簡易檢索 / 詳目顯示

研究生: 陳世雄
Shih-Hsiung Chen
論文名稱: 多機能奈米石墨烯改質聚丙烯和改質聚酯保暖織物開發的多品質製程參數最佳化
Optimization of Multi-quality Process Parameters for the Development of Multi-functional Nano-graphene Modified Polypropylene and Nano-graphene Modified Polyester Insulation Fabrics
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
張嘉德
Chia-Der Chang,
湯燦泰
Tsann-Tay Tang
趙新民
Jack Chao
蘇德利
Te-Li Su
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 189
中文關鍵詞: 聚丙烯低熔點改質共聚己二酸對苯二甲酸丁二醇酯分散性染料遠紅外線抗靜電田口方法主成份分析法灰關聯分析法
外文關鍵詞: Polypropylene, a low melting modified co-polybutylene adipate, disperse dye, far -infrared rays, antistatic, Taguchi method, Principal component analysis, Grey relational analysis
相關次數: 點閱:417下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究一系列開發了具有可染、遠紅外線放射、遠紅外線溫升及抗靜電等多機能奈米石墨烯改質聚丙烯和奈米石墨烯改質聚酯保暖織物,本研究之開發分為三個部分:
    第一部分,本研究主要開發具有分散染料可染聚丙烯(PP)酯粒。最佳可染色聚丙烯酯粒的製程使用低熔點改質共聚己二酸對苯二甲酸丁二醇酯 (Co-PBAT)作為混合共聚物。目的是為了克服聚酯材料熔點與聚丙烯熔點之間相差過大的問題。低熔點改質共聚己二酸對苯二甲酸丁二醇酯的開發是關鍵點。使用低熔點改質Co-PBAT通過雙螺桿混鍊加工將聚丙烯(PP)與聚丙烯接枝馬來酸酐相容劑製成複合材料。分散染料的可染性是透過 Co-PBAT鏈段的分子特性達到的。製備的材料探討低熔點改質共聚己二酸對苯二甲酸丁二醇酯酯粒的熱性能,並經過傅立葉紅外光譜驗證其官能基團。本研究採用田口法(Taguchi method)和主成份分析法(Principal component analysis, PCA)對聚合物熔体熔融指数(Melt flow index,MFI)及染色力度等两項品質特性的製程參數進行最佳化設計。根據實驗結果,酯粒的多品質最佳化包括改質Co-PBAT熔點170°C、改質Co-PBAT含量9 wt%、相容劑含量3 wt%、模頭温度205°C。常规聚丙烯聚合物的熔融指數為28.1 g/10 min,染色力度為100 K/S。對於最佳化,可染改質聚丙烯酯粒的熔融指數為37.88 g/10 min,染色力强度為121.31 K/S。顯示所開發的聚合物具有良好流動之加工性和染色力度。
    第二部分,本研究開發了一種具有遠紅外線特性的奈米石墨烯改質可染色聚丙烯紗線,使其適用於冬季服裝面料。以第一部分開發的可染色聚丙烯為基材,加入石墨烯奈米粉體,熔融混合及熔融紡絲製作75d/24f全延伸絲(FDY)。研究了紗線的物理性能,即紗線丹尼、拉伸強度、斷裂伸長率、遠紅外線放射率和遠紅外線溫升,以及確定熔融紡絲製程參數如奈米石墨烯粉體含量、模頭溫度、熔體溫度、齒輪泵速度、熱羅拉速度和捲取速度對紗線的品質的影響。採用田口方法與灰關聯分析 (Grey relational analysis, GRA)相結合,進行實驗設計,透過實驗獲得一組最佳化熔紡製程參數,最佳化提高紗線的多品質特性。這種經過最佳化的奈米石墨烯改質可染聚丙烯紗,抗拉強度3.5g/d,斷裂伸長率41.0%,紗線為75.3丹尼,遠紅外發射率為82%,遠紅外溫升為21.0℃,水洗牢度為3-4級和表面電阻為 3×108 。
    第三部分,本研究開發具有遠紅外線及抗靜電性能等多機能聚酯纖維,以紡絲級聚酯為基材、添加奈米石墨烯粉體及分散劑(聚丙烯蠟接枝馬來酸酐)進行雙軸混煉,使聚酯具有遠紅外線機能,纖維能吸收太陽光中之遠紅外線,達到溫度上升之效果。改質後之聚酯材料透過熔融紡絲製作75d/72f 之加工絲,本研究採用田口法將奈米石墨烯粉體添加量比例、模頭溫度、熔體溫度、齒輪泵轉速、羅拉速度和捲取速度等製程參數進行實驗規劃,結合灰關聯度分析法探討最佳化聚酯纖維之多品質紗線的丹尼數、拉伸強度、斷裂伸長率、遠紅外線放射率及遠紅外線溫升等性質。結果顯示,熱重量分析(TGA) 最佳化改質聚酯紗線的熱裂解溫度高於未改質聚酯,證明最佳化改質紗線具有更高的耐熱性。示差掃描分析(DSC)最佳化改質酯紗線的結晶溫度高於未改質聚酯﹐證明石墨烯奈米粉體的加入可以提高聚酯的結晶溫度。本研究之最佳化聚酯纖維的物性紗線為76.5丹尼,斷裂伸長率為26.3%,拉伸強度為3.3 g/d,遠紅外線放射率為83%,遠紅外線溫升為22.0°C,表面電阻為3x108 。最佳化改質紗線性能優於未改質聚酯紗線。


    This study is a series of development of multi-functional nano-graphene polypropylene and nano-graphene polyester thermal fabrics with dyeability, far-infrared radiation, far-infrared temperature rise and antistatic. This study is divided into three parts:
    In Part I, this study aimed to develop dyeable modified polypropylene (PP) granules with disperse dye. The optimal dyeable PP granule process used a low melting modified co-polybutylene adipate terephthalate (Co-PBAT) as a mixed copolymer. The purpose was to overcome the excessive difference between the polyester material melting point and PP melting point. The development of a low melting modified co-polybutylene adipate terephthalate (Co-PBAT) was the key point. Using the low melting modified Co-PBAT , PP and a PP grafting maleic anhydride compatibilizer were made into a composite by dual-screw mixing process. The disperse dye dyeability was reached by the molecular behavior of Co-PBAT chain segment. The prepared material applied to explore the thermal properties of modified polyester pellets and the functional group was verified by Fourier infrared spectroscopy. In this study, the Taguchi method and Principal component analysis (PCA) were used to optimize the process parameter design of two quality characteristics, namely, the color strength and