to glucose after 72 h hydrolysis with Cellulase AP3. The recycled NMMO demonstrated the same performance as the fresh one on bagasse pretreatment for hydrolysis enhancement. The regenerated bagasse was directly used in simultaneous saccharification and fermentation (SSF) for ethanol production by Zymomonas mobilis. The ethanol yield approximately 0.15 g ethanol/g baggasse was achieved.
    Attempts were also made to enhance cellulose saccharification by cellulase using additional cellulose dissolution agents, NaOH/Urea(NU) solution, [BMIM]Cl (B) and 85% phosphoric acid (P)were employed to dissolve cotton cellulose. In comparison with conventional cellulose pretreatment processes, the dissolution pretreatments were operated under a milder condition with temperature <130 ℃ and ambient pressure. The dissolved cellulose was easily regenerated in water. The regenerated celluloses exhibited a significant improvement (about 2.7- to 4.6-fold enhancement) on saccharification rate during 1st h reaction. After 72 h, the saccharification yield ranged from 87% to 96% for the regenerated celluloses while only around 23% could be achieved for the untreated cellulose. The significant hydrolysis enhancement of NU-cellulose was mainly resulted from crystalline structure change from cellulose I to an easier digestive cellulose II structure. The enhancement on N- and B-cellulose hydrolysis was mainly due to their amorphous structure. Even with high crystallinity, cellulose regenerated from phosphoric acid dissolution achieved the highest saccharification rates and yield probably due to its highest specific surface area and lowest degree of polymerization (DP).
    Cellulosic waste textiles are studied to be pretreated by dissolution for obtaining fermentable reducing sugars. The obtained reducing sugars were fermented to produce the higher value nanofibrous bacterial cellulose and bioethanol. The color dyed and polyester blend cellulosic fabrics were dissolved by cellulose solvents to (1) expose the cellulosic fibers sheathed in the indigestible dye-conjugated surface fibers, (2) separate the cellulosic fibers from the blockage of the indigestible polyester fibers, (3) reduce the size of cellulosic substrate, and (4) decrease the crystallinity of the cellulose. Thus, approximately 4 fold enhancements on initial enzymatic saccharification rate and final conversion were achieved by dissolution pretreatment. Colored reducing sugars of the hydrolysates could use on bacterial cellulose production in the static culture of Gluconobacter xylinus. Bacterial cellulose of 1.8 g/L with reducing sugar conversion yield about 8 % was achieved after 7 days incubation. Approximately, 6 g of nanofibrous bacterial cellulose was obtained from 100 g of a red colored 100% cotton fabric waste.
    Simultaneous saccharification and fermentation of waste textile regenerated from 85% (w/v) phosphoric acid dissolution pretreatment were investigated. The dissolution pretreatment not only disrupts the crystallinity of cellulose but also exposes the digestable cellulose fibers sheathed in dye fixed surface cellulose to cellulase attack. Ethanol concentration approximate 49.5 g/L and conversion yield of 0.47 g EtOH/g glucose corresponding to 94% of the theoretical maximum was achieved in SSF within 24 h. The colored saccharification product obtained from waste textile showed no inhibition effect on Z. mobilis growth and ethanol fermentation.
    Cellulose solvent not only could use in cellulose dissolution and remolding, but also could use in lignocelluloses and waste textiles pretreatment. The regenerated cellulose increases the hydrolysis rate and yield. Therefore, simultaneous saccharification and fermentation of cellulose based biomass could ferment effectively and obtain high level of ethanol in short time. In additional, the high value of nanofibrous bacterial cellulose product could be obtained from separate saccharification fermentation of pretreated waste textiles. When KL medium and surface/volume(S/V) ratio was employed in the fermentation, high level of bacterial cellulose and gluconic acid were achieved at the same time.

