簡易檢索 / 詳目顯示

研究生: 胡氏青雲
Ho - Thi Thanh Van
論文名稱: Nanostructured Ti0.7M0.3O2 (M: Mo, Ru) Supports with Novel Cocatalytic Functionality for Pt: Advanced Nanoelectrocatalysts for Fuel Cells
Nanostructured Ti0.7M0.3O2 (M: Mo, Ru) Supports with Novel Cocatalytic Functionality for Pt: Advanced Nanoelectrocatalysts for Fuel Cells
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
none
杜景順
none
楊明長
none
李志甫
none
蘇威年
none
劉炯權
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 160
中文關鍵詞: 奈米結構雙觸媒多功能性燃料電池
外文關鍵詞: Nanostructured, Ti-based metal oxides, Cocatalyst, Multifunctional, Fuel Cells.
相關次數: 點閱:202下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Due to the high energy yield and low environmental impact Proton Exchange Membrane Fuel Cells (PEMFCs) and Direct Methanol Fuel Cells (DMFCs) represent promising energy conversion technologies. At present, carbon black supported platinum (Pt) catalyst is used for both fuel and air electrodes in PEMFCs and DMFCs at anodes and cathodes. However, several critical issues still need to be addressed before such cells can be commercialized for automotive applications. For example, the oxygen reduction reaction (ORR) is kinetically limited at the cathode and instability of Pt on the cathode is marked by the loss of Pt electrochemical surface area (ECSA) over time, due to Pt dissolution/ aggregation/Oswald ripening being the major contributors to the degradation of fuel cell performance. Additionally, the predominance of weak interactions between the carbon support and the catalytic metal nanoparticles leads to the sintering of the catalytic metal nanoparticles and a consequent decrease in the active surface area with long-term operation. More importantly, the high potentials that accelerate both electrochemical carbon corrosion and the dissolution of the active elements under normal operating conditions, are issues impacting on fuel cell durability that remain unresolved. Furthermore, it is well-documented that at room and moderate temperatures state-of-the-art platinum-based anode electrocatalysts suffer from poor reaction kinetics and are vulnerable to poisoning from CO-like intermediates formed during the oxidation of methanol; thus, due to their relatively low stability under acidic conditions they may become catalytically inactive over time.
    Therefore, we focus in this study on the: “Development of Nanostructured Ti0.7M0.3O2 (M: Mo, Ru) Supports with Novel Cocatalytic Functionality for Pt Used as Advanced Nanoelectrocatalysts for Fuel Cells”. This work presents a new approach by exploring robust non-carbon Ti0.7M0.3O2 (M= Mo, Ru) as a novel functionalised co-catalytic support for Pt. This new approach is based on the novel nanostructure of the Ti0.7M0.3O2 supports which supports an “electronic transfer mechanism” from Ti0.7M0.3O2 to Pt that can modify surface electronic structure of Pt, owing to a shift in the d-band centre of the surface Pt atoms. Furthermore, another benefit of Ti0.7M0.3O2 is the extremely high stability of Pt/Ti0.7M0.3O2 during potential cycling, which is attributable to the strong metal support interactions (SMSI) between Pt and Ti0.7M0.3O2: also enhanced is the inherent structural and chemical stability together with the corrosion-resistance of the TiO2 based-oxide in acidic and oxidative environments. Interestingly, Ti0.7Ru0.3O2 can be fabricated as a much thinner catalyst layer, resulting in significantly improved the mass transport kinetics and performance of the resulting membrane-electrode-assembly (MEA).
    The new approach presented in this work opens a reliable path to the discovery of advanced concepts that may lead to the design of new catalyst materials that can replace the traditional catalytic structures and motivate further research in this field.