the polymer melt flow index (MFI). According to experiment results, the multi-quality optimization of the polyester pellets consisted of a modified Co-PBAT melting point of 170 oC, the modified Co-PBAT content of 9 wt%, the compatibilizer content of 3 wt%, and the mixing temperature of 205 oC. The MFI of the regular PP polymer was 28.1 g/10 min, the color strength was 100 K/S. For the optimization, the MFI of the PP/Co-PBAT dyeable granules was 37.88 g/10 min and the color strength was 121.31 K/S. It could be observed that the developed polymer had good flowability and color strength.
    Part II, this study developed a nanographene modified dyeable polyproplylene (PP) yarn with far-infrared properties making it suitable for winter clothing fabrics. The dyeable PP granules developed in Part I are used as base material , and with the addition of graphene nanopowder, melt-mixed and melt-spun to produce 75d/24f fully drawn yarn (FDY). The physical properties of the yarn, namely, denier, tensile strength, elongation at break, far-infrared emissivity, and far-infrared temperature rise, are investigated, and the impact of the melt spinning process parameters, namely, graphene nanopowder content, mold temperature, melt temperature, gear pump speed, hot roller speed and take-up speed on the quality of the yarn, is determined. The Taguchi method, combined with grey relational analysis (GRA), is used to design experiments through which an optimal set of melt-spinning process parameters maximizing the multi-characteristic quality of the yarn is obtained. This optimized nanographene modified dyeable PP yarn has a tensile strength of 3.5 g/d, elongation at break of 41.0%, yarn count of 75.3 denier, far-infrared emissivity of 82%, far-infrared temperature rise of 21.0°C, washing fastness grade of 3-4 and surface resistance of 3 x 108 .
    Part III, thisstudy develops multi-functional polyester fibers with far-infrared rays and antistatic properties, using spinning-grade polyester as the base material, adding nano-graphene powder and dispersant (polypropylene wax grafted with maleic anhydride) for biaxial mixing, so that the polyester has a far-infrared function, and the fiber can absorb the far-infrared rays in sunlight to achieve the effect of temperature rise. The modified polyester material is melt-spun to produce 75d/72f processed yarn. In this study, the Taguchi method was used to design the experimental planning of the process parameters such as the proportion of nano-graphene powder addition, mold temperature, melt temperature, gear pump speed, roller speed, and take up speed. Optimize the denier number, tensile strength, elongation at break, far-infrared emissivity and far-infrared temperature rise of multi-quality polyester yarns. Test results showed that the Pyrolysis temperature of the optimized modified polyester yarn was higher than that of unmodified polyester by thermogravimetric analysis (TGA), proving that the optimized modified yarn had higher heat resistance. The differential scanning analysis (DSC) optimized the crystallization temperature of the modified ester yarn is higher than that of the unmodified polyester, which proves that the addition of nano-graphene powder can increase the crystallization temperature of polyester. This optimized nanographene modified polyester yarn has a tensile strength of 3.3 g/d, elongation at break of 26.3%, yarn count of 76.5 denier, far-infrared emissivity of 83%, far-infrared temperature rise of 22.0°C, and surface resistance of 3 x 108 . Optimized modified yarn performance is better than unmodified polyester yarn.

