簡易檢索 / 詳目顯示

研究生: 陳俊瑋
Chun-Wei Chen
論文名稱: 製備非晶相之鐵鈷鉬金屬氧化物觸媒 應用於電催化產氧反應
Preparation of Amorphous Metal Oxide Catalysts Containing Iron, Cobalt and Molybdenum for Oxygen Evolution Reaction
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 戴龑
Yian Tai
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 129
中文關鍵詞: 金屬氧化物電解水產氧光化學金屬有機沉積法
外文關鍵詞: Metal Oxide, OER, PMOD
相關次數: 點閱:341下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在進行電催化產氫及產氧反應會造成相當多的能源消耗,而對於產氧反應具有高催化活性之觸媒多為貴金屬氧化物,如RuOx和IrOx。但是,貴金屬材料成本較高,因此並不適合進行大規模生產。在本研究中,透過光化學金屬有機沉積法(photochemical metal-organic depositions, PMOD)製備對電催化產氧反應具有高催化活性之非晶相金屬氧化物觸媒。由於PMOD法是一種方便、製備及設備成本低且可進行量產的方法。本研究之目標為尋找於地殼中具有高含量且為非貴重金屬之材料,提升其電解水產氧之活性。Molybdenum為電催化產氧反應之活性觸媒且為工業界常用之材料,與其他金屬氧化物進行混合能使其穩定性增加,因此在本研究中,加入molybdenum 與其他金屬混合製備成金屬氧化物電極。

    PMOD法能夠製備出與前驅物中比例相同之非晶相金屬氧化物,因此可以藉由此方法來探討金屬氧化物中所含之Fe、Co及Mo比例對於產氧反應的影響,而電極的組成也與EDS測試結果相符。在線性掃描伏安圖可以發現,Fe10Co25Mo65Ox之起始電位為1.52 V,而FeOx與MoOx的起始電位分別為1.64V和1.86V。而當電流密度達到1 mA cm-2時,Fe10Co25Mo65Ox所需電位為1.55 V,而FeOx則為1.70 V。在動力學的部分,Fe10Co25Mo65Ox所具有之Tafel slope為31 mV dec-1,相較於FeOx與CoOx的43 ± 1 mV dec-1和44 ± 2 mV dec-1,證明Fe10Co25Mo65Ox具有良好的產氧反應之催化活性。本研究為了探討金屬氧化物觸媒在進行電催化產氧反應中的穩定性,因此利用定電流(1 mA)進行反應24小時。當反應停止後,Fe10Co25Mo65Ox的反應電位幾乎沒有變化。由以上數據可以證明Fe10Co25Mo65Ox在進行產氧反應時,不論在催化活性或者是穩定性都具有突出的表現,可以作為一個良好的產氧觸媒。


    Water splitting reaction costs a lot of energy to produce oxygen and hydrogen. The best catalysts for water oxidation (oxygen evolution reaction, OER) are expensive metal oxides, such as RuO2 and IrO2; however, they cannot be used widely due to their rarity. In this research, we used photochemical metal-organic depositions (PMOD), a convenient, low-cost technique capable of producing highly active amorphous mixed-metal oxide OER catalysts. In this study, trying to find the abundant material on the crust of the earth, and promoting the activity of OER is our main purpose. Molybdenum is a widely used material in industry, and it also can prove the stability when it is mixed with other metal oxides. Therefore, this research will focus on the series of molybdenum oxides for OER.

    PMOD method was used to synthesize the amorphous mixed metal oxide films containing specific ratio of iron, cobalt, and molybdenum to figure out how metal affects OER. The compositions were the same and uniform distributed as they were in the precursor solution based on EDS analysis. In order to check the performance of metal oxides, Linear sweep voltammetry, and Tafel slope were plotted. The onset potential of Fe10Co25Mo65Ox was only 1.52 V, but FeOx and MoOx required 1.64 Vand 1.86 V, respectively. When the current density reached 1 mA cm-2, the potential for Fe10Co25Mo65Ox required 1.55 V, and 1.70 V for iron oxides. From Tafel slope, the value of Fe10Co25Mo65Ox was only 31 ± 1 mV dec-1, comparing to 44 ± 2 mV dec-1 for cobalt oxides, that meant Fe10Co25Mo65Ox had better catalytic ability. Stability was also a crucial property for electrodes. In this research, checking the stability by using chronopotentiometry set the current at 1 mA, reacted for 24 hours. The potential of Fe10Co25Mo65Ox almost unchanged. From these results, we can confirm that Fe10Co25Mo65Ox is an outstanding catalyst for OER.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 第二章 文獻回顧 4 2.1 電解水產氧反應機制 4 2.1.1 電解水產氧 4 2.1.2 反應機制 4 2.1.3 產氧反應之動力學、熱力學及重要參數 8 2.2 觸媒選擇 10 2.3 觸媒製備方法 12 2.3.1 電化學沉積法 (electrodeposition) 12 2.3.2 共沉澱法 (co-precipitation) 12 2.3.3 水熱法 (hydrothermal) 12 2.3.4 化學氣相沉積法 (chemical vapor deposition, CVD) 13 2.3.5 溶膠-凝膠法 (sol-gel) 13 2.4 光化學金屬有機沉積法 (Photochemical metal-organic deposition, PMOD) 16 第三章 實驗方法及儀器原理 19 3.1 實驗方法 19 3.1.1 實驗架構 20 3.2 實驗藥品、材料、設備及分析儀器 21 3.2.1 實驗藥品、材料 21 3.2.2 實驗設備 22 3.2.3 分析儀器 23 3.3 分析儀器原理簡介 24 3.3.1 電化學原理 24 3.3.2 電化學分析 27 3.3.3 傅立葉紅外線光譜儀 (Fourier transform infrared spectroscopy, FTIR) 33 3.3.4 X光繞射儀(X-ray diffractometer, XRD) 34 3.3.5 場發射掃描式電子顯微鏡 (field emission scanning electron microscopy, FE-SEM) 37 3.3.6 雙束型聚焦離子束 (dual-beam focus ion beam, DB-FIB) 41 3.3.7 層析法 43 3.3.8 X-ray光電子能譜儀 45 第四章 結果與討論 47 4.1 傅立葉紅外光譜 (FTIR)分析 47 4.2 X光繞射 (XRD)分析 51 4.3 雙束型聚焦離子束 (FIB)分析 52 4.3.1 薄膜厚度分析 52 4.3.2 表面型態分析 54 4.3.3 能量分散光譜儀 (EDS)分析 56 4.4 電極組成對電催化產氧反應之影響 65 4.4.1 電化學阻抗分析 65 4.4.2 線性掃描伏安法分析 72 4.4.3 電極於電化學催化產氧反應之動力學探討 82 4.5 X-ray光電子能譜儀(XPS)分析 89 4.6 前驅物濃度對電極之影響 97 4.6.1 濃度對薄膜厚度之影響 97 4.6.2 濃度對薄膜表面型態及元素分佈之影響 99 4.6.3 濃度對電化學反應之影響 102 4.7 電極穩定度測試 107 第五章 結論 109 參考文獻 111

    [1] J. Vidueira, A. Contreras, T. Veziroglu, PV autonomous installation to produce hydrogen via electrolysis, and its use in FC buses, Int. J. Hydrogen Energy 28 (2003) 927-937.
    [2] R.D. Smith, M.S. Prévot, R.D. Fagan, Z. Zhang, P.A. Sedach, M.K.J. Siu, S. Trudel, C.P. Berlinguette, Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis, Science (2013) 1233638.
    [3] T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Solar energy supply and storage for the legacy and nonlegacy worlds, Chem.Rev. 110 (2010) 6474-6502.
    [4] R.D.L. Smith, M.S. Prevot, R.D. Fagan, S. Trudel, C.P. Berlinguette, Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel, J. Am. Chem. Soc. 135 (2013) 11580-11586.
    [5] A.T. Marshall, R.G. Haverkamp, Electrocatalytic activity of IrO2–RuO2 supported on Sb-doped SnO2 nanoparticles, Electrochim. Acta 55 (2010) 1978-1984.
    [6] M. Hamdani, R. Singh, P. Chartier, Co3O4 and Co-based spinel oxides bifunctional oxygen electrodes, Int. J. Electrochem. Sci. 5 (2010) 556-577.
    [7] M.W. Kanan, D.G. Nocera, In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+, Science 321 (2008) 1072-1075.
    [8] E. Tsuji, A. Imanishi, K.-i. Fukui, Y. Nakato, Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution, Electrochim. Acta. 56 (2011) 2009-2016.
    [9] A.J. Esswein, Y. Surendranath, S.Y. Reece, D.G. Nocera, Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters, Energy Environ. Sci. 4 (2011) 499-504.
    [10] G.B. Haxel, J.B. Hedrick, G.J. Orris, P.H. Stauffer, J.W. Hendley II, Rare earth elements: critical resources for high technology, 2002.
    [11] J.D. Blakemore, N.D. Schley, G.W. Olack, C.D. Incarvito, G.W. Brudvig, R.H. Crabtree, Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors, Chem. Sci. 2 (2011) 94-98.
    [12] Y.M. E.SATO, Electrocatalytic properties of transition metal oxides for oxygen evolution reaction Mater. Chem. Phys. 14 (1986) 397-426
    [13] N. Ramaswamy, S. Mukerjee, Fundamental mechanistic understanding of electrocatalysis of oxygen reduction on Pt and non-Pt surfaces: acid versus alkaline media, Adv. Phys. Chem. 2012 (2012) 1-17.
    [14] J. Hoare, In Encyclopedia of Electrochemistry of the Elements, Bard, AJ, Ed., Marcel Dekker: New York 2 (1982) 191.
    [15] S. Trasatti, Transition metal oxides: versatile materials for electrocatalysis, Electrochemistry of Novel Materials, J. Lipkowski and PN Ross, eds., VCH, New York (1994).
    [16] J.O.M. Bockris, T. Otagawa, The electrocatalysis of oxygen evolution on perovskites, J. Electrochem. Soc. 131 (1984) 290-302.
    [17] A. Damjanovic, A. Dey, J.M. Bockris, Kinetics of oxygen evolution and dissolution on platinum electrodes, Electrochim. Acta 11 (1966) 791-814.
    [18] A. Appleby, Evolution and reduction of oxygen on oxidized platinum in 85% orthophosphoric acid, J. Electroanal. Chem. Interfacial Electrochem. 24 (1970) 97-117.
    [19] S. Gottesfeld, S. Srinivasan, Electrochemical and optical studies of thick oxide layers on iridium and their electrocatalytic activities for the oxygen evolution reaction, J. Electroanal. Chem. Interfacial Electrochem. 86 (1978) 89-104.
    [20] T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Solar energy supply and storage for the legacy and nonlegacy worlds, Chem. Rev. 110 (2010) 6474-6502.
    [21] B. Conway, B. Tilak, Behavior and characterization of kinetically involved chemisorbed intermediates in electrocatalysis of gas evolution reactions, Adv.Cat. 38 (1992) 1-147.
    [22] J.O.M. Bockris, Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen, J. Chem. Phys. 24 (1956) 817-827.
    [23] A.I. Krasil'shchkov, Zh. Fiz. Khim., 37 (1963) 273.
    [24] C.I. W. O'Grady, J. Huang and E. Yeager, Electrocatalysis, The Electrochemical Society, Princeton, 1974.
    [25] W.E. O’Grady, Iwakura, C., Yeager, E., Oxygen electrocatalysts for life support systems., Am. Soc. Mech. Eng. (1976) 76-ENAS-37-47.
    [26] H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis, ChemCatChem 2 (2010) 724-761.
    [27] I.C. Man, H.Y. Su, F. Calle‐Vallejo, H.A. Hansen, J.I. Martínez, N.G. Inoglu, J. Kitchin, T.F. Jaramillo, J.K. Nørskov, J. Rossmeisl, Universality in oxygen evolution electrocatalysis on oxide surfaces, ChemCatChem 3 (2011) 1159-1165.
    [28] M.T. Koper, Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis, J. Electroanal. Chem. 660 (2011) 254-260.
    [29] M.T. Koper, Analysis of electrocatalytic reaction schemes: distinction between rate-determining and potential-determining steps, J. Solid State Electrochem. 17 (2013) 339-344.
    [30] J. Rossmeisl, A. Logadottir, J.K. Nørskov, Electrolysis of water on (oxidized) metal surfaces, Chem. Phys. 319 (2005) 178-184.
    [31] R. Singh, J. Singh, A. Singh, Electrocatalytic properties of new spinel-type MMoO4 (M= Fe, Co and Ni) electrodes for oxygen evolution in alkaline solutions, Int. J. Hydrogen Energy 33 (2008) 4260-4264.
    [32] R. Singh, R. Awasthi, A. Sinha, Electrochemical characterization of a new binary oxide of Mo with Co for O2 evolution in alkaline solution, Electrochim. Acta 54 (2009) 3020-3025.
    [33] R. Singh, R. Awasthi, A. Sinha, Preparation and electrochemical characterization of a new NiMoO4 catalyst for electrochemical O2 evolution, J. Solid State Electrochem. 13 (2009) 1613-1619.
    [34] R. Singh, R. Awasthi, S. Tiwari, Iron molybdates as electrocatalysts for O2 evolution reaction in alkaline solutions, Int. J. Hydrogen Energy 34 (2009) 4693-4700.
    [35] A.R. Chowdhuri, C. Takoudis, Investigation of the aluminum oxide/Si (100) interface formed by chemical vapor deposition, Thin Solid Films 446 (2004) 155-159.
    [36] S. Iakovlev, C.-H. Solterbeck, M. Es-Souni, V. Zaporojtchenko, Rare-earth ions doping effects on the optical properties of sol–gel fabricated PbTiO3 thin films, Thin Solid Films 446 (2004) 50-53.
    [37] Y.S. Jung, J.Y. Seo, D.W. Lee, D.Y. Jeon, Influence of DC magnetron sputtering parameters on the properties of amorphous indium zinc oxide thin film, Thin Solid Films 445 (2003) 63-71.
    [38] R. Nayak, V. Gupta, A. Dawar, K. Sreenivas, Optical waveguiding in amorphous tellurium oxide thin films, Thin Solid Films 445 (2003) 118-126.
    [39] W.L.S. Law, Photochemical metal organic deposition of metal oxides, Simon Fraser University, 2004.
    [40] L.S. Andronic, Photochemical metal organic deposition of layered materials of chromium oxide and lead oxide and of uranium oxide and cobalt oxide, Babes Bolyai University, 2001.
    [41] L.R.F. Allen J. Bard, Electrochemical methods : fundamentals and applications, John Wiley & Sons, Hoboken, 2001.
    [42] a.W.R.K. J. R. Macdonald, Impedance Spectroscopy-Emphasizing Solid Materials and Systems, John Wiley, New York, 1987.
    [43] 楊昇晃, 微型燃料電池設計, 製作與電化學阻抗量測分析, 撰者, 2005.
    [44] B.E. Warren, X-Ray Diffraction, Dover Publications, New York, 1990.
    [45] 蔡承達, 鎵化合物光觸媒在分解水產氧之應用, 國立成功大學, 2012.
    [46] 林麗娟, X光繞射原理及其應用, 工業材料雜誌, Materialsnet, 1994.
    [47] C.S.M.G. Norton, X-Ray Diffraction: A Practical Approach Springer US, Boston, 1998.
    [48] R.R. Professor Dr. Ludwig Reimer, Scanning electron microscopy : physics of image formation and microanalysis, Springer-Verlag Berlin Heidelberg, London, 1998.
    [49] 林智仁, 場發射式掃瞄式電子顯微鏡, 工業材料雜誌, Materialsnet, 2002.
    [50] J.C.R.M.A.F.R.K.J. Charles, Fundamentals of Energy Dispersive X-Ray Analysis Butterworths Monographs in Materials, Burlington Elsevier Science, London, 2013.
    [51] 林明為,羅聖全,朱仁佑,蔡枝松,林麗娟,葉吉田, 雙粒子束聚焦式離子束(DB-FIB)技術在材料檢測分析上之應用與發展, 工業材料雜誌, materialsnet, 2007.
    [52] N.C.S.U. Lucille A. Giannuzzi, Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice, Springer, New York, 2004.
    [53] J.M.M. Harold M. McNair, Basic Gas Chromatography, John Wiley & Sons, Hoboken 2009.
    [54] J.W. John F. Watts, An Introduction to Surface Analysis by XPS and AES, J. Wiley, Hoboken, 2003.
    [55] J.E. Tackett, FT-IR characterization of metal acetates in aqueous solution, Applied Spectroscopy 43 (1989) 483-489.
    [56] H.J.J. Zhu, Photochemical metal organic deposition, PMOD of metal oxide films and multilayer films, National Library of Canada Bibliothèque nationale du Canada2002.
    [57] H.-H. Park, S.-B. Jung, H.-H. Park, T.S. Kim, R.H. Hill, Electrical and ferroelectric properties of SBT thin films formed by photochemical metal-organic deposition, Sens. Actuators, B 126 (2007) 289-293.
    [58] V.K.V.P. Srirapu, C.S. Sharma, R. Awasthi, R.N. Singh, A.S.K. Sinha, Copper–iron–molybdenum mixed oxides as efficient oxygen evolution electrocatalysts, Phys. Chem. Chem. Phys. 16 (2014) 7385-7393.
    [59] Y. Surendranath, M. Dinca, D.G. Nocera, Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts, J. Am. Chem. Soc. 131 (2009) 2615-2620.
    [60] D.A. Lutterman, Y. Surendranath, D.G. Nocera, A self-healing oxygen-evolving catalyst, J. Am. Chem. Soc. 131 (2009) 3838-3839.
    [61] M. Dincă, Y. Surendranath, D.G. Nocera, Nickel-borate oxygen-evolving catalyst that functions under benign conditions, Proc. Natl. Acad. Sci. U.S.A 107 (2010) 10337-10341.
    [62] C. Zhang, R.D. Fagan, R.D. Smith, S.A. Moore, C.P. Berlinguette, S. Trudel, Mapping the performance of amorphous ternary metal oxide water oxidation catalysts containing aluminium, J. Mater. Chem. A 3 (2015) 756-761.
    [63] Y. Surendranath, M.W. Kanan, D.G. Nocera, Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH, J. Am. Chem. Soc. 132 (2010) 16501-16509.
    [64] M. Dincă, Y. Surendranath, D.G. Nocera, Nickel-borate oxygen-evolving catalyst that functions under benign conditions, Proc. Natl. Acad. Sci. U.S.A. 107 (2010) 10337-10341.
    [65] L. Trotochaud, J.K. Ranney, K.N. Williams, S.W. Boettcher, Solution-cast metal oxide thin film electrocatalysts for oxygen evolution, J. Am. Chem. Soc. 134 (2012) 17253-17261.
    [66]M. Plata-Torres, A.M. Torres-Huerta, M.A. Dominguez-Crespo, E.M. Arce-Estrada, C. Ramirez-Rodriguez, Electrochemical performance of crystalline Ni–Co–Mo–Fe electrodes obtained by mechanical alloying on the oxygen evolution reaction, Int. J. Hydrogen Energy 32 (2007) 4142-4152.
    [67] S.A. Halawy, M.A. Mohamed, The role of MoO3 and Fe2O3 in the thermal decomposition of ammonium perchlorate, Collect. Czech. Chem. Commun. 59 (1994) 2253-2261.
    [68] Q. Qu, S. Yang, X. Feng, 2D Sandwich‐like Sheets of Iron Oxide Grown on Graphene as High Energy Anode Material for Supercapacitors, Adv. Mater. 23 (2011) 5574-5580.
    [69] A. Grosvenor, B. Kobe, M. Biesinger, N. McIntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds, Surf. Interface Anal. 36 (2004) 1564-1574.
    [70] M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci. 257 (2011) 2717-2730.
    [71] T.-C. Lin, G. Seshadri, J.A. Kelber, A consistent method for quantitative XPS peak analysis of thin oxide films on clean polycrystalline iron surfaces, Appl. Surf. Sci. 119 (1997) 83-92.
    [72] Y. Haldorai, J.Y. Kim, A.E. Vilian, N.S. Heo, Y.S. Huh, Y.-K. Han, An enzyme-free electrochemical sensor based on reduced graphene oxide/Co3O4 nanospindle composite for sensitive detection of nitrite, Sens. Actuators, B 227 (2016) 92-99.
    [73] S. Wang, B. Zhang, C. Zhao, S. Li, M. Zhang, L. Yan, Valence control of cobalt oxide thin films by annealing atmosphere, Appl. Surf. Sci. 257 (2011) 3358-3362.

    QR CODE