    第一章 前言………………………………………………………… 1 第二章 文獻回顧…………………………………………………… 6 2.1 木質纖維素………………………………………………… 6 2.1.1 纖維素……………………………………………… 6 2.1.2 半纖維素…………………………………………… 9 2.1.3 木質素……………………………………………… 11 2.2 纖維素水解………………………………………………… 14 2.2.1 纖維素分解酵素介紹……………………………… 14 2.2.2 影響纖維素酶水解纖維素因子…………………… 15 2.3 木質纖維素傳統前處理製程……………………………… 18 2.3.1 機械粉碎…………………………………………… 18 2.3.2 蒸氣爆裂法………………………………………… 18 2.3.3 高壓熱水處理法…………………………………… 19 2.3.4 稀酸前處理………………………………………… 20 2.3.5 石灰前處理法……………………………………… 20 2.3.6 氨水前處理法……………………………………… 20 2.4溶解法前處理木質纖維素………………………………… 23 2.4.1 N-methyl-morpholine-N-oxide…………………… 23 2.4.2 離子溶液…………………………………………… 27 2.4.3 濃磷酸……………………………………………… 36 2.4.4 NaOH/Urea………………………………………… 37 2.5 生質酒精製程……………………………………………… 39 2.6 細菌纖維素的生產………………………………………… 43 2.6.1 木質醋酸菌之特性………………………………… 43 2.6.2 木質醋酸菌合成細菌纖維素……………………… 44 2.6.3 細菌纖維素生產之影響因素……………………… 46 2.6.4 細菌纖維素纖維的特性與應用…………………… 50 第三章 實驗方法…………………………………………………… 53 3.1 木質纖維素之NMMO溶解醣化……………………………… 53 3.2 棉纖維素之溶解醣化……………………………………… 55 3.3 廢織物之溶解醣化及細菌纖維素之發酵應用…………… 57 3.4 廢織物之磷酸溶解及同步醣化酒精發酵………………… 61 3.5 細菌纖維素發酵最適化…………………………………… 65 3.6 細菌纖維素之NMMO溶解…………………………………… 68 3.7 分析方法…………………………………………………… 71 第四章 結果與討論……………………………………………… 82 4.1 木質纖維素之NMMO溶解醣化……………………………… 82 4.1.1 再生Avicel的酵素水解…………………………… 85 4.1.2 再生甘蔗渣的酵素水解…………………………… 89 4.1.3 再生甘蔗渣的結構………………………………… 94 4.1.4 甘蔗渣濃度對前處理的影響……………………… 98 4.1.5 同步醣化發酵(SSF) ………………………………101 4.2 棉纖維素之溶解醣化………………………………………103 4.2.1 纖維素溶解與再生…………………………………106 4.2.2 結晶度的影響………………………………………108 4.2.3 表面積與聚合度的影響……………………………114 4.3 廢織物之溶解醣化及細菌纖維素之發酵應用……………116 4.3.1 廢織物的溶解前處理………………………………120 4.3.2 酵素水解……………………………………………123 4.3.3 結晶度與聚合度……………………………………129 4.3.4 生產細菌纖維素……………………………………133 4.4 廢織物之磷酸溶解及同步醣化酒精發酵…………………138 4.4.1 再生廢織物水解……………………………………142 4.4.2 抑菌測試……………………………………………146 4.4.3 同步醣化發酵………………………………………148 4.4.4 Z. mobilis的回收再利用…………………………155 4.4.5 放大實驗……………………………………………157 4.5 細菌纖維素發酵最適化……………………………………160 4.5.1 pH的影響……………………………………………163 4.5.2 離子強度的影響……………………………………165 4.5.3 緩衝溶液對於葡萄醣酸生產的影響………………168 4.5.4 表面積/體積比的影響……………………………172 4.5.5 廢織物水解液生產細菌纖維素…………………174 4.6 細菌纖維素之NMMO溶解……………………………………176 4.6.1 以旋轉濃縮機溶解細菌纖維素………………… 180 4.6.2 以四口反應瓶攪拌溶解細菌纖維素…………… 181 4.6.3 由膠液中再生細菌纖維素……………………… 183 4.6.4 膠液變色原因探討……………………………… 184 4.6.5 NMMO溶解對細菌纖維素聚合度之影響………… 185 4.6.6 細菌纖維素溶解(乾法) ………………………… 187 4.6.7 離子溶液溶解細菌纖維素……………………… 191 4.6.8 [Bmim]Cl溶解對細菌纖維素聚合度之影響…… 192 第五章 結論與建議………………………………………………… 193 5.1 結論………………………………………………………… 193 5.2 建議………………………………………………………… 197 參考文獻…………………………………………………………… 199 附錄……………………………………………………………………208 作者簡介………………………………………………………………209

    郭家宏。1999。利用Bacillus cereus NTU-FC-4生產之粗酵素在膜反應器中製造幾丁寡醣。國立台灣大學食品科技研究所碩士論文。
    陳筱婷。2005。透明顫菌血紅蛋白表現對木質醋酸菌生長及細菌纖維素生產之效應。國立台灣科技大學化學工程系研究所碩士論文。
    楊光、近藤哲男。2006。細菌纖維素:一種環境友好的納米材料。科學(上海),第58卷,第02期 。
    楊思廉。八十一年。工業化學概論。五洲出版社。
    Adler, E., 1977. Lignin chemistry-past, present and future. Wood Science and Technology, 11, 169-218.
    Anderson, J.L., Ding, J., Welton, T., Armstrong, D.W., 2002. Characterizing ionic liquids on the basis of multiple solvation interactions. Journal of the American Chemical Society, 124, 14247-14254.
    Ballesteros, M., Oliva, J.M., Negro, M.J., Manzanares, P., Ballesteros, I., 2004. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry, 39, 1843-1848.
    Bandaru, V.V.R., Somalanka, S.R., Mendu, D.R., Madicherla, N.R., Chityala, A., 2006. Optimization of fermentation conditions for the production of ethanol from sago starch by co-immobilized amyloglucosidase and cells of Zymomonas mobilis using response surface methodology. Enzyme and Microbial Technology, 38, 209-214.
    Buranov, A.U., Mazza, G., 2008. Lignin in straw of herbaceous crops. Industrial Crops and Products, 28, 237-259.
    Cai, J., Zhang, L., Zhou, J., Li, H., Chen, H., Jin, H., 2004. Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromolecular Rapid Communications, 25, 1558-1562.
    Cao, Y., Li, H.Q., Zhang, Y., Zhang, J., He, J.S., 2008. Synthesis of cellulose acetates with low degree of substituent and their water solubility. Gaodeng Xuexiao Huaxue Xuebao/Chemical Journal of Chinese Universities, 29, 2115-2117.
    Catignani, G.L., Carter, M.E., 1982. Antioxidant Properties of Lignin. Journal of Food Science, 47, 1745-1745.
    Cazetta, M.L., Celligoi, M.A.P.C., Buzato, J.B., Scarmino, I.S., 2007. Fermentation of molasses by Zymomonas mobilis: Effects of temperature and sugar concentration on ethanol production. Bioresource Technology, 98, 2824-2828.
    Chuan-Fu, L., Ai-Ping, Z., Wei-Ying, L., Feng-Xia, Y., Run-Cang, S., 2009. Homogeneous modification of cellulose in ionic liquid with succinic anhydride using n-bromosuccinimide as a catalyst. Journal of Agricultural and Food Chemistry, 57, 1814-1820.
    Colquhoun, I.J., Defernez, M., Morris, V.J., 1995. NMR studies of acetan and the related bacterial polysaccharide, CR1/4, produced by a mutant strain of Acetobacter xylinum. Carbohydrate Research, 269, 319-331.
    Crini, G., Badot, P.M., 2008. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science (Oxford), 33, 399-447.
    Czaja, W.K., Young, D.J., Kawecki, M., Brown Jr, R.M., 2007. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 8, 1-12.
    Czilik, M., Pászt, E., Réczey, I., Alt, J., Rusznák, I., Kárpáti, E., Víg, A., 2002. Effects of reactive dyes on the enzymatic depolymerization of cellulose. Dyes and Pigments, 54, 95-106.
    Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnology and Bioengineering, 95, 904-910.
    Davis, L., Rogers, P., Pearce, J., Peiris, P., 2006. Evaluation of Zymomonas-based ethanol production from a hydrolysed waste starch stream. Biomass and Bioenergy, 30, 809-814.
    Den Haan, R., Rose, S.H., Lynd, L.R., van Zyl, W.H., 2007. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metabolic Engineering, 9, 87-94.