    中文摘要 I 英文摘要 IV 誌謝 VII 目錄 IX 圖目錄 XIV 表目錄 XVIII 第一章緒論 1 1.1 研究背景與動機 2 1.2 文獻回顧 4 1.2.1可染改質聚丙烯開發 5 1.2.2石墨烯保暖可染聚丙烯纖維開發 8 1.2.3石墨烯保暖聚酯纖維開發 11 1.2.4 最佳化參數設計理論 14 1.3研究規劃及目的 16 1.4論文大綱與流程圖 18 第二章實驗材料加工和檢測分析 23 2.1機能性纖維理論機制 23 2.1.1可染聚丙烯纖維染色機制 23 2.1.2 遠紅外線放射機制 26 2.2實驗材料 31 2.3實驗材料加工 32 2.3.1 立式塑料混料機 32 2.3.2 雙螺桿擠出機 32 2.3.3熔融紡絲機 34 2.3.4圓編針織機 36 2.3.5 染色試驗機 36 2.4檢測及分析 37 2.4.1 熱示差掃描分析儀 37 2.4.2熱重損失分析儀 38 2.4.3傅立葉紅外線光譜分析儀 39 2.4.4 熔融指數分析儀 40 2.4.5 染色力度分析儀 40 2.4.6纖維丹尼數檢測 41 2.4.7 拉伸試驗分析儀 41 2.4.8 遠紅外線放射及溫升檢測 44 2.4.9 表面電阻檢測儀 45 2.4.10 耐水洗堅牢度測試 46 2.4.11描式電子顯微鏡表面觀測儀 46 第三章品質分析與最佳化理論 48 3.1田口方法 49 3.2主成份分析 58 3.2.1主成份計算步驟 59 3.3灰關聯分析 61 3.3.1 灰關聯計算步驟: 61 第四章實驗規劃 64 4.1實驗流程規劃 64 4.2低熔點聚己二酸對苯二甲酸丁二酯開發 66 4.3田口實驗因子及水準配比規劃 69 第五章結果與討論 76 5.1可染聚丙烯酯粒最佳化 76 5.1.1單品質最佳化 76 5.1.2多品質最佳化 80 5.1.3品質比較驗證 83 5.1.4熱重損失分析 84 5.1.5熱示差掃描分析 88 5.1.6傅立葉紅外線光譜分析 88 5.1.7材料表面觀測 90 5.2石墨烯保暖可染聚丙烯纖維最佳化 91 5.2.1單品質最佳化 91 5.2.2多品質最佳化 108 5.2.3 確認實驗 110 5.2.4 纖維熱性質分析 112 5.2.5傅立葉紅外線光譜分析 113 5.2.6織物分散染料染色 115 5.2.7 織物耐水洗堅牢度測試 115 5.2.8 織物表面電阻分析 116 5.2.9 纖維表面觀察 116 5.3石墨烯保暖聚酯纖維最佳化 118 5.3.1單品質最佳化 119 5.3.2 多品質最佳化 133 5.3.3 確認實驗 134 5.3.4 纖維熱性質和表面電阻分析 138 5.3.5傅立葉紅外線光譜分析 139 5.3.6 纖維表面觀察 140 第六章結論 142 參考文獻 147

    [1] Yasuhiro W. Functional Fibers-Trends in Technology and Product Development in Japan. Toray Research Center, INC 1993.
    [2] Huang ZC. Functional Design of Comfortable and Healthy Textiles. Taiwan Textile Industries Newsletter 2009;17(8):46-52.
    [3] Cheng XW and An DZ. Evolution of Warmth Functional Fibers. Taiwan Textile Industries Newsletter 2012;20(3):52-59.
    [4] Chang YT. Thermal Fiber Introduction. Taiwan Man-Made Fiber Industries 2012:30-37.
    [5] Tseng SD, Chen HY, Lin LY and Gao RH. Introduction to Specified Requirements of Thermal Properties for Textile Fabrics. Taiwan Textile Industries Newsletter 2012;20(3):60-66.
    [6] Edward P. Moore, Jr. Poplypropylene Handbook. Hanser/Gardner Publisher, Inc 1st edition July 1,1996.
    [7] Yetgin SH. Tribological Properties of Compatabilizer and Graphene Oxide-Filled Polypropylene Nanocomposites. B Mater Sci 2020;43(1): 1-8.
    [8] Raee E, Avid A and Kaffashi B. Effect of Compatibilizer Concentration on Dynamic Rheological Behavior and Morphology of Thermoplastic Starch/Polypropylene Blends. J Appl Polym Sci 2020;137(22):48742.
    [9] Leong GW, Mo KH and Loh ZP. Mechanical Properties and Drying Shrinkage of Lightweight Cementitious Composite Incorporating Perlite Microspheres and Polypropylene Fibers. Constr Build Mater 2020;246: 118410.
    [10] Zhou J, Cheng J and Zhang C. Controllable Black or White Laser Patterning of Polypropylene Induced by Carbon Nanotubes. Mater Today Com 2020;24:100978.
    [11] Ahmed M. Polypropylene Fibers, Science and Technology. Elsevier Scientific Publishing Company 1982.
    [12] Kuo CFJ, Fan CC and Su TL. Nano Composite Fiber Process Optimization for Polypropylene with antibacterial and Far-Infrared Rayemission. Text Res J 2016;86:1677-1687.
    [13] Elmaaty TA, EI-Taweel F, Elsisi H and Okubayashi S. Water Free Dyeing of Polypropylene Fabric Under Supercritical Carbon Dioxide and Comparison with its Aqueous Analogue. J Supercrit Fluids 2018;139: 114-121.
    [14] Abouelmaaty T, Hori T, Kosbar T, Tabata L, Sofan M, Elsisi H, Hirogaki K and Negm E. Optimization of an Eco-friendly Dyeing Process in both Laboratory Scale and Pilot Scale Supercritical Carbon Dioxide Unit for Polypropylene Fabrics with Special New Disperse Dyes. J CO2 Util 2019;33:365-71.
    [15] Haji A, Shoushtari AM and Abdouss M. J Macromol Sci, Part A, Pure Appl, Chem 2014;51:76.
    [16] Ataeefard M, Mohseni M and Moradian S. J Text Inst 2016;107:182.
    [17] Dibaei Asl H, Abdouss M and Torabi Angaji M. Chem Ind Chem Eng Q 2013;19(3):441-448.
    [18] Aslanzadeh S, Semnani Rahbar R and Nazi M. Chin J Polym Sci 2014;32:609.
    [19] Ahmed M. Polypropylene Fibers-Science and Technology. Elsevier, Amsterdam, Netherlands 1982.
    [20] Numn DM and Beckmann. The Dyeing of Synthetic-Polymer and Acetate Fibres. Bradford: Dyers Company Publications Trust 1979.
    [21] Cohen MH and Turnbull D. Molecular Transport in Liquids and Glasses. J Chem Phys 1959;31:1164.
    [22] Scheirs J and Long TE. Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters. John Wiley & Sons, Ltd 2003.
    [23] Bolhová E, Ujhelyiová A and Vaľková K. Dyeing Kinetics and Colouristic Properties of Blend PP/PES Fibres. Fibres Text East Eur 2007;15(5-6):131-135.
    [24] Zargar MRH and Shoushtari AM. Fabrication of Polypropylene (PP)/Poly Trimethylene Terephthalate (PTT)/Nanoclay Nanocomposite Fibers with Tailored Properties. J Macromol Sci B 2019:1-26.
    [25] Mirjalili F, Moradian S and Ameri F. Enhancing the dyeability of polypropylene fibers by melt blending with polyethylene terephthalate. Sci World J 2013;2013:468542.
    [26] Teli MD, Adivarekar RV and Ramani VY. Imparting Disperse and Cationic Dyeability to Polypropylene Through Melt Blending. Fiber Polym 2004;5(4):264-269.
    [27] Kotek R, Afshari M and Gupta B-S. Polypropylene Alloy Filaments Dyeable with Disperse Dyes. Color Technol 2004;120(1):26-29.
    [28] Yu C, Jiang C and Chen L. Fine Disperse Dyeable Polypropylene Fiber from Polypropylene/Polystyrene Nano‐Ceria Blends. J Appl Polym Sci 2009;113(3):1953-1958.
    [29] Teli MD and Desai PVl. Polypropylene/poly (Trimethylene Terephthalate) Melt Blend Fibres with Enhanced Dyeability. IJERT 2013; 2(7):24-29.
    [30] Burkinshaw SM, Froehling PE and Mignanelli M. The Effect of Hyperbranched Polymers on the Dyeing of Polypropylene Fibres. Dyes Pigm 2002;53(3):229-235.
    [31] Tu FT and Wang HH. The Modification of Polypropylene Being Capable of Ionic Dyeing of Cationic Dye. Master Thesis, Feng Chia University, Taiwan, 2003.
    [32] Rabiei N, Kish MH and Amirshahi SH. The Kinetic and Thermodynamic Parameters of Dyeing of Polypropylene/Clay Composite Fibers using Disperse ye. Dyes Pigm 2012;94(3):386-392.
    [33] Lima MS, Matias AA and Costa JR. Glycidyl Methacrylate-Based Copolymers as New Compatibilizers for Polypropylene/Polyethylene Terephthalate Blends. J Polym Res 2019;26(6):127.
    [34] Akbari M, Zadhoush A and Haghighat M. PET/PP blending by using PP‐g‐MA synthesized by soild phase. J Appl Polym Sci 2007;104(6):3986-3993.
    [35] Zhou DF, Jiang JL and Wu XH. Reserach on the Crystallization Behavior of PP-TPEE Blends. Synthetic Fiber in China 2014;8:1-3.
    [36] Yen PI and Wang HH. The Physical and Dyeing Properties of Polypropylene/Polyester Blends Adding Nano Silica Dioxide. Master Thesis, Feng Chia University, Taiwan, 2011.