    Table of Contents Abstract………………………………………………………………….……………………I Acknowledgement……………………………………………………………………….….IV Table of contents……………………………………………………………………………..V List of tables……………………………………………………………………..………..VIII List of schemes……………………………………………………………………………...IX List of figures………………………………………………………………………………...X List of abbreviations……………………………………….…………………..…………XVI Chapter 1 Introduction………………………………………………………………………1 1.1 Overview about fuel cell technology…………………………………………………1 1.1.1 Proton exchange membrane fuel cells (PEMFCs)……………………………... …4 1.1.1.1 Overview about Proton Exchange Membrane Fuel Cell………………………5 1.1.1.2 The Operating Principle of Proton Exchange Membrane Fuel Cell…… …….6 1.1.2 Direct methanol fuel cells (DMFCs)………………………………………….... 9 1.2 Other cells…………………………………………………………………………...12 Chapter 2 Current Challenges for the Polymer Electrolyte Membrane Fuel Cells and Direct Methanol Fuel Cells………………………………………….……………………..14 2.1 Challenges for the Polymer Electrolyte Membrane Fuel Cells……………………..14 2.1.1 Degradation and durability issues in catalyst layers…………………………..…..14 2.1.1.1 Platinum degradation…………………………………………………..……14 2.1.1.2 Carbon support degradation ……………………………………………...…19 2.1.1.3 Ionomer degradation and interfacial degradation………………………..….23 2.1.2 Cost of Pt metal catalyst…………………………………………………..… 25 2.1.3 ORR activity issues………………………………………………………..… 26 2.2 Challenges for the Direct Methanol Fuel Cells……………………………….….. 28 2.2.1 Slow electro-oxidation kinetics………………………………………….……28 2.2.2 Methanol crossover……………………………………………………….….. .29 2.2.3 Gas management on anode side……………………………………….…….. 30 2.2.4 Electrode structure………………………………………………………….... 30 2.2.4.1 Electrocatalysis ……………………………………………….. ………….30 2.2.4.2 Carbon-Support Oxidation ………………………………………………...32 Chapter 3 Motivation and Objective of the Present Research…………………………..37 Chapter 4 Materials and Methods……………………………..…………………………..41 4.1 Materials…………………………………………………………………………….41 4.2 Methods……………………………………………………………………………..41 4.2.1 X-ray diffraction (XRD) measurements………………………….…………..41 4.2.2 Transmission electron microscopy (TEM) measurements………………… ..41 4.2.3 Determining of metal (s) loading…………………….………………………42 4.2.4 Surface area measurements …………………………….……………………42 4.2.5 Conductivity measurements ……………………………...…………………42 4.2.6 Proton conductivity measurements …………………….……………………43 4.2.7 X-ray absorption spectra (XAS) measurements ……………………..………43 4.2.8 Electrode Preparation and Electrochemical Measurements …………………43 4.2.9 MEA Fabrication and Single-Cell Test………………………………………45 4.2.10 DFT simulation to model Ti0.7Ru0.3O2 structure and its XRD pattern……... 46 Chapter 5 Nanostructured Ti0.7Mo0.3O2 Support Enhances Electron Transfer to Pt: High Performance Catalyst for Oxygen Reduction Reaction........................................... 47 5.1 Introduction………………………………………………………………….………47 5.2 Experiment section………………………………………………………………….49 5.2.1 Synthesis of Ti0.7Mo0.3O2 nanoparticles ………………………..……………49 5.2.2 Synthesis of Pt/Ti0.7Mo0.3O2 catalyst................................................................50 5.3 Results and discussions………………………………………………………………51 5. 3.1 Characterization of Ti0.7Mo0.3O2 support material………………………….51 5.3.2 Characterization of Pt/Ti0.7Mo0.3O2 catalyst………………………………..56 5.3.3 Electrochemical properties of Pt/Ti0.7Mo0.3O2 catalyst...................................64 5.4 Conclusions…………………………………………………………………………..71 Chapter 6 Robust non-Carbon Ti0.7Ru0.3O2 Support with co-Catalytic Functionality for Pt: Enhances Catalytic Activity and Durability for Fuel Cells......................................... 73 6.1 Introduction………………………………………………………………………….73 6.2 Experiment section………………………………………………………………….75 6.2.1 Synthesis of Ti0.7Ru0.3O2 nanoparticles …………………………….………..75 6.2.2 Synthesis of Pt/Ti0.7Ru0.3O2 catalyst.................................................................76 6.3 Results and discussions………………………………………………………………77 6.4 Conclusions…………………………………………………………………….…….93 Chapter 7 Direct Growth One-dimensional Pt Nanowires Supported on Ti0.7Ru0.3O2: Advanced Nanoelectrocatalyst for Methanol Oxidation and Oxygen Reduction Reaction............................................................................................................... …………..95 7.1 Introduction………………………………………………………………………….95 7.2 Experiment section………………………………………………………………….98 7.2.1 Synthesis of Ti0.7Ru0.3O2 nanoparticles ……………………………………...98 7.2.2 Growth of 50 wt% Pt NW supported on Ti0.7Ru0.3O2 ……………….............98 7.2.3 Preparation of 50 wt% Pt nanoparticles supported on carbon black ………...99 7.3 Results and discussions………………………………………………………………99 7.4 Conclusions…………………………………………………………………………116 Chapter 8 Summary and Conclusions…………………………………………………...117 Supporting information…………………………………………………………………...120 References………………………………………………………………………………….126 Cuuriculum vitae of author……………………………………………………………….140 List of publishcations………………………………………………………………….......141 List of patents…………………………………………………………………...................142 List of conferences/workshops……………………………………………………………143

    1. G. Hoogers, FUEL CELL TECHNOLOGY HANDBOOK, Boca Raton London New York Washington, D.C., 2003
    2. J. Larminie, A. Dicks, FUEL CELL SYSTEMS EXPLAINE, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, England, 2003
    3. L. Carette, K. A. Friedrich, U. Stimming, ChemPhysChem, 2000, 1, 162
    4. F. Barbir, PEM Fuel Cells Theory and Practice, Elsevier, 2005
    5. M.K. Ravikumar, A.K. Shukla, J. Electrochem. Soc, 1996, 143, 2601
    6. A. K. Shukla, A. S. Arico, V. Antonucci, Renewable & Sustainable Energy Reviews, 2001, 5, 137
    7. B. D. McNicol, D. A. J. Rand, K. R. Williams, J. Power Sources 1999, 83, 15
    8. S. Wasmus and A. Kuver, J. Electroanal. Chemistry 1999, 461, 14
    9. S. Gunter and K. Kordesch. Fuel Cells and their Application.VCH, Weinheim, 1996
    10. S. Zhanga, X-Z. Yuana, J. Ng C. Hina, H. Wanga, K. Andreas Friedrichb, M. Schulzeb, Journal of Power Sources 2009, 194, 588
    11. M. Pourbaix, Altas of Electrochemical Equilibriumin Aqueous Solutions, Pergamon Press, New York, 1966
    12. R. Dingreville, J. Qu, M. Cherkaoui, J. Mech. Phys. Solids, 2005, 53 1827
    13. J. Xie, D.L.Wood III, D. M. Wayne, T.A. Zawodzinski, P. Atanassov, R.L. Borup, J. Electrochem. Soc. 2005, 152, A104
    14. E. Guilminot, A. Corcella, F. Charlot, F. Maillard, M. Chatenet, J. Electrochem. Soc. 2007, 154, B96
    15. K.L. More, R. Borup, K.S. Reeves, ECS Trans. 2006, 3, 717
    16. A.V. Virkar, Y. Zhou, J. Electrochem. Soc. 2007, 154, B540
    17. K.J.J. Mayrhofer, J.C. Meier, S.J. Ashton, G.K.H.Wiberg, F. Kraus, M. Hanzlik, M. Arenz, Electrochem. Commun. 2008, 10, 1144
    18. S. Kawahara, S. Mitsushima, K.-I. Ota, N. Kamiya, ECS Trans. 2006, 3, 625
    19. J. Xie, D.L.Wood III, K.L.More, P. Atanassov, R.L. Borup, J. Electrochem. Soc. 2005 152, A1011
    20. P.J. Ferreira, G.J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, H.A. Gasteiger, J. Electrochem. Soc. 2005, 152, A2256
    21. E. Guilminot, A. Corcella, M. Chatenet, F. Maillard, F. Charlot, G. Berthome, C. Iojoiu, J.-Y. Sanchez, E. Rossinot, E. Clauded, J. Electrochem. Soc. 2007, 154, B1106
    22. T. Akita, A. Taniguchi, J.Maekawa, Z. Siroma, K. Tanaka,M. Kohyama, K. Yasuda, J. Power Sources, 2006, 159, 461
    23. X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, Z.-S. Liu, H.Wang, J. Shen, J. Power Sources 2007, 165, 739
    24. O. Yamazaki, Y. Oomori, H. Dhintaku, T. Tabata, ECS Trans. 2007, 11, 287
    25. H-F. Oetjen, V.nM Schmidt, U. Stimming, F. Trila, Journal of the Electrochemical Society 1996, 143, 3838
    26. R. Mohtadi,W.-k. Lee, J.W. Van Zee, J. Power Sources 2004, 138, 216
    27. Y. Sato, Z.Wang, Y. Takagi, ECS Trans. 2006, 3, 827
    28. S-E Jang and H. Kim, J. AM. CHEM. SOC. 2010, 132, 14700
    29. K. Kinoshita, Carbon, Electrochemical and Physicochemical Properties, John Wiley & Sons, New York, 1988
    30. K. H. Kangasniemi, D. A. Condit, and T. D. Jarvi , J. Electrochem. Soc., 2004, 151, E125
    31. J. Fairweather, B. Li, R. Mukundan, J. Fenton, R. L. Borup, ECS Trans 2010, 33, 433
    32. E. Antolini, E.R. Gonzalezb, Solid State Ionics, 2009, 180, 746
    33. T.R. Ralph, S. Hudson, D.P.Wilkinson, ECS Trans. 2006, 1, 67
    34. A. Taniguchi, T. Akita, K. Yasuda and Y. Miyazaki, Journal of PowerSources 2004, 130, 42
    35. H. Tang, Z.G. Qi, M. Ramani, J.F. Elter, J. Power Sources 2006, 158, 1306
    36. E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti, L. Giorgi, Electrochim. Acta 2001, 46, 799
    37. F.-Y. Zhang, S.G. Advani, A.K. Prasad, M.E. Boggs, S.P. Sullivan, T.P. Beebe Jr., Electrochim. Acta 2009, 54, 4025
    38. Trasatti S, J. Elecfroanai. Chem. 1971, 33, 51-78
    39. Adina Morozan, Bruno Jousselme and Serge Palacin, Energy Environ. Sci., 2011, 4, 1238
    40. C.C. Liang and A.L. Juliard J. Electroanal. Chem. 1965, 9, 390
    41. Kinoshita, K. J. Electrochem. Soc., 1990, 137, 845
    42. A. Gamez, D. Richard, and P. Gallezot Electrochim. Acta, 1996, 41, 307
    43. G. Tamizhmani, J.P. Dodelet, and D. Guay J. Electrochem. Soc., 1996, 143, 18
    44. M. Min, J. Cho, K. Cho, and H. Kim Electrochim. Acta, 2000, 45, 4211
    45. F. Maillard, M. Martin, F. Gloaguen, and J.-M. Leger Electrochim. Acta 2002, 47, 3431
    46. P. Gouerec, M. Savy, and J. Riga Electrochim. Acta, 1998, 43, 743
    47. S. Gupta, D. Tryk, S.K. Zecevic, W. Aldred, D. Guo, and R.F. Savinell J. Appl. Electrochem., 1998, 28, 673
    48. Schmidt, T.J., U.A. Paulaus, H.A. Gasteiger, and R.J. Behm J. Electroanal. Chem. 2001, 508, 41
    49. R.A. Sidik, and A.B. Anderson J. Electroanal. Chem., 2002, 528, 69
    50. J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, and H. Jonsson J. Phys. Chem. B, 2004, 108, 17886
    51. K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel and E. D. Gilles, Chemical Engineering Science, 2001, 56, 333
    52. S. Zhou, T. Schultz, M. Peglow and K. Sundmacher Phys. Chem. Chem. Phys.,2001, 3, 347
    53. G. Q. Lu and C. Y. Wang, Journal of Power Sources, 2004, 134, 33
    54. H.N. Dinh, X. Ren, F.H. Garzon, P. Zelenay, S. Gottesfeld, J. Electroanal. Chem. 2000, 491, 222
    55. J. McBreen, S. Mukerjee, J. Electrochem. Soc. 1995, 142, 3399
    56. M. Watanabe and S. Motoo, J. Electroanal. Chem. 1975, 60, 267
    57. H. A. Gasteiger, N. Markovic, P. N. Ross Jr, E. J. Cairns, J. Phys. Chem. 1993, 97, 12020
    58. J. B. Goodenough, R. Manoharan, A. K. Shukla, K. V. Ramesh, Chem. Mater. 1989, 1, 391
    59. E. Herrero, K. Franaszczuk, A. Wieckowski, J Phys Chem 1994, 98, 5074
    60. R. Dillon, S. Srinivasan, A.S. Arico, V. Antonucci, Journal of Power Sources, 2004, 127, 112
    61. C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D. Yang, M.L. Perry, and T.D. Jarvi, Electrochem. Solid State Lett. 2005, 8, A273
    62. V. S. Bagotsky, Fuel Cells: Problems and Solutions; Wiley: New York, 2009
    63. Y. Chung, C. Pak, G-S. Park, W. S. Jeon, J-R. Kim, Y. Lee, H. Chang, D. Seung, J. Phys. Chem. C, 2008, 112, 313
    64. G.S. Park, C. Pak, Y-S. Chung, J-R. Kim, W. S. Jeon, Y-H. Lee, K. Kim, H. Chang, D. Seung, J. Power Sources, 2008, 176, 484
    65. Y. Shao-Horn, W. C. Sheng, S. Chen, P. J. Ferreira, E. F. Holby, D. Morgan, Top. Catal., 2007, 46, 285
    66. X. M. Ren, P. Zelenay, J. Davey and S. Gottesfeld, J. Power Sources, 2000, 86, 111
    67. Jianguo Liu, Zhenhua Zhou, Xinsheng Zhao, Qin Xin, Gongquan Sun and Baolian YiPhys. Chem. Chem. Phys. 2004, 6, 134
    68. K. Andrew, US Pat., 1999, 5, 992,008,
    69. C. Wang, D. van der Vliet, K. L. More, N. J. Zaluzec, S. Peng, S. Sun, H. Daimon, G. Wang, J. Greeley, J. Pearson, A. P. Paulikas, G. Karapetrov, D. Strmcnik, N. M. Markovic, and V. R. Stamenkovic, Nano Lett. 2011, 11, 919
    70.H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal. B Environ. 2005, 56, 9
    71. W. Vielstich, A. Lamm, and H. A. Gasteiger, Handbook of Fuel Cells, Fundamentals Technology and Applications (Wiley,West Sussex, 2003)
    72. T. Ghosh, M. B.Vukmirovic, F. J. DiSalvo, R. R. Adzic, J. Am. Chem. Soc. 2010, 132, 906
    73. V. Mazumder, M. Chi, K. L. More, S. Sun, J. Am. Chem. Soc. 2010, 132, 7848
    74. J. Zhang, H. Yang, J. Fang, S. Zou, Nano Lett. 2010, 10, 638
    75. H. Yang, Angew. Chem. Int. Ed. 2011, 50, 2674
    76. J. Snyder1, T. Fujita, M. W. Chen, J. Erlebacher, Nature Material 2010, 9, 904
    77. S. Mukerjee, S. Srinivasan, J. Electroanal. Chem. 1993, 357, 201
    78. J. Greeley, I. E. L.Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl , I. Chorkendorff and J. K. Norskov Nature Chemistry 2009, 1, 552
    79. R. Srivastava, P. Mani, N. Hahn, P. Strasser, Angew. Chem. Int. Ed. 2007, 46, 8988
    80. S. Peter, K. Shirlaine, A. Toyli, G. Jeff, M. Karren, Y. Chengfei, L. Zengcai, K. Sarp, N. Dennis, O. Hirohito, F. T. Michael and N. Anders, Nature Chem. 2010, 2, 454
    81. A. U. Nilekar, Y. Xu, J. Zhang, M. B. Vukmirovic, K. Sasaki, R. R. Adzic, M. Mavrikakis, Top. Catal. 2007, 46, 276
    82. R. Loukrakpam, J. Luo, T. He, Y. Chen, Z. Xu, P. N. Njoki, B. N. Wanjala, B. Fang, D. Mott, J. Yin, J. Klar, B. Powell, and C-J. Zhong, J. Phys. Chem. C 2011, 115, 1682
    83. E. Antolini, J. R. C. Salgado, and E. R. Gonzalez, J. Power Sources, 2006, 160, 957
    84. H. A. Gasteiger, S. S. Kocha, B. Sompalli, and F. T. Wagner, Appl. Catal., B 2005, 56, 9
    85. M-S. Jun, Q. Zhang, A. Cao, D. S. Su, Z. Zhang, S-H. Yoon, J. Miyawaki, I. Mochida, F. Kang, Adv. Funct. Mater. 2011, 21, 999
    86. R. Borup et al., Chem. Rev. 2007, 107, 3904
    87. S. Zhang, X. Yuan, H. Wang, W. Merida, H. Zhu, J. Shen, S.Wu , J. Zhang, Int. J. Hydrogen Energy, 2009, 34, 388
    88. Z-B. Wang, C-R. Zhao, P- F. Shi, Y-S.Yang, Z-B. Yu, W-K. Wang, G-P. Yin, J. Phys. Chem. C 2010, 114, 672
    89. B. Fang, N. K. Chaudhari, M-S. Kim, J. H. Kim, J-S. Yu, J. Am. Chem. Soc. 2009, 131, 15330
    90. E. Antolini, E. R. Gonzalez, Solid State Ionics. 2009, 180, 746
    91. C. V. Subban, Q. Zhou, A. Hu, T. E. Moylan, F. T. Wagner, F. J. DiSalvo, J. Am. Chem. Soc. 2010, 132, 17531
    92. S. Y. Huang, P. Ganesan, S. Park, B. N. Popov, J. Am. Chem. Soc. 2009, 131, 13898
    93. Y. J. Ko, H. S. Oh, H. Kim, J. Power Sources 2010, 195, 2623.
    94. Y. Shao, G. Yin, Y. Gao, P. Shi, J. Electochem. Soc. 2006, 153, A1093
    95. H. S. Oh, K. H. Lim, B. Roh, I. Hwang, H. Kim, Elecrochim. Acta. 2009, 54, 6515
    96. R. Kou, Y. Shao, D. Wang, M. H. Engelhard, J. H. Hwak, J. Wang, V. V. Viswanathan, C. Wang, Y. Lin, Y. Wang, I. A. Aksay, J. Liu, Electrochem. Commun. 2009, 5, 954
    97. D. Wang, C. V. Subban, H. Wang, E. Rus, F. J. DiSalvo, H. D. Abruňa, J. Am. Chem. Soc. 2010, 132, 10218
    98. C. V. Subban, Q. Zhou, F. T. Wagner, A. Hu, T. E. Moylan, F. J. DiSalvo, J. Am. Chem. Soc., 2010, 132, 10218
    99. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE International: Houston, 1974
    100. M. Aryanpour, R. Hoffmann, F. J. DiSalvo, Chem. Mater. 2009, 21, 1627
    101. H. Zhang, Y. Wang, E. R. Fachini, C.R. Cabrera, Electrochemical and Solid-State Letters, 1999, 2, 437
    102. M. Yoshimura, K. Byrappa, J Mater Sci, 2008, 43, 2085
    103. M. Carmo, A. R. dos Santos, J. G. R. Poco, M. Linardi, J. Pow. Sour. 2007, 173, 860
    104. T. Ressler, O. Timpe, T. Neisius, J. Find, G. Mestl, M. Dieterle and R. Schlogl, J. Catal. 2000, 191, 75
    105. F.W. Kutzler, C.R. Natoli, D.K. Misemer, S. Doniach, K.O. Hodgson, J. Chem. Phys. 1980, 73, 3274
    106. S. Ebbinghaus, Z. Hu and A. Reller, J. Solid State Chem. 2001, 156, 194.
    107. T. Ressler, R. E. Jentoft, J. Wienold, M. M. Gunter, O. Timpe, J. Phys. Chem. B 2000, 104, 6360.
    108. F.J. Lai, L. S. Sarma, H. L Chou, D. G. Liu, C. A. Hsieh, J. F. Lee, B. J. Hwang, J. Phys. Chem. C, 2009, 113, 12674
    109. B-J. Hwang, L. S. Sarma, J-M. Chen, C-H. Chen, S-C. Shih, G-R. Wang, D-G. Liu, J-F. Lee, M-T. Tang, J. Am. Chem. Soc., 2005, 127, 11140
    110. Di-Y. Wang, C-H. Chen, H-C. Yen, Y-L. Lin, P-Y. Huang, B-J. Hwang, C-C. Chen, J. Am. Chem. Soc., 2007, 129, 1538.
    111. B.J. Hwang, S. M. S. Kumar, C.H. Chen, Monalisa; M.Y. Cheng. D.G. Liu, J. F. Lee, Phys. Chem. C 2007, 111, 15267
    112. S. J. Tauster, S. C. Fung, R. L. Garten , Journal of the American Chemical Society 1978, 100, 170
    113. C.C. Shih, J. R. Chang, J. Catal. 2006, 240, 137
    114. N.V. Krstajic, L. M. Vracar, V. R. Radmilovic, S. G. Neophytides, M. Labou, J. M. Jaksic, R. Tunold, P. Falaras, M. M. Jaksic. Surf Sci, 2007, 601, 1949
    115. G. S. Henderson, X. Liu, M. E. Fleet, Phys Chem Mineral, 2002, 29, 32
    116. S. Zhang, S. B. Ogale, W. Yu, X. Gao, T. Liu, S. Ghosh, G. P. Das, A. T. S. Wee, R. L. Greene, T. Venkatesan, Adv. Mater. 2009, 21, 2282
    117. T. J. Schmidt, H. A. Gasteiger, G. D. Stab, P. M. Urban, D. M. Kolb, R. J. Beh, J. Electrochem. Soc. 1998, 145, 2354
    118. T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn. Nature Materials, 2010, 9, 146
    119. Y. Shi, K. R. Heier, B. Guo, L. Chen, S. A. Corr, RamSeshadri, Q. Shi, Y-S. Hu, G. D. Stucky. Nano Lett., 2009, 9, 4215
    120. X-X. Liu, L-J. Bian, L. Zhang, L-J. Zhang. J Solid State Electrochem, 2007, 11, 1279
    121. V. R. Stamenkovic, B. S. Mun, M. Arenz, K .J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, N. M. Markovic, Nat. Mater. 2007, 6, 241
    122. J. Kim, Y. Lee, S. Sun, J. Am. Chem. Soc., 2010, 132, 4996
    123. V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, N. M Marković, Science 2007, 315, 493
    124. S. Sun, G. Zhang, D. Geng, Y. Chen, R. Li, M. Cai, X. Sun, Angew. Chem. Int. Ed. 2011, 50, 422
    125. K. Sasaki, H. Naohara, Y. Cai, Y. M. Choi, P. Liu, M. B. Vukmirovic, J. X. Wang, R. R. Adzic, Angew. Chem. Int. Ed. 2010, 49, 8602
    126. M. Carmo, A. R. dos Santos, J. G. R. Poco, M. Linardi, J. Pow. Sour. 2007, 173, 860
    127. R. Ganesan, J. S. Lee Angew. Chem. Int. Ed. 2005, 44, 6557
    128. G. Girishkumar, T. D. Hall, K. Vinodgopal, P.V. Kamat, J. Phys. Chem. B 2006, 110, 107
    129. T. Matsumoto, T. Komatsu, K. Arai, T. Yamazaki, M. Kijima, H. Shimizu, Y. Takasawa, J. Nakamura, Chem. Commun. 2004, 840
    130. Y- J. Gu, W-T. Wong, Langmuir 2006, 22, 11447
    131. S. Liao, K-A. Holmes, H. Taprailis, V. I. Birss, J. Am. Chem. Soc. 2006, 128, 3504
    132. J. Prabhuram, T. S. Zhao, Z. K. Tang, R. Chen, Z. X. Liang, J. Phys. Chem. B 2006, 110, 5245
    133. Y. L. Hsin, K. C. Hwang, C-T. Yeh, J. Am. Chem. Soc. 2007, 129, 9999
    134. E. S. Steigerwalt, G. A. Deluga, C. M. Lukehart, J. Phys. Chem. B 2002, 106, 760
    135. E. S. Steigerwalt, G. A. Deluga, D. E. Cliffel, C. M. Lukehart, J. Phys. Chem. B 2001, 105, 8097
    136. T. Hyeon, S. Han, Y-E. Sung, K-W. Park, Y-W. Kim, Angew. Chem. Int. Ed. 2003, 42, 4352
    137. S-E. Jang, H. Kim, J. Am. Chem. Soc. 2010, 132, 14700
    138. Z. Chen, X. Qiu, B. Lu, S. Zhang, W. Zhu, L. Chen, Electrochem. Commun. 2005, 7, 593
    139. V. Raghuveer, B. Viswanathan, J. Pow. Sour. 2005, 144, 1
    140. I-S. Park, E. Lee, A. Manthiram, J. Electrochem. Soc. 2010, 157, B251
    141. J. M. Macak, P. J. Barczuk, H. Tsuchiya, M. Z. Nowakowska, A. Ghicov, M. Chojak, S. Bauer, S. Virtanen, P. J. Kulesza, P. Schmuki, Electrochem. Commun. 2005, 7, 1417
    142. a) S. Trasatti, G. Lodi, Electrodes of conductive metallic oxides; Part A,
    Trasatti, S., Ed.; Elsevier: Amsterdam, 1981; p 301; b) E. Slavcheva, V. Nikolova, T. Petkova, E. Lefterova, I. Dragieva, T. Vitanov and E. Budevski, Electrochim. Acta 2005, 50, 5444. c) T. Ioroi, Z. Siroma, N. Fujiwara, S. Yamazaki and K. Yasuda, Electrochem. Comm. 2005, 7, 183. d) H. Chhina, S. Campbell and O. Kesler, J. Power Sources 2006, 161, 893
    143. S. Trasatti, The electrochemistry of novel materials; J. Lipkowski, P. N. Ross, Eds.; VCH: New York, 1994; p 207
    144. L. Cao, F. Scheiba, C. Roth, F. Schweiger, C. Cremers, U. Stimming, H. Fuess, L. Chen, W. Zhu, X. Qui, Angew. Chem. Int. Ed. 2006, 45, 5315
    145. B. J. Hwang, S. M. S. Kumar, C-H. Chen, R-W. Chang, D- G. Liu, J- F. Lee, J. Phys. Chem. C 2008, 112, 2370
    146. E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma, Nano letter 2009, 9, 2255
    147. D. R. Rolison, P. L. Hagans, K. E. Swider, J. W. Long, Langmuir 1999, 15, 774
    148. R. Fu, Z. Ma, J. P. Zheng, J. Phys. Chem. B 2002, 106, 3592
    149. S-Y. Huang, C-M. Chang, K-W. Wang, C-T. Yeh, Chem Phys Chem 2007, 8, 1774
    150. W. Dmowski, T. Egami, K. E. Swider -Lyons, C. T. Love , D. R. Rolison, J. Phys. Chem. B 2002, 106, 12677
    151. M. Tsuji, M. Kubokawa, R. Yano, N. Miyamae, T. Tsuji, M-S. Jun, S. Hong, S. Lim, S-H. Yoon, I. Mochida, Langmuir 2007, 23, 387
    152. M. K. Debe, A. K. Schmoeckel, G. D. Vernstrom, R. Atanasoski, Journal of Power Sources 2006, 161, 1002
    153. T. E. Mallouk, Nature 1990, 343, 515
    154. B. C. H. Steele, A. Heinzel, Nature 2001, 414, 345
    155. M. L. Perry, T. F. Fuller, J. Electrochem. Soc. 2002, 149, S59
    156. E. Yeager, Electrochim. Acta, 1984, 29, 1527
    157. N. M. Marković , T. J. Schmidt, V. Stamenković , P. N. Ross, Fuel Cells (Weinh.) 2001, 1, 105
    158. N. M. Marković, P. N. Ross, Surf. Sci. Rep. 2002, 45, 117
    159. W. Chen, J. Kim, S. Sun, S. Chen, J. Phys. Chem. C 2008, 112, 3891
    160. C. Koenigsmanna and S. S. Wong, Energy Environ. Sci., 2011, 4, 1161
    161. E. P. Lee, Z. Peng, W. Chen, S. Chen, H. Yang, and Y. Xia, ACS Nano, 2008, 2, 2167
    162. Yu, X. W.; Ye, S. Y, J. Power Sources 2007, 172, 145–154
    163. F. Su, J. Zeng, X. Bao, Y. Yu, J. Y. Lee, X. S. Zhao, Chem. Mater. 2005, 17, 3960
    164. S. F. Zheng, J. S. Hu, L. S. Zhong, L. J. Wan, W. G. Song, J. Phys. Chem. C 2007, 111, 1117
    165. S.H. Sun, F. Jaouen, J. P. Dodelet, Adv. Mater. 2008 , 20 , 3900
    166. E. P. Lee, Z. M. Peng, W. Chen, S. W. Chen, H. Yang, Y. N. Xia , ACS Nano 2008 , 2 , 2167 .
    167. H. J. Zhou , W. P. Zhou, R. R. Adzic, S. S. Wong, J. Phys. Chem. C 2009 , 113 , 5460 .
    168. W. Chen, M. Waje, W. Z. Li, Y. S. Yan, Angew. Chem. Int. Ed. 2007, 46, 4060.
    169. S. Sun, G. Zhang, D. Geng, Y. Chen, R. Li, M. Cai, and X. Sun, Angew. Chem. Int. Ed. 2010, 49, 1
    170. J. Chen, T. Herricks, M. Geissler, Y. Xia, J. Am. Chem. Soc. 2004, 126, 10854
    171. a) Z.W. Chen, M. Waje, W. Z. Li, Y. S. Yan, Angew. Chem. 2007, 119, 4138; b) Z. Chen, M. Waje, W. Li, and Y. Yan, Angew. Chem. Int. Ed. 2007, 46, 4060
    172. H. J. Zhou,W. P. Zhou, R. R. Adzic, S. S.Wong, J. Phys. Chem. C 2009, 113, 5460
    173. S. Sun, D. Yang, G. Zhang, E. Sacher, and J-P. Dodelet, Chem. Mater. 2007, 19, 6376
    174. S. Sun, G. Zhang, D. Geng, Y. Chen, M. N. Banis, R. Li, M. Cai, and X. Sun, Chem. Eur. J. 2010, 16, 829
    175. S. Sun, G. Zhang, Y. Zhong, H. Liu, R. Li, X. Zhoub and X. Sun, Chem. Commun., 2009, 7048.
    176. a) Y. N. Xia, Y. J. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. 2009, 121, 62; b) Y. Xia, Y. Xiong, B. Lim, S.E Skrabalak, Angew. Chem. Int. Ed. 2009, 48, 60

    QR CODE