    Egal, M., Budtova, T., Navard, P., 2008. The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose, 15, 361-370.
    Eggeman, T., Elander, R.T., 2005. Process and economic analysis of pretreatment technologies. Bioresource Technology, 96, 2019-2025.
    Embuscado, M.E., Marks, J.S., BeMiller, J.N., 1994. Bacterial cellulose. I. Factors affecting the production of cellulose by Acetobacter xylinum. Food Hydrocolloids, 8, 407-418.
    Fadeeva, J., Shmukler, L., Safonova, L., 2003. Investigation of the phosphoric acid-N,N-dimethylformamide system as potential solvent for cellulose. Journal of Molecular Liquids, 103-104, 339-347.
    Fasching, M., Schröder, P., Wollboldt, R.P., Weber, H.K., Sixta, H., 2008. A new and facile method for isolation of lignin from wood based on complete wood dissolution. Holzforschung, 62, 15-23.
    Feng, L., Chen, Z.l., 2008. Research progress on dissolution and functional modification of cellulose in ionic liquids. Journal of Molecular Liquids, 142, 1-5.
    Fink, H.P., Weigel, P., Purz, H.J., Ganster, J., 2001. Structure formation of regenerated cellulose materials from NMMO-solutions. Progress in Polymer Science (Oxford), 26, 1473-1524.
    Fort, D.A., Remsing, R.C., Swatloski, R.P., Moyna, P., Moyna, G., Rogers, R.D., 2007. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chemistry, 9, 63-69.
    Ghose, T.K., 1987. Measurement of cellulase activities. Pure and applied chemistry 59, 257-268.
    Gilbert., R.D., 1994. Cellulosic polymers, blends, and composites Hanser/Gardner Publications, New York.
    Goelzer, F.D.E., Faria-Tischer, P.C.S., Vitorino, J.C., Sierakowski, M.R., Tischer, C.A., 2009. Production and characterization of nanospheres of bacterial cellulose from Acetobacter xylinum from processed rice bark. Materials Science and Engineering C, 29, 546-551.
    Gregorova, A., Cibulková, Z., Košíková, B., Šimon, P., 2005. Stabilization effect of lignin in polypropylene and recycled polypropylene. Polymer Degradation and Stability, 89, 553-558.
    Heinze, T., Koschella, A., 2005a. Solvents applied in the field of cellulose chemistry: a mini review. Polimeros, 15, 84-90.
    Heinze, T., Schwikal, K., Barthel, S., 2005b. Ionic liquids as reaction medium in cellulose functionalization. Macromolecular Bioscience, 5, 520-525.
    Hendriks, A.T.W.M., Zeeman, G., 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10-18.
    Hong, F., Qiu, K., 2008. An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydrate Polymers, 72, 545-549.
    Hong, J., Ye, X., Zhang, Y.H.P., 2007. Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir, 23, 12535-12540.
    Jeihanipour, A., Taherzadeh, M.J., 2009. Ethanol production from cotton-based waste textiles. Bioresource Technology, 100, 1007-1010.
    Jin, H., Zha, C., Gu, L., 2007. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydrate Research, 342, 851-858.
    Jonas, R., Farah, L.F., 1998. Production and application of microbial cellulose. Polymer Degradation and Stability, 59, 101-106.
    Kádár, Z., Szengyel, Z., Réczey, K., 2004. Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Industrial Crops and Products, 20, 103-110.
    Kamiya, N., Matsushita, Y., Hanaki, M., Nakashima, K., Narita, M., Goto, M., Takahashi, H., 2008. Enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media. Biotechnology Letters, 30, 1037-1040.
    Kawano, S., Tajima, K., Kono, H., Erata, T., Munekata, M., Takai, M., 2002. Effects of endogenous endo-β-1,4-glucanase on cellulose biosynthesis in Acetobacter xylinum ATCC23769. Journal of Bioscience and Bioengineering, 94, 275-281.
    Kocherbitov, V., Ulvenlund, S., Kober, M., Jarring, K., Arnebran, T., 2008. Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry. Journal of Physical Chemistry B, 112, 3728-3734.
    Koo, H.M., Song, S.H., Pyun, Y.R., Kim, Y.S., 1998. Evidence that a beta-1,4-endoglucanase secreted by Acetobacter xylinum plays an essential role for the formation of cellulose fiber. Bioscience, biotechnology, and biochemistry, 62, 2257-2259.
    Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Gonçalves-Miśkiewicz, M., Turkiewicz, M., Bielecki, S., 2002. Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology and Biotechnology, 29, 189-195.
    Kuo, C.H., Lee, C.K., 2009a. Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. Bioresource Technology, 100, 866-871.
    Kuo, C.H., Lee, C.K., 2009b. Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydrate Polymers, 77, 41-46.
    Lapuz, M.M., Gallardo, E.G., Palo, M.A., 1967. The nata organism: Cultural requirements, characteristics and identity. Philippines J. Sci., 96, 91-109.
    Lee, S.H., Doherty, T.V., Linhardt, R.J., Dordick, J.S., 2009. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and Bioengineering, 102, 1368-1376.
    Li, H., Kim, N.J., Jiang, M., Kang, J.W., Chang, H.N., 2009. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production. Bioresource Technology, 100, 3245-3251.
    Li, Z., Hu, P., Yu, J., Hu, Z., Liu, Z., 2008. Preparation and characterization of regenerated cellulose fibers from a novel solvent system. Journal of Macromolecular Science, Part B: Physics, 47, 288-295.
    Lin, C.X., Zhan, H.Y., Liu, M.H., Zhang, J.J., Fu, S.Y., 2009. Homogeneous graft copolymerization of cellulose using an ionic liquid as a reaction medium. Chung-kuo Tsao Chih/China Pulp and Paper, 28, 32-35.
    Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chinese Science Bulletin, 51, 2432-2436.
    Mansfield, S.D., Mooney, C., Saddler, J.N., 1999. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology Progress, 15, 804-816.
    Martín, C., Galbe, M., Wahlbom, C.F., Hahn-Hägerdal, B., Jönsson, L.J., 2002. Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme and Microbial Technology, 31, 274-282.
    Masaoka, S., Ohe, T., Sakota, N., 1993. Production of cellulose from glucose by Acetobacter xylinum. Journal of Fermentation and Bioengineering, 75, 18-22.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M., 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673-686.
    Mosier, N.S., Ladisch, C.M., Ladisch, M.R., 2002. Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnology and Bioengineering, 79, 610-618.
    Moxley, G., Zhu, Z., Zhang, Y.H.P., 2008. Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. Journal of Agricultural and Food Chemistry, 56, 7885-7890.
    Nelson, K., Deng, Y., 2007. Encapsulation of inorganic particles with nanostructured cellulose. Macromolecular Materials and Engineering, 292, 1158-1163.
    Nelson, M.L., O'Connor, R.T., 1964a. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J. Appl. Polym. Sci., 8, 1311-1324.
    Nelson, M.L., O'Connor, R.T., 1964b. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in cellulose I and II. J. Appl. Polym. Sci., 8, 1325-1341.
    Nelson, N., 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem., 153, 375-380.
    Nieves, R.A., Ehrman, C.I., Adney, W.S., Elander, R.T., Himmel, M.E., 1998. Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World Journal of Microbiology and Biotechnology, 14, 301-304.
    Oh, S.Y., Dong, I.Y., Shin, Y., Hwan, C.K., Hak, Y.K., Yong, S.C., Won, H.P., Ji, H.Y., 2005. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydrate Research, 340, 2376-2391.
    Olofsson, K., Bertilsson, M., Lide?n, G., 2008. A short review on SSF - An interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnology for Biofuels, 1.
    Pala, H., Mota, M., Gama, F.M., 2007. Enzymatic depolymerisation of cellulose. Carbohydrate Polymers, 68, 101-108.
    Pan, X., Arato, C., Gilkes, N., Gregg, D., Mabee, W., Pye, K., Xiao, Z., Zhang, X., Saddler, J., 2005. Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnology and Bioengineering, 90, 473-481.
    Pan, X., Kadla, J.F., Ehara, K., Gilkes, N., Saddler, J.N., 2006. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: Relationship between lignin structure, extraction conditions, and antioxidant activity. Journal of Agricultural and Food Chemistry, 54, 5806-5813.
    Panesar, P.S., Marwaha, S.S., Kennedy, J.F., 2006. Zymomonas mobilis: An alternative ethanol producer. Journal of Chemical Technology and Biotechnology, 81, 623-635.
    Park, T.J., Lee, S.H., Simmons, T.J., Martin, J.G., Mousa, S.A., Snezhkova, E.A., Sarnatskaya, V.V., Nikolaev, V.G., Linhardt, R.J., 2008. Heparin-cellulose-charcoal composites for drug detoxification prepared using room temperature ionic liquids. Chemical communications (Cambridge, England), 5022-5024.
    Paturau, J.M., 1982. By-products of the cane sugar industry : a introduction to their industrial utilization. Elsevier, New Youk.
    Pu, Y., Jiang, N., Ragauskas, A.J., 2007. Ionic liquid as a green solvent for lignin. Journal of Wood Chemistry and Technology, 27, 23-33.
    Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick Jr, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T., 2006. The path forward for biofuels and biomaterials. Science, 311, 484-489.
    Rahkamo, L., Viikari, L., Buchert, J., Paakkari, T., Suortti, T., 1998. Enzymatic and alkaline treatments of hardwood dissolving pulp. Cellulose, 5, 79-88.
    Rayne, S., Mazza, G., 2007. Rapid Dissolution of Lignocellulosic Plant Materials in an Ionic Liquid. Available from Nature Precedings <http://hdl.handle.net/10101/npre.2007.637.1>.
    Rosenau, T., Potthast, A., Adorjan, I., Hofinger, A., Sixta, H., Firgo, H., Kosma, P., 2002. Cellulose solutions in N-methylmorpholine-N-oxide (NMMO) - degradation processes and stabilizers. Cellulose, 9, 283-291.
    Rosenau, T., Potthast, A., Sixta, H., Kosma, P., 2001. The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Progress in Polymer Science (Oxford), 26, 1763-1837.
    Ross, P., Mayer, R., Benziman, M., 1991. Cellulose biosynthesis and function in bacteria. Microbiological Reviews, 55, 35-38+IIA.
    Ruan, D., Zhang, L., Zhou, J., Jin, H., Chen, H., 2004. Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution. Macromolecular Bioscience, 4, 1105-1112.
    Saha, B.C., Iten, L.B., Cotta, M.A., Wu, Y.V., 2005. Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnology Progress, 21, 816-822.
    Scott Williams, W.S., Cannon, R.E., 1989. Alternative environmental roles for cellulose produced by Acetobacter xylinum. Applied and Environmental Microbiology, 55, 2448-2452.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., 2007. Determination of structural carbohydrates and lignin in biomass. http://www.nrel.gov/biomass/pdfs/lap_carbslignin_2007.pdf Laboratory Analytic Procedure LAP-002.
    Sreenath, H.K., Koegel, R.G., Moldes, A.B., Jeffries, T.W., Straub, R.J., 2001. Ethanol production from alfalfa fiber fractions by saccharification and fermentation. Process Biochemistry, 36, 1199-1204.
    Standal, R., Iversen, T.G., Coucheron, D.H., Fjaervik, E., Blatny, J.M., Valla, S., 1994. A new gene required for cellulose production and a gene encoding cellulolytic activity in Acetobacter xylinum are colocalized with the bcs operon. Journal of Bacteriology, 176, 665-672.
    Sun, Y., Cheng, J., 2002. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83, 1-11.
    Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D., 2002. Dissolution of cellose with ionic liquids. Journal of the American Chemical Society, 124, 4974-4975.
    Taherzadeh, M.J., Karimi, K., 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9, 1621-1651.
    Toda, K., Asakura, T., Fukaya, M., Entani, E., Kawamura, Y., 1997. Cellulose production by acetic acid-resistant Acetobacter xylinum. Journal of Fermentation and Bioengineering, 84, 228-231.
    Uraki, Y., Morito, M., Kishimoto, T., Sano, Y., 2002. Bacterial cellulose production using monosaccharides derived from hemicelluloses in water-soluble fraction of waste liquor from atmospheric acetic acid pulping. Holzforschung, 56, 341-347.
    Vandamme, E.J., De Baets, S., Vanbaelen, A., Joris, K., De Wulf, P., 1998. Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability, 59, 93-99.
    Vasconcelos, A., Cavaco-Paulo, A., 2006. Enzymatic removal of cellulose from cotton/polyester fabric blends. Cellulose, 13, 611-618.
    Verschuren, P.G., Cardona, T.D., Nout, M.J.R., De Gooijer, K.D., Van Den Heuvel, J.C., 2000. Location and limitation of cellulose production by Acetobacter xylinum established from oxygen profiles. Journal of Bioscience and Bioengineering, 89, 414-419.
    Wang, Y., Zhao, Y., Deng, Y., 2008. Effect of enzymatic treatment on cotton fiber dissolution in NaOH/urea solution at cold temperature. Carbohydrate Polymers, 72, 178-184.
    Wang, Z.M., Li, L., Xiao, K.J., Wu, J.Y., 2009. Homogeneous sulfation of bagasse cellulose in an ionic liquid and anticoagulation activity. Bioresource Technology, 100, 1687-1690.
    Wei, S., Kumar, V., Banker, G.S., 1996. Phosphoric acid mediated depolymerization and decrystallization of cellulose: Preparation of low crystallinity cellulose - A new pharmaceutical excipient. International Journal of Pharmaceutics, 142, 175-181.
    Wendler, F., Grane, G., Büttner, R., Meister, F., Heinze, T., 2006. A novel polymeric stabilizing system for modified lyocell solutions. Journal of Polymer Science, Part B: Polymer Physics, 44, 1702-1713.
    Wilkes, J.S., Zaworotko, M.J., 1992. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications, 965-967.
    Zavrel, M., Bross, D., Funke, M., Büchs, J., Spiess, A.C., 2009. High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresource Technology, 100, 2580-2587.
    Zhang, J., Wu, J., Cao, Y., Sang, S., He, J., 2009. Synthesis of cellulose benzoates under homogeneous conditions in an ionic liquid. Cellulose, 16, 299-308.
    Zhang, Y.H.P., 2008. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Journal of Industrial Microbiology and Biotechnology, 35, 367-375.
    Zhang, Y.H.P., Cui, J., Lynd, L.R., Kuang, L.R., 2006. A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: Evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules, 7, 644-648.
    Zhang, Y.H.P., Ding, S.Y., Mielenz, J.R., Cui, J.B., Elander, R.T., Laser, M., Himmel, M.E., McMillan, J.R., Lynd, L.R., 2007. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnology and Bioengineering, 97, 214-223.
    Zhang, Y.H.P., Lynd, L.R., 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering, 88, 797-824.
    Zhao, H., Jones, C.L., Baker, G.A., Xia, S., Olubajo, O., Person, V.N., 2009. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. Journal of Biotechnology, 139, 47-54.
    Zhao, H., Kwak, J.H., Wang, Y., Franz, J.A., White, J.M., Holladay, J.E., 2007. Interactions between cellulose and N-methylmorpholine-N-oxide. Carbohydrate Polymers, 67, 97-103.
    Zhao, Y., Wang, Y., Zhu, J.Y., Ragauskas, A., Deng, Y., 2008. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnology and Bioengineering, 99, 1320-1328.
    Zhou, J., Zhang, L., Cai, J., 2004. Behavior of Cellulose in NaOH/Urea Aqueous Solution Characterized by Light Scattering and Viscometry. Journal of Polymer Science, Part B: Polymer Physics, 42, 347-353.
    Zhu, S., Wu, Y., Yu, Z., Zhang, X., Wang, C., Yu, F., Jin, S., Zhao, Y., Tu, S., Xue, Y., 2005. Simultaneous saccharification and fermentation of microwave/alkali pre-treated rice straw to ethanol. Biosystems Engineering, 92, 229-235.
    Zilly, M., Langmann, P., Lenker, U., Satzinger, V., Schirmer, D., Klinker, H., 2003. Highly sensitive gas chromatographic determination of ethanol in human urine samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 798, 179-186.

    QR CODE