    [37] Elmaaty TA, EI-Taweel F, Elsisi H and Okubayashi S. Water Free Dyeing of Polypropylene Fabric Under Supercritical Carbon Dioxide and Comparison with its Aqueous Analogue. J Supercrit Fluids 2018;139:114-121.
    [38] Abouelmaaty T, Hori T, Kosbar T, Tabata L, Sofan M, Elsisi H, Hirogaki K and Negm E. Optimization of an Eco-Friendly Dyeing Process in both Laboratory Scale and Pilot Scale Supercritical Carbon Dioxide Unit for Polypropylene Fabrics with Special New Disperse Dyes. J CO2 Util 2019;33:365-71.
    [39] Rao PD, Kiran CU and Prasad KE. Modeling Elastic Constants of Keratin-Based Hair Fiber Composite Using Response Surface Method and Optimization Using Grey Taguchi Method, In: Rao RV and Taler J. (eds) Advanced Engineering Optimization Through Intelligent Techniques. Singapore: Springer, 2020:275-289.
    [40] Roufegari-Nejhad E, Sirousazar M and Abbasi-Chiyaneh V. Removal of Methylene Blue from Aqueous Solutions Using Poly (Vinyl Alcohol)/Montmorillonite Nanocomposite Hydrogels. Taguchi Optimization. J Polym Environ 2019;27(10):2239-2249.
    [41] Ayoubi-Feiz B, Soleimani D and Sheydaei M. Taguchi Method for Optimization of Immobilized Dy2O3/Graphite/TiO2/Ti Nanocomposite Preparation and Application in Visible Light Photoelectrocatalysis Process. J Electronanal Chem 2019;849:113377.
    [42] Kuo CFJ and Wu YS. Application of a Taguchi-Based Neural Network Prediction Design of the Film Coating Process for Polymer Blends. Int J Adv Manuf Tech 2006; 27:455-461.
    [43] Kuo CFJ and Wu YS. Optimization of the Film Coating Process for Polymer Blends by the Grey-Based Taguchi Method. Int J Adv Manuf Tech 2006;27:525.
    [44] Kuo CFJ, Tu HM and Su TL. Optimization of the Electron‐Beam‐Lithography Parameters for the Moth‐Eye Effects of an Antireflection Matrix Structure. J Appl Polym 2006;102:5303-5313.
    [45] Tajane RS and Pawar PJ. Multi-Response Optimization of Burnishing of Friction-Welded AA6082-T6 Using Principal Component Analysis. Published Material Science Advanced Engineering Optimization Through Intelligent Techniques. 2019;537-551.
    [46] Zhou J, Yu L and Ding Q. Textile Fiber Identification Using Near-Infrared Spectroscopy and Pattern Recognition. Autex Res J 2019,19(2):201-209.
    [47] Kuo CFJ, Tzeng RE and Lan WL. A Study on Blending Polyethylene Terephthalate with Titanium Dioxide Particles in Melt Spinning Process Parameter Optimization. Text Res J 2013;83:813-826.
    [48] Kuo CFJ, Lan WL and Chen CY. Property Modification and Process Parameter Optimization Design of Polylactic Acid Composite Materials,Part I: Polylactic Acid Toughening and Photo-Degradation Modification and Optimized Parameter Design. Text Res J 2015;85:13-25.
    [49] Kuo CFJ, Tung CP and Weng WH. Applying the Support Vector Machine with Optimal Parameter Design into an Automatic Inspection System for Classifying Micro-Defects on Surfaces of Light-Emitting Diode Chips. J Intell Manuf 2019;30:727-741.
    [50] Kuo CFJ, Shu SS and LinCH. The Application of Principal Component Analysis and Gray Relational Method in the Optimization of the Melt Spinning Process Using the Cooling Air System. Text Res J 2013;83(4):371-380.
    [51] Liang JZ, Du Q and Tsui GCP. Tensile Properties of Graphene Nano-Platelets Reinforced Polypropylene Composites. Composites Part B:Engineering 2016;95:166-171.
    [52] Kuo CFJ, Huang CC and Yang CH. Integration of Multivariate Control Charts and Decision Tree Classifier to Determine the Faults of the Quality Characteris (s) of a Melt Spinning Machine used in Polypropylene As-Spun Fiber Manufacturing Part I: The Application of the Taguchi Method and Principal Component Analysis in the Processing Parameter Optimization of the Melt Spinning Process. Text Res J 2021,Doi: 0040517520988615.
    [53] Chahamahali M, Hamzeh Y and Ebrahimi G. Effects of Nano-Graphene on the Physico-Mechanical Properties of Bagasse/Polypropylene Composites. Polymer Bulletin 2014;71(2),337-349.
    [54] Kotek J, Raab M and Baldrian J. The Effect of Specific β-Nucleati on on Morphology and Mechanical Behavior of Isotactic Polypropylene, J Appl Polym Sci 2002;85:1174-1184.
    [55] Kotek J, Kelnar I and Baldrian J. Tensile Behaviour of Isotactic Polypropylene Modified by Specific Nucleation and Active Fillers. European Polymer Journal 2004;40(4):679-684.
    [56] Kukakova O, Dung NV and Abbrent Sl. A Novel Insight into the Origin of Toughness in Polypropylene-Calcium Carbonate Microcomposites: Multivariate Snalysis of SS-NMR Spectra. Polymer 2017;132:106-113.
    [57] Policianova O, Hodan J and Bruse J. Origin of Toughness in Beta-Polypropylene: the Effect of Molecular Mobility in the Amorphous Phase. Polymer 2015;60:107-114.
    [58] Sengupta R, Bhattacharya M and Bandyopadhyay Sl. A Review on the Mechanical and Electrical Properties of Graphite and Modified Graphite Reinforced Polymer Composites. Prog Polym Sci 2011;36:638-670.
    [59] Balandin AA, Ghosh S and Bao W. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett 2008;3:902-907.
    [60] Huang CL, Lou CW and Liu CF. Polypropylene/Graphene and Polypropylene/Carbon Fiber Conductive Composites: Mechanical, Crystallization and Electromagnetic Properties. Appl Sci 2015;5(4):1196-1210.
    [61] Imran KA, Lou J and Shivakumar KN. Enhancement of Electrical and Thermal Conductivity of Polypropylene by Grapheme Nanoplatelets. J Appl Polym Sci 2017;135:45833.
    [62] Wang J, Song F and Ding Y. The Incorporation of Grapheme to Enhance Mechanical Properties of Polypropylene Self-reinforced Polymer Composites. Mater Des 2020;195:1~8.
    [63] Huang CL, Lo CW and Liu CFl. Polypropylene/Graphene and Polypropylene/Carbon Fiber Conductive Composites: Mechanical, Crystallization and Electromagnetic Properties. Appl Sci 2015;5:1196-1210.
    [64] Li CQ, Zha JW and Long HQ. Mechanical and Dielectric Properties of Grapheme Incorporated Polypropylene Nanocomposites using Polypropylene-Graft-Maleic Anhydride as a Compatibilizer. Compos Sci Technol 2017;153:111-118.
    [65] Abuoudah CK, Greish YE and Abu-Jdail B. Graphene/Polypropylene Nanocomposites with Improved Thermal and Mechanical Properties and Relevant Mechanical Properties. J Appl Polym Sci March 15,2021;138,50024.
    [66] Kalantari B, Mojtahedi MRM and Sharif F. Flow-Induced Crystallization of Polypropylene in the Nanocompsoite Fibers. Compos Part A Appl Sci Manuf 2015;76:203-214.
    [67] http://www.graphene.com.tw/assets/images/DM-C.pdf. Accessed on June 5, 2021.
    [68] Hu X, Tian M and Qu L. Multifunctional Cotton Fabrics with Graphene/Polyurethane Coatings with Far-Infrared Emission, Electrical Conductivity, and Ultraviolet-Blocking Broperties. Carbon 2015;95, 625-633.
    [69] Lin CM and Chang CW. Production of Thermal Insulation Composites Containing Bamboo Charcoal. Text Res J 2008;78:555-560.
    [70] Bahng GW and Lee JD. Development of Heat-Generating Polyester Fiber Harnessing Catalytic Ceramic Powder Combined with Heat-Generating Super Microorganisms. Text Res J 2014;84:1220-1230.
    [71] IFrydrych I, Dziworska G and Bilska J. Comparative Analysis of the Thermal Insulation Properties of Fabrics made of Natural and Man-Made Cellulose Fibres. Fibres Text East Eur 2002;10(4):40-44.
    [72] Park J. Functional Fibers, Composites and Textiles Utilizing Photothermal and Joule Heating. Polymer 2020;12(1):189.
    [73] Hong J, Park C and Kim Y. Photothermal Properties of Wool Fabrics Colored with SiO2@AuNPs. Colloid Surf A: Phys Eng Asp 2019;574:115-121.
    [74] Zeng H, Wang P and Liang L. Facile Preparation of Superhydrophobic Cotton Fabric with a Photothermal Conversion Effect Via Polypyrrole Deposition for Oil/Water Separation. J Environ Chem Eng 2002;10(1):106915.
    [75] Kim HA and Kim SJ. Far-Infrared Emission Characteristics and Wear Comfort Property of ZrC-Imbedded Heat Storage Knitted Fabrics for Emotional Garments. Autex Res J 2017;17(2):142-151.
    [76] Furata T, Shimizu Y and Kondo Y. Evaluating the Temperature and Humidity Characteristics of Solar Energy Absorbing and Retaining Fabric. Text Res J 1996;66:123-130.
    [77] Kim HA and Kim SJ. Far-Infrared Emission Characteristics of Germanium Included Fabrics for Emotional Garment. Korean J Sci Emot Sensib 2010;13(4):687-692.
    [78] Yeo SY, Lee DH and Kim EA. Far IR Emission and Thermal Properties of Ceramics Coated Nylon Fabrics. J Korean Soc Cloth Text 1998;22(4):515-524.
    [79] Yoo HH, Kim YH and Ho HT. Improvement of Warmth Retaining Property of Water Vapor Permeable/Waterproof Coated Nylon Fabric. J Korean Fiber Soc 1993;30(3):250-258.
    [80] Lin CA, An TC and Hsu YH. Study on the Far Infrared Ray Emission Property and Adsorption Performance of Bamboo Charcoal/Polyvinyl Alcohol Fiber. Polym-Plast Techn and Eng 2007;46(11) :1073-1078.
    [81] Huang GL, Huang YT and Li TT. Composite Processing and Property Evaluation of Far-Infrared/Electromagnetic Shielding Bamboo Charcoal/Phase Change Material/Stainless Steel Elastic Composite fabrics. J Polym Eng 2016;32:211-220.
    [82] Shim MH, Park CH and Shim HS. Effect of Ceramics on the Physical and Thermo-Physiological Performance of Warm-up Suit. Text Res J 2009;79(17) :1557-1564.
    [83] Mustaqeem M, Lin JY and Kamal S. Optically Encodable and Erasable Multi-level Nonvolatile Flexible Memory Device Based on Metal–Organic Frameworks. ACS Appl Mater Interfaces 2022;14(23):26895-26903.
    [84] Aoyama S, Ismail I and Park YT. Polyethylene Terephthalate/trimellitic Anhydride Modified Graphene Nanocomposites. ACS Appl Nano Mater 2018;1,11,6301– 6311.
    [85] Zhang HB, Zheng WG and Yan Q. Electrically Conductive Polyethylene Terephthalate/Graphene Nanocomposites Prepared by Melt Compounding. Polymer 2010;51(5):1191-1196.
    [86] Awad SA and Khalaf EM. Improvement of the Chemical, Thermal, Mechanical and Morphological Properties of Polyethylene Terephthalate–Graphene Particle Composites. Bull Mater Sci 2018;41:67.
    [87] Karaman O, Özcan N and Karaman C. Electrochemical Cardiac Troponin I Immunosensor Based on Nitrogen and Boron-doped Graphene Quantum Dots Electrode Platform and Ce-doped SnO2/SnS2 Signal Amplification. Mater Today Chem 2022;23:100666.
    [88] Gunasekera U, Perera N and Perera S. Modification of Thermal Conductivity of Cotton Fabric using Grapheme. In: 2015 Moratuwa Engineering Research Conference IEEE. 2015:55-59.
    [89] Gan L, Hang S and Yuen CW. Graphene Nanoribbon Coated Flexible and conductive cotton fabric. Compos Sci Technol 2015;17:208–214.
    [90] Hu X, Tian M and Qu L. Multifunctional Cotton Fabrics with Graphene/Polyurethane Coatings with Far-infrared Emission, Electrical Conductivity, and Ultraviolet-Blocking Properties. Carbon 2015;95:625–633.
    [91] Balandin AA, Ghosh S and Bao W. Superior Thermal Conductivity of Single-layer Graphene. Single-layer Graphene. Single-layer Graphene. Single-layer Graphene. Nano Lett 2008;3:902–907.
    [92] Ansari S and Giannelis EP. Functionalized Graphene Sheet Poly (Vinylidene Fluoride) Conductive Nanocomposites. J Polym Sci B 22009;47:888-897.
    [93] http://www.graphene.com.tw/assets/images/DM-C.pdf. Accessed on June 5, 2022.
    [94] Mehrabi MB, Shahrokhian S and Iraji-Zad. Silver Fiber Fabric as the Current Collector for Preparation of Graphene-based Supercapacitors. Electrochimica Acta 2017;227:246- 254.
    [95] Yun YJ, Kim DK and Hong WG. Highly Stretchable, Mechanically Stable, and Weavable Reduced Grapheme Oxide Yarn with High NO2 Sensitivity for Wearable Gas Sensors. Rsc Advances 2018;8:7615-7621.
    [96] Golparvar AJ and Yapici MK. Graphene Smart Textile-based Wearable Eye Movement Sensor for Lectro-ocular Control and Interaction with Objects. J Electrochem Soc 2019;166:3184-3193.
    [97] Kuo CFJ, Fan CC and Su TL. Nano Composite Fiber Process Optimization for Polypropylene with Antibacterial and Far-infrared Ray Emission Properties. Text Res J 2016;86(16):1677-1687.
    [98] Kuram E and Ozcelik Bal. Multi-objective Optimization Using Taguchi Based Grey Based Grey Relational Analysis for Micro-milling of Al 7075 Material with Ball Nose End Mill. Measurement 2013;46(6):1849-1864.
    [99] Mondal S, Paul CP and Kukreja LM. Application of Taguchi-based Gray Relational Analysis for Evaluating the Optimal Laser Cladding Parameters for AISI1040 Steel Plane Surface. J Adv Manuf Technol 2013;66(1):91-96.
    [100] Canbolat AS, Bademliogl AH and Arslanoglu N. Performance Optimization of Absorption Refrigeration Systems Using Taguchi, ANOVA and Grey Relational Analysis Methods. J Clean Prod 2019;229:874-885.
    [101] Üstüntağ S, Şenyiğit E and Mezarcıöz S. Optimization of Coating Process Conditions for Denim Fabric by Taguchi Method and Grey Relational Analysis. J Nat Fibers 2020,1-15.
    [102] Kuo CFJ, Dong MY and Yang CP. Optimization of the Water-based Polyurethane with Acrylate Terminal Process in Nylon Fabrics Application Using the Taguchi-based Gray Relational Analysis Method. Text Res J 2021;91:1197-1210.
    [103] Li MJ, Huang YH and Ju AQ. Synthesis and Characterization of Azo Dyestuff Based on bis (2-hydroxyethyl) Terephthalate Derived from Depolymerized Waste Poly (Ethylene Terephthalate) Fibers. Chin Chem Lett 2014;25(12):1550-1554.
    [104] Yu SY, Chiu JH and Yang SD. Biological Effect of Far-infrared Therapy on Increasing Skin Microcirculation in Rats. Photodermatol photo 2006;22(2):78-86.
    [105] Lin CC, Chang CF and Lai MY. Far-Infrared Therapy:Anovel Treatment to Improve Access Blood Flow and Unassisted Patency of Arteriovenous Fistulain Hemodialysis Patients. J Am Soc Nephrol 2007;18(3):985-992.
    [106] Bikiaris DN, Vassilioua A and Pavlidoub E. Compatibilisation Effect of PP-g-MA Copolymer on iPP/ SiO2 Nanocomposites Prepared by Melt Mixing. Eur Polym J 2005;41(9):1965-1978.
    [107] Kuo CFJ and Chen SH. Functional Dyeable Polypropylene Fabric Development and Process Parameter Optimization. Part I: Dyeable Modified Polypropylene Development with Parameter Optimization. Text Res J 2021;91(13):1509-1522.
    [108] JSW Twin Screw Extruder, The Japan Steel Works Ltd, 2002. https://www.jsw.co.jp/en/product/plastics_machinery/compounding.html, Accessed on June 30, 2021.
    [109] Baker WE, Scoot CE and Hu GH. Reactive Polymer Blending. Munich: Hanser, 2001.
    [110] TMT Spinning System for FDY TMT Machinery, Inc https://www.tmt-mc.jp/ . Accessed on June 30, 2021.
    [111] Chu CW, Lin CA and Hong PD. Melt-spinning and Thermal Stability Behavior of TiO2 Nanoparticle/Polypropylene Nanocomposite Fibers, J Polym Res 2011;18:367-372.
    [112] Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer, ASTM D1238, 2013.
    [113] Standard Test Method for Linear Density of Textile Fibers, ASTM D1577-01, Nvember 2001.
    [114] Standard Test Method for Tensile Properties of Single Textile Fibers, ASTM D1238/D1238M-14, 2020.
    [115] FTTS-FA-010 遠紅外線紡織品驗證規範 2008.08.01.
    [116] FTTS-FP-116 防護服靜電性驗證規範 2007.04.16.
    [117] Colorfastness to Laundering:accerlated, AATCC Test Method 61 2010.
    [118] 葉怡成,實驗計劃法-製程與產品最佳化,五南圖書出版股份有限公司,2001。
    [119] 李輝煌,田口方法-品質設計的原理與實務,高立圖書有限公司出版,2003。
    [120] Ahmed AN and Rashed HMMA. ANOVA Modeling on Sintering Parameters and Frequencies, Affecting Microstructure and Dielectric Constant of Nb Doped BaTiO3. Procedia Engineering 2014;( 90):72-77.
    [121] Kuo CFJ, Dong MY and Yang CP. Optimization of the Water-based Polyurethane with Acrylate Terminal Process in Nylon Fabrics Application Using the Taguchi-based Gray Relational Analysis Method. Text Res J 2021;91:1197-1210.
    [122] Mondal S, Paul CP and Kukreja LM. Application of Taguchi-based Gray Relational Analysis for Evaluating the Optimal Laser Cladding Parameters for AISI1040 Steel Plane Surface. J Adv Manuf Technol 2013;66(1):91-96.
    [123] Costa DLM. Producao Por Extrusao de Filmes de Alto Teor de Amido Termoplastico Com Poli (Butileno Adipato Co-tereftalato) (PBAT). Dissertac, Aode Mestrado (Mestrado em Ciencia de Alimentos), Universidade Estadual de Londrina, Londrina 2008.
    [124] Colorfastness to Laundering, AATCC Test Method 61-1989IA. https://global.ihs.com/doc_detail.cfm?document_name=AATCC%2061&item_s_key=00255811. Access on September 30, 2002.

    無法下載圖示 全文公開日期 2027/02/13 (校內網路)
    全文公開日期 2027/02/13 (校外網路)
    全文公開日期 2027/02/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE