簡易檢索 / 詳目顯示

研究生: 潘郁方
Yu-Fang Pan
論文名稱: 鑲嵌銀-金雙金屬顆粒之聚丙烯腈纖維薄膜的開發:製備與抗菌效能評估
Antibacterial polyacrylonitrile nonwoven mat decorated with silver-gold bimetallic particles: in vitro and in vivo studies
指導教授: 白孟宜
Meng-Yi Bai
口試委員: 白孟宜
Meng-Yi Bai
鄭詠馨
Yung-Hsin Cheng
劉澤英
Tse-Ying Liu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 141
中文關鍵詞: 靜電紡絲聚丙烯腈奈米銀雙金屬抗菌
外文關鍵詞: Electrospinning, Polyacrylonitrile, Silver nanoparticles(Ag NPs), Bimetallic, Antibacterial
相關次數: 點閱:319下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以開發新型抗菌傷口敷料為主要目的,透過靜電紡絲系統製備出含有銀離子之聚丙烯腈奈米纖維薄膜,利用伽凡尼氧化還原反應,以抗壞血酸作為還原劑,可得含銀聚丙烯腈纖維薄膜,經氧化還原反應與晶核堆積,得海膽形貌之銀-金雙金屬聚丙烯腈纖維薄膜。
    利用場發射掃描式電子顯微鏡與能量色散X射線光譜分析奈米纖維薄膜之表面形貌及成分,銀-金雙金屬為454.60 ± 28.14 nm的顆粒鑲嵌於聚丙烯腈纖維上。傅立葉轉換紅外光譜分析其化學結構,確認薄膜基材聚丙烯腈之腈結構仍保留,其吸收峰值為2239 cm-1。表面積及孔徑分析儀分析材料之比表面積,發現薄膜中鑲嵌有銀-金雙金屬顆粒因其顆粒較大,比表面積為10.958 m2/g,小於含銀聚丙烯腈。抗菌能力分析使用革蘭氏陽性菌金黃色葡萄球菌與革蘭氏陰性菌大腸桿菌進行,採用抑菌圈定性與殺菌率定量測試,顯示銀-金雙金屬聚丙烯腈纖維薄膜有較大之抑菌圈,且殺菌效率也遠高於含銀聚丙烯腈纖維薄膜,五小時可達近100 ± 0 %殺菌率。由實驗結果推測可能原因為銀-金雙金屬聚丙烯腈纖維薄膜具備快速且大量釋放銀離子之能力,提供良好的抗菌效果。
    小鼠纖維母細胞進行體外測試,當Ag-Au PAN釋放一小時銀離子濃度達0.553 ± 0.09 ppm,產生顯著細胞毒性,表示銀離子濃度對細胞有顯著的毒性依存關係。在活體動物試驗上,以小黑鼠進行動物創傷實驗,在小鼠背部進行皮膚創傷手術,以敷料Aquacel@Convatec(市售抗菌敷料)、Pure PAN、AgPAN和Ag-Au PAN進行治療,並觀察小黑鼠體重、沾黏情形與傷口癒合情形,實驗結果顯示,實驗組Ag-Au APN在第19天傷口已癒合,與對照組無差異,且傷口床之膠原蛋白緻密度為86.39 ± 1.55 %,與健康組織85.27 ± 2.21 %無顯著差異,結果顯示傷口癒合良好,由以上實驗數據顯示,此一海膽形貌之Ag-Au APN為一具有潛力之傷口敷料。


    The main purpose of this study was to develop a new type of antibacterial wound dressing. The polyacrylonitrile (PAN) nanofiber film containing silver ions was prepared by an electrospinning system. Ascorbic acid was as a reducing agent to obtain a polyacrylonitrile fiber film containing silver through step by step reduction method. After the Galvanic reaction of the AgPAN nanofiber film with gold in solution and the accumulation of crystallization, a sea urchin-shaped silver-gold bimetallic polyacrylonitrile fiber film with obtained.
    The surface morphology and composition of the nanofiber film were analyzed by field emission scanning electron microscope (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). The silver-gold bimetallic particles were 454.60 ± 28.14 nm decorated on the polyacrylonitrile nonwoven mat. The chemical structure was analyzed by Fourier transform infrared spectroscopy (FTIR) to confirm that the nitrile structure of the PAN film remained, and its characteristic absorptiom peak nitrile is showing an absorption peak at 2239 cm-1. Surface area and pore size distribution analyzer (BET) were need to analyzed the surface area of the film, and found the polyacrylonitrile film decorated with Ag-Au bimetallic particles was 10.958 m2/g,which is than that of smaller AgPAN 13.141 m2/g. The antibacterial ability analysis was carried out using Gram-positive bacteria S. aureus and Gram-negative bacteria E. coli strains for qualitative inhibition zone test and quantative sterilization test. Ag-Au PAN showed larger inhibition zone toward S. aureus and E. coli as compared to AgPAN group. The sterilization percentage reached 100% in five hours, and its antibacterial efficiency was significantly faster than that of AgPAN group.
    In vitro, we used mouse fibroblasts cells (3T3 cell) for the cell cytotoxicity test. The results showed as the concentration of silver ions increased 1 hour, there was significant cell toxicity observed by Ag-Au PAN. In vivo animal experiment, C57BL/6JNarl mice were subjected to trauma experiments. A skin surgery was performed on the dorsal area of the mice, and the dressings Aquacel, Pure PAN, AgPAN or Ag-Au PAN were applied to treat the wound. The weight of mice, the adhesion index and healing of the wound area were observed. The wound was healed after 19-days treatment, and the collagen density of wound bed is 86.39 %,which is quite close to that of normal skin dermis layer 85.27 %. After healing, the situation of wound was good.

    摘要 I Abstract II 目錄 IV 圖目錄 VIII 表目錄 XII 中英文縮寫對照表 XIII 第一章、緒論 1 1.1研究動機與目的 1 1.2實驗流程 2 第二章、文獻回顧 3 2.1皮膚構造與功能 3 2.1.1 表皮層(Epidermis) 4 2.1.2 真皮層(Dermis) 5 2.1.3 皮下組織(Subcutis/Hypodermis) 5 2.2傷口照護 5 2.2.1傷口分類 5 2.2.2傷口癒合機制 6 2.2.3現有傷口敷料文獻回顧 7 2.3靜電紡絲 10 2.3.1靜電紡絲技術 10 2.3.2靜電紡絲應用於傷口護理之特性 11 2.4聚丙烯腈(Polyacrylonitrile,PAN) 12 2.5奈米銀顆粒 13 2.5.1奈米銀顆粒合成方法 13 2.5.2奈米銀顆粒殺菌機制 15 2.6銀-金雙金屬 17 2.6.1銀-金雙金屬製備方法 17 2.7雙金屬與靜電紡絲技術的結合與應用 18 第三章、材料與方法 19 3.1藥品與材料 19 3.2 儀器與設備 21 3.3 PAN電紡敷料製備 23 3.3.1 PAN電紡儲備溶液配製 23 3.3.2靜電紡絲薄膜製備 23 3.3.3 PAN含銀敷料之還原 25 3.3.4 PAN含銀-金雙金屬敷料之氧化還原 25 3.4 材料分析 26 3.4.1掃描式電子顯微鏡(FE-SEM)及能量色散X-射線光譜(EDS)分析 26 3.4.2薄膜纖維直徑分析 26 3.4.3薄膜孔隙率分析 26 3.4.4表面積及孔徑分析儀(BET) 28 3.4.5傅立葉轉換紅外光譜(FTIR)分析 29 3.5銀與金離子釋放檢測 29 3.6抗菌試驗 29 3.6.1細菌培養基製作 29 3.6.2金黃色葡萄球菌(S. aureus) 30 3.6.2.1金黃色葡萄球菌(S. aureus)培養 30 3.6.2.2抑菌圈測試(Inhibition Zone) 31 3.6.2.3殺菌率測試(Sterilization Rate Test) 32 3.6.3大腸桿菌(E. coli) 33 3.6.3.1大腸桿菌(E. coli)培養 33 3.6.3.2抑菌圈測試(Inhibition Zone) 34 3.6.3.3殺菌率測試(Sterilization Rate Test) 35 3.7細胞實驗 36 3.7.1細胞解凍與活化 36 3.7.2細胞繼代培養 36 3.7.3細胞計數 37 3.7.4細胞冷凍保存 37 3.7.5細胞存活率測試(MTT Assay) 38 3.8動物創傷實驗 39 3.8.1敷料製備 39 3.8.2創傷手術與包紮 40 3.8.3傷口影像紀錄與面積估算 40 3.8.4傷口床再生組織病理切片分析 41 3.8.5病理切片膠原蛋白緻密度量化 42 3.9統計方法 42 第四章、實驗結果與討論 43 4.1電紡薄膜條件優化 43 4.1.1電紡溶劑選擇 43 4.1.2電紡薄膜雙金屬(Ag-Au bimetallic)之形成 43 4.1.3電紡薄膜雙金屬(Ag-Au bimetallic)形貌與其銀離子濃度效應之探討 44 4.2薄膜直徑統計、表面孔隙率與比表面積分析 45 4.3 FTIR分析薄膜表面化學組成 46 4.4含奈米銀與銀-金雙金屬之銀、金離子釋放曲線 46 4.5含銀-金雙金屬薄膜之抑菌圈分析 47 4.6含銀-金雙金屬薄膜之殺菌率分析 48 4.7含銀-金雙金屬薄膜對3T3細胞存活率分析(Cell Viability) 50 4.8含銀-金雙金屬薄膜對小鼠創傷實驗 51 4.8.1小鼠體重紀錄 51 4.8.2小鼠創傷沾黏指數 51 4.8.3小鼠傷口面積紀錄 52 第五章、結論 55 第六章、參考文獻 57 附錄一 66 附錄二 125

    1. Tingting, Weng.; Pan, Wu.; Wei, Zhang.; Yurong, Zheng.; Qiong, Li.; Ronghua, Jin.; Haojiao, Chen.; Chuangang, You.; Songxue, Guo.; Chunmao, Han.; Xingang, Wang. Regeneration of skin appendages and nerves: current status and further challenges. J. Transl. Med. 2020, 18, 1-17.
    2. Baumann, L. S.; Baumann, L. Cosmetic Dermatology. 2009.
    3. OpenStax. Anatomy and Physiology. 2013.
    4. Gantwerker, E. A.; Hom, D. B. Skin: Histology and Physiology of Wound Healing. Facial Plast Surg Clin North Am. 2011, 19, 441-453.
    5. Ebling, F. J. G. Integument. 2017.
    6. Khavkin, J.; Ellis, D. A. Aging skin: histology, physiology, and pathology. Facial Plast Surg Clin North Am. 2011, 19, 229-234.
    7. Golinko, M. S.; Clark, S.; Rennert, R.; Flattau, A.; Boulton, A. J. M.; Brem, H. Wound Emergencies: The Importance of Assessment, Documentation, and Early Treatment Using a Wound Electronic Medical Record. Ostomy Wound Manage 2009, 55, 54-61.
    8. 羅淑芬.; 胡文郁. 慢性傷口之評估與測量原則. 護理雜誌. 2007, 54, pp 69-75.
    9. Percival, N. J. Classification of wounds and their management. Surgery. 2002, 20, 114-117.
    10. Chong, E. J.; Phan, T. T.; Lim, I. J. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 2007, 3, 321-330.
    11. Biazar, E.; Keshel, S. H. The healing effect of stem cells loaded in nanofibrous scaffolds on full thickness skin defects. J. Biomed. Nanotechnol. 2013, 9, 1471-1482.
    12. Kim, T. G.; Park, T. G. Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly (D,L-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng. 2006, 12, 221-233.
    13. Boyce, E.; Keshel, S. H.; Greenhalgh, D. G. Cultured skin substitutes reduce requirements for harvesting of skin autograft for closure of excised, full-thickness burns. J. Trauma. 2006, 60, 821-829.
    14. Shixuan, C.; Bing, L.; Mark, A. C.; Adrian, F. G.; Debra, A. R.; Jingwei, X. Recent advances in electrospun nanofibers for wound healing. Nanomedicine. 2017, 12, 1335-1352.
    15. 林杏麟.; 李維哲. 外傷傷口的處置流程. 臺灣醫界. 2014, 57, 24-26.
    16. Ruei-Yun, L.; Yen-Hung, C.; Tsay-I, C.; Chia-Tien, K. A Literature Review of Silver Ion Dressings and Wound Care. Cheng Ching Medical Journal. 2015, 11, 43-50.
    17. Beldon, P. The judicious use of antimicrobial dressings. Nurse Prescribing. 2014, 12, 75-79.
    18. Diegelmann, R. F.; Evans, M. C. Wound healing: An overview of acute, fibrotic and delayed healing. Front Biosci. 2004, 9, 283-289.
    19. Sandström, S. The antibacterial effect of silver with different release kinetics. 2011.
    20. 郭緒東.; 張天長. 外傷傷口癒合與慢性傷口. 家庭醫學與基層醫療. 2012, 27, 414-421.
    21. Golinko, M. S.; Clark, S.; Rennert, R. Wound emergencies: The importance of assessment, documentation, and early treatment using a wound electronic medical record. Ostomy Wound Manage 2009, 55, 54-61.
    22. 蔡湘熹. 創傷性傷口評估與照護. 彰化護理. 2007, 14, 30-35.
    23. Nina, G. J. Skin: a natural history. 2006.
    24. Goossens, A.; Cleenewerck, M. B. New Wound Dressings: Classification, Tolerance. Eur J Dermatol. 2010, 20, 24-6.
    25. Kathryn, V.; Peter, V. Wound dressings: principles and practice. Surgery(Oxford). 2017, 35, 489-494.
    26. 楊瑞永. 慢性傷口的敷料使用原則.長庚醫訊. 2008, 29, 11-12.
    27. 蔡婷芳.; 戴玉慈. 傷口照護與副料運用. 榮總護理. 2007, 24, 11-12.
    28. Ovington, L. G. Advances in wound dressings. Clin. Dermatol. 2007, 25, 33-38.
    29. Newman, G. B.; Walker, M.; Hobot, J. A.; Bowler, P. G. Visualisation of Bacterial Sequestration and Bactericidal Activity Within Hydrating Hydrofiber Wound Dressings. Biomaterials. 2006, 27, 1129-1139.
    30. Lundin, J. G.; McGann, C. L.; Daniels, G. C.; Streifel, B. C.; Wynne, J. H. Hemostatic kaolin-polyurethane foam composites for multifunctional wound dressing applications. Mater. Sci. Eng. C 2017, 79, 702-709.
    31. Chaganti, P.; Gordon, I.; Chao, J. H.; Zehtabchi, S. A systematic review of foam dressings for partial thickness burns. Am J Emerg Med. 2019, 37, 1184-1190.
    32. Paul, W.; Sharma, C. P.; Tirunal, C. Chitosan and alginate wound dressings: a short review. Trends Biomater. Artif. Organs 2004, 18, 18-23.
    33. Ullah, S.; Hashmi, M.; Kharaghani, D.; Khan, M. Q.; Saito, Y.; Yamamoto, T.; Lee, J.; Kim, I. S. Antibacterial properties of in situ and surface functionalized impregnation of silver sulfadiazine in polyacrylonitrile nanofiber mats. Int. J. Nanomedicine 2019, 14, 2693-2703.
    34. Simões, D.; Miguel, S. P.; Ribeiro, M. P.; Coutinho, P.; Mendonça, A. G.; Correia, I. J. Recent advances on antibacterial wound dressings: A review. Eur J Pharm Biopharm 2018, 127, 130-141.
    35. Qin, Y. Antibacterial textile dressings to manage wound infection. Advanced Textiles for Wound Care. 2019, 193-210.
    36. Singh, O.; Gupta, S. S.; Soni, M.; Moses, S.; Shukla, S.; Mathur, R. K. Collagen dressing versus conventional dressings in burn and chronic wounds: a retrospective study. J Cutan Aesthet Surg 2011, 4, 12-16.
    37. Brett, D. A Review of Collagen and Collagen-based Wound Dressings. Wound. 2008, 20, 347-356.
    38. Jiajia, X.; Tong, W.; Yunqian, D.; Younan, X. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem Rev 2019, 119, 5298-5415.
    39. Min, W.; Qilong, Z. Electrospinning and Electrospray for Biomedical Applications. Encyclopedia of Biomedical Engineering. 2019, 330-344.
    40. Bhardwaj, N.; Kundu, S. C. Electrospinning; a fascinating fiber fabrication technique. Biotechnol Adv 2010, 28, 325-347.
    41. Zheng-Ming, H.; Zhang, Y-Z.; Kotaki, M.; Ramakrighan, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 2003, 63, 2223-2253.
    42. Greiner, A.; Wendorff, J. H. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. Engl 2007, 46, 5670-5703.
    43. Rawlins, J. M.; Lam, W. L.; Karoo, R. O.; Naylor, I. L.; Sharpe, D. T. Quantifying collagen type in mature burn scars: a novel approach using histology and digital image analysis. J. Burn Care Res 2006, 27, 60-65.
    44. Osman, O. S.; Selway, J. L.; Harikumar, P. E.; Stocker, C. J.; Wargent, E. T.; Cawthorne, M. A.; Jassim, S.; Langlands, K. A novel method to assess collagen architecture in skin. BMC Bioinform. 2013, 14, 1-10.
    45. Chakraborty, S.; Liao, I. C.; Adler, A.; Leong, K. W. Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv. Drug. Deliv. Rev. 2009, 61, 1043-1054.
    46. Said, S. S.; EI-Halfawy, O. M.; EI-Gowelli, H. M. Biohurden-responsive antimicrobial PLGA ultrafine fibers for wound healing. Eur. J. Pharm. Biopharm 2012, 80, 85-94.
    47. Weng, L.; Xie, J. Smart electrospun nanofibers for controlled drug release: recent advances and new perspectives. Curr. Pharm. Des. 2015, 21, 1944-1959.
    48. Mohammadzadehmoghadam, S.; Dong, Y.; Jeffery Davies, I. Recent progress in electrospun nanofibers: reinforcement effect and mechanical performance. J. Polym. Sci. B: Polym. Phy. 2015, 53, 1171-1212.
    49. Chodorowska, G.; Roguś-Skorupska, D. Cutaneous wound healing. Ann Univ Mariae Curie Sklodowska Med. 2004, 59, 403-407.
    50. Rho, K. S.; Jeong, L.; Lee, G. et al. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials. 2006, 27, 1452-1461.
    51. Pelipenko, J.; Kocbek, P.; Govedarica, B. et al. The topography of electrospun nanofibers and its impact on the growth and mobility of keratinocytes. Eur. J. Pharm. Biopharm 2013, 84, 401-411.
    52. Rianjanu, A.; Roto, R.; Julian, T.; Hidayat, S. N.; Kusumaatmaja, A.; Suyono, E. A.; Triyana, K. Polyacrylonitrile Nanofiber-Based Quartz Crystal Microbalance for Sensitive Detection of Safrole. Sensors 2018, 18, 1-11.
    53. Fayemi, O. E.; Ekennia, A. C.; Kataka-Seru, L.; Ebokaiwe, A. P.; Ijomone, O. M.; Onwudiwe, D. C.; Ebenso, E. E. . ACS Omega. 2018, 3, 4791-4797.
    54. Nataraj, S. K.; Yang, K. S. Aminabhavi, T. M. Polyacrylonitrile-based nanofibers—A state-of-the-art review. Prog. Polym. Sci. 2012, 37, 487-513.
    55. Ji, L.; Saquing, C.; Khan, S. A.; Zhang, X. Preparation and characterization of silica nanoparticulate-polyacrylonitrile composite and porous nanofibers. Nanotechnol. 2008, 19, 085605.
    56. Subbiah, T.; Bhat, G. S.; Tock, R. W.; Parameswaran, S.; Ramkumar, S. S. Nanofibers Eof. Electrospinning of nanofibers. J Appl Polym Sci 2005, 96, 557-569.
    57. Wu, X-M.; Branford-White, C. J.; Yu, D-G.; Chatterton, N. P.; Zhu, L-M. Preparation of core-shell pan nanofibers encapsulated α-tocopherol acetate and ascorbic acid 2-phosphate for photoprotection. Colloids Surf B Biointerfaces 2011, 82, 247-252.
    58. Ren, S.; Dong, L.; Zhang, X. et al. Electrospun nanofibers made of silver nanoparticles, cellulose nanocrystals, and polyacrylonitrile as substrates for surface-enhanced Raman scattering. Materials. 2017, 10, 68.
    59. Zhang, X. F.; Liu, Z. G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J Mol Sci 2016, 17, 1534.
    60. Backman, U.; Jokiniemi, J. K.; Auvinen, A.; Lehtinen, K. E. J. The Effect of Boundary Conditions on Gas-phase Synthesised Silver Nanoparticles. Journal of Nanoparticle Research. 2002, 4, 325-335.
    61. Kruis, F.E.; Fissan, H.; Rellinghaus, B. Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater. Sci. Eng. B. 2000, 69, 329-334.
    62. Tien, D.C.; Liao, C.Y.; Huang, J.C.; Tseng, K.H.; Lung, J.K.; Tsung, T.T.; Kao, W.S.; Tsai, T.H.; Cheng, T.W.; Yu, B.S.; et al. Novel technique for preparing a nano-silver water suspension by the arc-discharge method. Rev. Adv. Mater. Sci. 2008, 18, 750-756.
    63. Matteis, V. D.; Cascione, M.; Toma, C. C.; Leporatti, S. Silver Nanoparticles: Synthetic Routes, In Vitro Toxicity and Theranostic Applications for Cancer Disease. Nanomaterials. 2018, 8, 319-341.
    64. Mallick, K.; Witcomb, M. J.; Scurrell, M. S. Polymer stabilized silver nanoparticles: A photochemical synthesis route. J. Mater. Sci. 2004, 39, 4459-4463.
    65. Deepak, V.; Umamaheshwaran, P. S.; Guhan, K.; Nanthini, R. A.; Krithiga, B.; Jaithoon, N. M.; Gurunathan, S. Synthesis of gold and silver nanoparticles using purified URAK. Colloid Surface B 2011, 86, 353-358.
    66. 張宗濤. et al. 化學還原法製備納米級Ag粉高分子保護機理研究. 1996.
    67. Gurunathan, S.; Kalishwaralal, K.; Vaidyanathan, R.; Venkataraman, D.; Pandian, S.R.; Muniyandi, J.; Hariharan, N.; Eom, S. H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B Biointerfaces 2009, 74, 328-335.
    68. Li, Y.; Lin, Z.; Zhao, M.; et al. Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 influenza virus through ROS-mediated signaling pathways. ACS Appl Mater Interfaces. 2016, 8, 24385-24393.
    69. Kelkawi, A. H. A.; Abbasi Kajani, A.; Bordbar, A. K. Green synthesis of silver nanoparticles using Mentha pulegium and investigation of their antibacterial, antifungal and anticancer activity. IET Nanobiotechnol 2017, 11, 370-376.
    70. Yuan, Y. G.; Peng, Q. L.; Gurunathan, S. Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. Int J Mol Sci 2017, 18, 569.
    71. Yun’an, Q.; Lin, C.; Ruiyan, L.; Guancong, L. Yanbo, Z. Xiongfeng, T.; Jincheng, W.; He, L.; Yanguo, Q. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine 2018, 13, 3311-3327.
    72. Khalandi, B.; Asadi, N.; Milani, M. et al. A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria. Drug Res (Stuttg). 2017, 67, 70-76.
    73. Seong, M.; Lee, D. G. Silver nanoparticles against Salmonella enterica serotype typhimurium: role of inner membrane dysfunction. Curr Microbiol 2017, 74, 661-670.
    74. Radkov, A. D.; Yen-Pang, H.; Booher, G.; VanNieuwenhze, M. S. Imaging Bacterial Cell Wall Biosynthesis. Annu Rev Biochem. 2018, 20, 991-1014
    75. Abbaszadegan, A.; Ghahramani, Y.; Gholami, A. et al. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater 2015, 16, 53.
    76. Ramalingam, B.; Parandhaman, T. Das, S. K. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces 2016, 8, 4963-4976.
    77. Gomaa, E. Z. Silver nanoparticles as an antimicrobial agent: a case study on Staphylococcus aureus and Escherichia coli as models for Grampositive and Gram-negative bacteria. J Gen Appl Microbiol 2017, 63, 36-43.
    78. Zhao, R.; Lv, M.; Li, Y. et al. Stable nanocomposite based on PEGylated and silver nanoparticles loaded graphene oxide for long-term antibacterial activity. ACS Appl. Mater. Interfaces 2017, 9, 15328-15341.
    79. Su, H. L.; Chou, C. C.; Hung, D. J. et al. The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials. 2009, 30, 5979-5987.
    80. Quinteros, M. A.; Cano Aristizábal, V.; Dalmasso, P. R.; Paraje, M. G.; Páez, P. L. Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicol In Vitro 2016, 36, 216-223.
    81. Jian-Cheng, J.; Xiao-Juan, W.; Juan, X.; Bei-Bei, W.; Feng-Lei, J.; Yi, L. Ultrasmall silver nanoclusters: highly efficient antibacterial activity and their mechanisms. Biomater Sci 2017, 5, 247-257.
    82. Kim, T. Braun, G. B.; She, Z. G.; Hussain, S.; Rouslahti, E.; Sailor, M. J. Composite porous silicon-silver nanoparticles as theranostic antibacterial agents. ACS Appl. Mater. Interfaces 2016, 8, 30449-30457.
    83. Lombardo, P. C.; Poli, A. L.; Castro, L. F.; Perussi, J. R.; Schmitt, C. C. Photochemical deposition of silver nanoparticles on clays and exploring their antibacterial activity. ACS Appl. Mater. Interfaces 2016, 8, 21640-21647.
    84. Zawadzka, K.; Kądzioła, K.; Felczak, A. et al. Surface area or diameter which factor really determines the antibacterial activity of silver nanoparticles grown on TiO 2 coatings? New J Chem 2014, 38, 3275-3281.
    85. Klueh, U.; Wagner, V.; Kelly, S.; Johnson, A.; Bryers, J. D. Efficacy of silvercoated fabric to prevent bacterial colonization and subsequent devicebased biofilm formation. J Biomed Mater Res 2000, 53, 621-631.
    86. Long, Y. M.; Hu, L. G.; Yan, X. T. et al. Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli. Int J Nanomedicine 2017, 12, 3193-3206.
    87. Jo, Y. K.; Seo, J. H.; Choi, B. H.; Kim, B. J.; Shin, H. H.; Hwang, B. H.; Cha, H. J. Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue. ACS Appl. Mater. Interfaces 2014, 6, 20242-20253.
    88. Poyraz, S.; Cerkez, I.; Huang, T. S.; Liu, Z.; Kang, L.; Luo, J.; Zhang, X. One-step Synthesis and Characterization of Polyaniline nanofiber/silver Nanoparticle Composite Networks as Antibacterial Agents. ACS Appl. Mater. Interfaces 2014, 6, 20025-20034.
    89. Kim, T.; Braun, G. B.; She, Z. G.; Hussain, S.; Ruoslahti, E.; Sailor, M. J. Composite Porous Silicon-Silver Nanoparticles as Theranostic Antibacterial Agents. ACS Appl. Mater. Interfaces 2016, 8, 30449-30457.
    90. Kittler, S.; Greulich, C.; Diendorf, J.; Koller, M.; Epple, M. Toxicity of silver nanoparticles increase during storage because of slow dissolution under release of silver ions. Chem. Mater 2010, 22, 4548-4554.
    91. Ahamed, M.; Alsalhi, M. S.; Siddiqui, M. Silver nanoparticle applications and human health. Clin. Chim. Acta 2010, 411, 1841-1848.
    92. Alkilany, A. M.; Murphy, C. J. Toxicity and Cellular Uptake of Gold Nanoparticles: What We Have Learned so Far? J. Nanopart. Res. 2010, 12, 2313-2333.
    93. Johnston, H. J.; Hutchison, G.; Christensen, F. M.; Peters, S.; Hankin, S.; Stone, V. A Review of the in Vivo and in Vitro Toxicity of Silver and Gold Particulates: Particle Attributes and Biological Mechanisms Responsible for the Observed Toxicity. Crit. Rev. Toxicol. 2010, 40, 328-346.
    94. Pelíšková, M.; Slobodian, P.; Sedlařík, V.; Zatloukal, M.; Kuřitka, I. Electrospun polyurethane membrane with Ag/ZnO microparticles as an antibacterial surface on polyurethane sheets. J. Appl. Polym. Sci. 2015, 133, 43020.
    95. Lei, W.; Jafar, A.; Changbo, Z.; Gilles, M.; Gang, P. Simultaneously enhanced photocatalytic and antibacterial activities of TiO2/Ag composite nanofibers for wastewater purification. J. Environ. Chem. Eng. 2020, 8, 102104.
    96. Tsung-Ting, T.; Tse-Hao, H.; Chih-Jung, C.; Natalie, Y-J. H.; Yu-Ting, T.; Chien-Fu, C. Antibacterial cellulose paper made with silver-coated gold nanoparticles. Sci. Rep. 2017, 7, 3155.
    97. Joseph, D.; Geckeler, K. E. Synthesis of Highly Fluorescent Gold Nanoclusters Using Egg White Proteins. Colloids Surf. B 2014, 115, 46-50.
    98. Qing, L.; Fei, L.; Guofang, Z.; Kun, Y.; Bitao, L.; Yang, X.; Fangying, D.; Dayang, W.; Guangqian, L. Silver Inlaid with Gold Nanoparticle/Chitosan Wound Dressing Enhances Antibacterial Activity and Porosity, and Promotes Wound Healing. Biomacromolecules 2017, 18, 3766-3775.
    99. Baber, R.; Mazzei, L.; Thanh, N. T. K.; Gavriilidis, A. An engineering approach to synthesis of gold and silver nanoparticles by controlling hydrodynamics and mixing based on a coaxial flow reactor. Nanoscale. 2017, 9, 14149-14161.
    100. Simon, R.; Svitlana, C.; Wolfgang, M-Z.; Matthias, E. Synthesis, characterization and in vitro effects of 7 nm alloyed silver–gold nanoparticles. Beilstein J. Nanotechnol. 2015, 6, 1212-1220.
    101. Shamshi Hassana, M.; Amna, T.; Sheikh, F. A. et al. Bimetallic Zn/Ag doped polyurethane spider net composite nanofibers: A novel multipurpose electrospun mat. Ceram. Int. 2013, 39, 2503-2510.
    102. Min, H.; Chenwen, L.; Xin, L.; Min, Z.; Jianbin, S.; Fangfang, Sheng.; Sanjun, S.; Laichun, L. Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity. Artifical Cells, Nanomedicine, and Biotechnology 2018, 46, 1248-1257.
    103. Merchan, M.; Sedlarikova, J.; Vesel, A.; Machovsky, M.; Sedlarik, V.; Saha, P. Antimicrobial Silver Nitrate-doped Polyvinyl Chloride Cast Films: Influence of Solvent on Morphology and Mechanical Properties. Int. J. Polym. Mater 2013, 62, 101-108.
    104. Kucekova, Z.; Kasparkova, V.; Humpolicek, P.; Sevcikova, P.; Stejskal, J. Antibacterial properties of polyaniline-silver films. Chem. Pap. 2013, 67, 1103-1108.
    105. Karunakaran, C.; Rajeswari, V.; Gomathisankar, P. Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag–ZnO and ZnO. Solid State Sci. 2011, 13, 923-928.
    106. De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Penn, R. L.; Whitelam, S.; Joester, D.; Hengzhong, Z.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F.; Wallace, A. F.; Marc Michel, F.; Meldrum, F. C.; Cölfen, H.; Dove, P. M. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. SCIENCE. 2015, 349, 6760.
    107. Parekh, S, A.; David, R, N.; Bannuru, K, K, R.; Krishnaswamy, L.; Baji, A. Electrospun Silver Coated Polyacrylonitrile Membranes for Water Filtration Applications. Membranes. 2018, 8, 59.
    108. Kharaghani, D.; Khan, M. Q.; Shahrzad, A.; Inoue, Y.; Yamamoto, T.; Rozet, S.; Tamada, Y.; Kim, I. S. Preparation and In-Vitro Assessment of Hierarchal Organized Antibacterial Breath Mask Based on Polyacrylonitrile/Silver (PAN/AgNPs) Nanofiber. Nanomaterials. 2018, 8, 461.

    無法下載圖示 全文公開日期 2025/08/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE