簡易檢索 / 詳目顯示

研究生: 李玲
Ling Lee
論文名稱: 以氧化釓摻雜氧化鈰擴散阻障層調控陰極/電解質介面活性點於固態氧化物燃料電池
Tunning Active Site of Cathode/Electrolyte Interface Using Gadolinia-Doped Ceria Diffusion Barrier Layer for Solid Oxide Fuel Cells
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 楊永欽
Yung-Chin Yang
陳彥友
Yen-Yu Chen
王丞浩
Cheng-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 148
中文關鍵詞: 中溫型固態氧化物燃料電池氧化釓摻雜氧化鈰擴散阻障層常壓電漿噴射束
外文關鍵詞: Intermediate Temperature Solid Oxide Fuel Cell, Gadolinia-doped Ceria, Diffusion Barrier Layers, Atmospheric Pressure Plasma Jet
相關次數: 點閱:629下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用常壓電漿噴射束系統(Atmospheric Pressure Plasma Jet, APPJ)製備氧化釓摻雜氧化鈰(Gd2O3-doped CeO2, GDC)擴散阻障層(Diffusion Barrier Layer)於商業化中溫型固態氧化物燃料電池(Intermediate Temperature-SOFC, IT-SOFC),尺寸為10 × 10 cm的大面積薄片狀結構體,全電池組態為LSM陰極層 / 10GDC中間層 / 8YSZ電解質層 / NiO+8YSZ陽極層。透過改變重複掃描次數提出了10GDC的一步成形機制以及對於IT-SOFC電性之影響。
    以空氣作為主要氣體與載氣氣體將前驅物引入電漿主區域內部,沉積於半電池之8YSZ電解質層上,完成10GDC擴散阻障層之製備,分別以X光繞射儀(XRD)、掃描式電子顯微鏡(FE-SEM)、X光螢光分析儀(XRF)、拉曼光譜儀(Raman)進行材料分析,最後以百格刀測試評估10GDC膜層之附著性。結果顯示經由常壓電漿噴射束能於短時間內將前驅溶液轉化為氧化物薄膜,製備出10GDC立方相螢石結構之膜層。化學組成分析結果也指出經由電漿製程所製備出的10GDC與初始所調配置之前驅物溶液摻雜比例結果一致,且附著性良好。
    以網版印刷法在燒結後的10GDC中間層上製備LSM陰極層,將其封裝並利用電化學分析儀進行測量。陽極端通入氫氣,陰極端通入空氣,操作溫度範圍設定在750°C ~ 800°C之間,研究操作溫度的不同、氣體流量的差異以及長時間穩定性測試。結果顯示隨著操作溫度的上升以及氣體流量的增加,電流密度和電功率密度皆呈現上升的趨勢,且隨著時間的推移,電流密度和電功率密度皆無下降的現象。製備10GDC中間層之全電池於操作溫度800°C下運行120小時電流值可高達74.72 A,最高之電功率密度為558.30 mW/cm2,與原始基材相比(46.37 A, 343.41 mW/cm2)電化學性能明顯提升。說明10GDC擴散阻障層能夠有效的在中溫環境下有良好的電性表現,有效地防止陰極層與電解質層之間的陽離子相互擴散,提高SOFC的穩定性和長期耐久性。


    This study utilized an Atmospheric Pressure Plasma Jet (APPJ) system to prepare Gadolinium-doped Ceria (GDC) diffusion barrier layers for Intermediate-Temperature Solid Oxide Fuel Cells (IT-SOFCs). The full cell configuration consisted of a LSM cathode layer / 10GDC intermediate layer / 8YSZ electrolyte layer / NiO+8YSZ anode layer. By varying the number of scan times, a one-step formation mechanism for 10GDC was proposed, along with an investigation of its impact on the electrochemical performance of IT-SOFCs.
    Compressed Dry Air (CDA) was used as the main and carrier gas to introduce precursor into the main plasma region, where they were deposited onto the 8YSZ electrolyte layer of the half-cell, completing the preparation of the 10GDC diffusion barrier layer. The crystal structure was analyzed using X-ray diffraction (XRD), the surface morphology of the films was observed using field emission scanning electron microscopy (FE-SEM). The chemical composition was identified using X-ray fluorescence analysis (XRF). Raman spectroscopy confirmed the presence of oxygen vacancies in the 10GDC material. The adhesion of the 10GDC film layer was evaluated using a tape test. The results show that the precursor solution can be rapidly transformed into oxide thin films using the APPJ. The 10GDC film with a cubic fluorite crystal structure was successfully prepared. The surface morphology of the composite layer was found to be uniform and smooth, with slight layering and crack formation. Chemical composition analysis confirmed that the 10GDC prepared through the plasma process had the same doping ratio as the initially prepared precursor solution, and it exhibited good adhesion properties.
    The LSM cathode layer was prepared on the sintered intermediate layer using a screen printing method, thereby completing the fabrication of the full cell. The assembled cell was encapsulated, and its electrochemical behavior was evaluated by conducting measurements using an electrochemical analyzer. At the anode side, hydrogen gas was supplied as the fuel, while at the cathode side, air was supplied as the oxidant. The operating temperature was set between 750°C to 800°C. The study investigated the effects of different operating temperatures, variations in gas flow rates, and long-term stability testing.
    The results show that as the operating temperature and gas flow rate increase, both the current density and power density exhibit an upward trend. Furthermore, there was no observed decrease in current density or power density over time. The full cell with the 10GDC intermediate layer achieved a maximum current value of 74.72 A and a maximum power density of 558.30 mW/cm² when operated at a temperature of 800°C for 120 hours. These values demonstrate a significant improvement in electrochemical performance compared to the original substrate (with a current value of 46.37 A and a power density of 343.41 mW/cm²). The 10GDC diffusion barrier layer demonstrates effective electrical performance in a medium-temperature environment. It efficiently prevents the diffusion of cations between the cathode layer and the electrolyte layer, thus enhancing the stability and long-term durability of the SOFC.

    中文摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 燃料電池簡介 1.3 研究目的與動機 第二章 文獻回顧 2.1 固態氧化物燃料電池 2.1.1 固態氧化物燃料電池簡介 2.1.2 固態氧化物燃料電池之電化學原理 2.1.3 固態氧化物燃料電池之電解質離子導電原理 2.2 固態氧化物電解電池 2.2.1 固態氧化物電解電池簡介 2.2.2 固態氧化物電解電池之電化學原理 2.3 電解質材料特性 2.3.1 鈣鈦礦型電解質 2.3.2 磷灰石型電解質 2.3.3 螢石型電解質 2.4 擴散阻障層材料特性 2.5 固態電解質之製備技術 2.5.1 固態反應法 2.5.2 共沉澱法 2.5.3 網版印刷法 2.5.4 刮刀成型法 2.5.5 溶膠凝膠法 2.5.6 濺鍍法 2.5.7 化學氣相沉積法 2.5.8 噴霧熱解法 2.5.9 電漿噴塗法 2.6 常壓電漿 2.6.1 電漿原理及反應 2.6.2 常壓電漿系統製備陶瓷材料 第三章 實驗設備與程序 3.1 實驗材料 3.2 實驗設備 3.3 實驗步驟 3.4 電漿內部物種分析 3.4.1 光學放射光譜儀 3.4.2 熱電偶感測儀 3.5 材料特性分析 3.5.1 X光繞射儀 3.5.2 場發射掃描式電子顯微鏡 3.5.3 全反射X光螢光分析儀 3.5.4 拉曼光譜儀 3.5.5 熱重分析儀 3.5.6 百格刀附著性測試 3.5.7 電性量測 第四章 結果與討論 4.1 常壓電漿噴射束於10GDC氧化物層之製程分析 4.1.1 常壓電漿噴射束之溫度量測 4.1.2 常壓電漿噴射束之電漿內部物種分析 4.1.3 前驅物溶液之特性分析 4.2 常壓電漿噴射束於10GDC氧化物層之材料分析 4.2.1 最佳參數設計 4.2.2 晶體結構分析 4.2.3 表面形貌分析 4.2.4 組成成分分析 4.2.5 拉曼光譜分析 4.2.6 附著性測試 4.2.7 薄膜成形機制 4.3 常壓電漿噴射束於10GDC氧化物層之電性分析 4.3.1 Pristine全電池之電性分析 4.3.2 10GDC全電池之電性分析 4.3.3 長時間電池測試 第五章 結論 第六章 未來展望 6.1 常壓電漿噴射束製備10GDC顆粒於全釩氧化還原液流電池之研究 第七章 參考文獻

    [1] Morris, C. R. (2012). The dawn of innovation: The first American industrial revolution. PublicAffairs.
    [2] Ifeanyi, O. E. (2018). A Review on Trace Elements and Petroleum Pollution. Int. J. Curr. Res. Chem. Pharm. Sci, 5(2), 4-12.
    [3] https://www.ipcc.ch/report/ar5/syr/
    [4] Keeling, C. D., Bacastow, R. B., Bainbridge, A. E., Ekdahl Jr, C. A., Guenther, P. R., Waterman, L. S., & Chin, J. F. (1976). Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. Tellus, 28(6), 538-551.
    [5] Hawkes, A., Staffell, I., Brett, D., & Brandon, N. (2009). Fuel cells for micro-combined heat and power generation. Energy & Environmental Science, 2(7), 729-744.
    [6] Lucia, U. (2014). Overview on fuel cells. Renewable and Sustainable Energy Reviews, 30, 164-169.
    [7] Larminie, J., Dicks, A., & McDonald, M. S. (2003). Fuel cell systems explained (Vol. 2, pp. 207-225). Chichester, UK: J. Wiley.
    [8] Grove, W. R. (1839). On a new voltaic combination of gasses by platinum. London and Edinburgh Philosophical Magazine, 14, 127-130
    [9] Ortiz-Rivera, E. I., Reyes-Hernandez, A. L., & Febo, R. A. (2007, August). Understanding the history of fuel cells. In 2007 IEEE conference on the history of electric power (pp. 117-122). IEEE.
    [10] Andújar, J. M., Segura, F., & Vasallo, M. J. (2008). A suitable model plant for control of the set fuel cell− DC/DC converter. Renewable Energy, 33(4), 813-826.
    [11] Andújar, J. M., & Segura, F. (2009). Fuel cells: History and updating. A walk along two centuries. Renewable and sustainable energy reviews, 13(9), 2309-2322.
    [12] 楊志忠, 林頌恩, & 韋文誠. (2003). 燃料電池的發展現況. 科學發展.
    [13] Switzer, J. A., Hung, C. J., Breyfogle, B. E., Shumsky, M. G., Van Leeuwen, R., & Golden, T. D. (1994). Electrodeposited defect chemistry superlattices. Science, 264(5165), 1573-1576.
    [14] Singhal, S. C. (2000). Advances in solid oxide fuel cell technology. Solid state ionics, 135(1-4), 305-313.
    [15] Choudhury, A., Chandra, H., & Arora, A. (2013). Application of solid oxide fuel cell technology for power generation—A review. Renewable and Sustainable Energy Reviews, 20, 430-442.
    [16] Mahato, N., Banerjee, A., Gupta, A., Omar, S., & Balani, K. (2015). Progress in material selection for solid oxide fuel cell technology: A review. Progress in Materials Science, 72, 141-337.
    [17] Pornprasertsuk, R., Ramanarayanan, P., Musgrave, C. B., & Prinz, F. B. (2005). Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles. Journal of applied physics, 98(10), 103513.
    [18] Leng, Y. J., et al. "Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction." Solid State Ionics 170.1-2 (2004): 9-15.
    [19] Dönitz, W., & Erdle, E. (1985). High-temperature electrolysis of water vapor—status of development and perspectives for application. International Journal of Hydrogen Energy, 10(5), 291-295.
    [20] Isenberg, A. O. (1981). Energy conversion via solid oxide electrolyte electrochemical cells at high temperatures. Solid State Ionics, 3, 431-437.
    [21] Ni, M., Leung, M. K., Sumathy, K., & Leung, D. Y. (2006). Potential of renewable hydrogen production for energy supply in Hong Kong. International journal of hydrogen energy, 31(10), 1401-1412.
    [22] Moriarty, P., & Honnery, D. (2019). Prospects for hydrogen as a transport fuel. International Journal of Hydrogen Energy, 44(31), 16029-16037.
    [23] Hauch, Anne, et al. "Highly efficient high temperature electrolysis." Journal of Materials Chemistry 18.20 (2008): 2331-2340.
    [24] Laguna-Bercero, M. A. (2012). Recent advances in high temperature electrolysis using solid oxide fuel cells: A review. Journal of Power sources, 203, 4-16.
    [25] Jiang, S. P. (2019). Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells-A review. International Journal of Hydrogen Energy, 44(14), 7448-7493.
    [26] Ni, M., Leung, M. K., & Leung, D. Y. (2008). Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). International journal of hydrogen energy, 33(9), 2337-2354.
    [27] Ivers-Tiffée, Ellen, André Weber, and Dirk Herbstritt. "Materials and technologies for SOFC-components." Journal of the European Ceramic Society 21.10-11 (2001): 1805-1811.
    [28] Chroneos, A., Vovk, R. V., Goulatis, I. L., & Goulatis, L. I. (2010). Oxygen transport in perovskite and related oxides: A brief review. Journal of alloys and compounds, 494(1-2), 190-195.
    [29] Huang, K., & Goodenough, J. B. (2000). A solid oxide fuel cell based on Sr-and Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer. Journal of Alloys and Compounds, 303, 454-464.
    [30] Ishihara, T., Tabuchi, J., Ishikawa, S., Yan, J., Enoki, M., & Matsumoto, H. (2006). Recent progress in LaGaO3 based solid electrolyte for intermediate temperature SOFCs. Solid State Ionics, 177(19-25), 1949-1953.
    [31] Yoshioka, H. (2006). Oxide ionic conductivity of apatite-type lanthanum silicates. Journal of alloys and compounds, 408, 649-652.
    [32] Nakayama, S., & Sakamoto, M. (1998). Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE= La, Pr, Nd, Sm, Gd, Dy). Journal of the European Ceramic Society, 18(10), 1413-1418.
    [33] Yoshioka, H., Mitsui, T., Mineshige, A., & Yazawa, T. (2010). Fabrication of anode supported SOFC using plasma-sprayed films of the apatite-type lanthanum silicate as an electrolyte. Solid State Ionics, 181(37-38), 1707-1712.
    [34] Navrotsky, A. (2010). Thermodynamics of solid electrolytes and related oxide ceramics based on the fluorite structure. Journal of Materials Chemistry, 20(47), 10577-10587.
    [35] Liu, T., Zhang, X., Wang, X., Yu, J., & Li, L. (2016). A review of zirconia-based solid electrolytes. Ionics, 22, 2249-2262.
    [36] Steele, B. C. (2000). Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C. Solid state ionics, 129(1-4), 95-110.
    [37] Jaiswal, N., Tanwar, K., Suman, R., Kumar, D., Upadhyay, S., & Parkash, O. (2019). A brief review on ceria based solid electrolytes for solid oxide fuel cells. Journal of Alloys and Compounds, 781, 984-1005.
    [38] Kharton, V. V., Marques, F. M. B., & Atkinson, A. (2004). Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics, 174(1-4), 135-149.
    [39] Hwang, S., Lee, J., Kang, G., Choi, M., Kim, S. J., Lee, W., & Byun, D. (2021). A hydrogel-assisted GDC chemical diffusion barrier for durable solid oxide fuel cells. Journal of Materials Chemistry A, 9(19), 11683-11690.
    [40] Sønderby, S., Klemensø, T., Christensen, B. H., Almtoft, K. P., Lu, J., Nielsen, L. P., & Eklund, P. (2014). Magnetron sputtered gadolinia-doped ceria diffusion barriers for metal-supported solid oxide fuel cells. Journal of Power Sources, 267, 452-458.
    [41] Kumar, Amit, et al. "Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications." Chemical Reviews 122.15 (2022): 12748-12863.
    [42] Akbar, M., Qu, G., Yang, W., Gao, J., Yousaf, M., Mushtaq, N., ... & Xia, C. (2022). Fast ionic conduction and rectification effect of NaCo0.5Fe0.5O2-CeO2 nanoscale heterostructure for LT-SOFC electrolyte application. Journal of Alloys and Compounds, 924, 166565.
    [43] Leng, Y. J., Chan, S. H., Jiang, S. P., & Khor, K. A. (2004). Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction. Solid State Ionics, 170(1-2), 9-15.
    [44] Okkay, H., Bayramoglu, M., & Öksüzömer, M. F. (2013). Ce0.8Sm0.2O1.9 synthesis for solid oxide fuel cell electrolyte by ultrasound assisted co-precipitation method. Ultrasonics sonochemistry, 20(3), 978-983.
    [45] Baharuddin, N. A., Abdul Rahman, N. F., Abd. Rahman, H., Somalu, M. R., Azmi, M. A., & Raharjo, J. (2020). Fabrication of high‐quality electrode films for solid oxide fuel cell by screen printing: A review on important processing parameters. International Journal of Energy Research, 44(11), 8296-8313.
    [46] Lee, Y., Joo, J. H., & Choi, G. M. (2010). Effect of electrolyte thickness on the performance of anode-supported ceria cells. Solid State Ionics, 181(37-38), 1702-1706.
    [47] Zhao, L., Huang, X., Zhu, R., Lu, Z., Sun, W., Zhang, Y., ... & Su, W. (2008). Optimization on technical parameters for fabrication of SDC film by screen-printing used as electrolyte in IT-SOFC. Journal of Physics and Chemistry of Solids, 69(8), 2019-2024.
    [48] Nishihora, R. K., Rachadel, P. L., Quadri, M. G. N., & Hotza, D. (2018). Manufacturing porous ceramic materials by tape casting—A review. Journal of the European Ceramic Society, 38(4), 988-1001.
    [49] Song, J. H., Park, S. I., Lee, J. H., & Kim, H. S. (2008). Fabrication characteristics of an anode-supported thin-film electrolyte fabricated by the tape casting method for IT-SOFC. Journal of materials processing technology, 198(1-3), 414-418.
    [50] Moon, H., Kim, S. D., Hyun, S. H., & Kim, H. S. (2008). Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing. International journal of hydrogen energy, 33(6), 1758-1768.
    [51] Bokov, D., Turki Jalil, A., Chupradit, S., Suksatan, W., Javed Ansari, M., Shewael, I. H., ... & Kianfar, E. (2021). Nanomaterial by sol-gel method: synthesis and application. Advances in Materials Science and Engineering, 2021, 1-21.
    [52] Kuo, Y. L., & Su, Y. M. (2012). Sintering behaviour and electrical properties of gadolinia-doped ceria modified by addition of silicon oxide and titanium oxide. Micro & Nano Letters, 7(5), 472-475.
    [53] Prasad, D. H., Son, J. W., Kim, B. K., Lee, H. W., & Lee, J. H. (2008). Synthesis of nano-crystalline Ce0.9Gd0.1O1.95 electrolyte by novel sol–gel thermolysis process for IT-SOFCs. Journal of the European Ceramic Society, 28(16), 3107-3112.
    [54] Hughes, M. (2014). What is sputtering? Magnetron sputtering. Semicore. Published November, 24.
    [55] Lin, S. E., Kuo, Y. L., Chou, C. H., & Wei, W. C. J. (2010). Characterization of electrolyte films deposited by using RF magnetron sputtering a 20 mol % gadolinia-doped ceria target. Thin solid films, 518(24), 7229-7232.
    [56] Kuo, Y. L., Lee, C., Chen, Y. S., & Liang, H. (2009). Gadolinia-doped ceria films deposited by RF reactive magnetron sputtering. Solid State Ionics, 180(26-27), 1421-1428.
    [57] Kim, J. W., Jang, D. Y., Kim, M., Choi, H. J., & Shim, J. H. (2016). Nano-granulization of gadolinia-doped ceria electrolyte surface by aerosol-assisted chemical vapor deposition for low-temperature solid oxide fuel cells. Journal of Power Sources, 301, 72-77.
    [58] Seydel, J., Becker, M., Ivers-Tiffée, E., & Hahn, H. (2009). Granular nanocrystalline zirconia electrolyte layers deposited on porous SOFC cathode substrates. Materials Science and Engineering: B, 164(1), 60-64.
    [59] Patil, P. S. (1999). Versatility of chemical spray pyrolysis technique. Materials Chemistry and physics, 59(3), 185-198.
    [60] Kinoshita, T., Arastoo, A., Maruko, H., & Adachi, M. (2014). Synthesis of Porous Submicron Gd0.1Ce0.9O1.95 Particles by Carbon Nanoparticle-Addition Ultrasonic Spray Pyrolysis (CNA-USP) and Nanoparticle Preparation by Ball Milling. Aerosol Science and Technology, 48(10), 1080-1088.
    [61] Chourashiya, M. G., Pawar, S. H., & Jadhav, L. D. (2008). Synthesis and characterization of Gd0.1Ce0.9O1.95 thin films by spray pyrolysis technique. Applied Surface Science, 254(11), 3431-3435.
    [62] Tendero, C., Tixier, C., Tristant, P., Desmaison, J., & Leprince, P. (2006). Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B: Atomic Spectroscopy, 61(1), 2-30.
    [63] Li, C. J., Ning, X. J., & Li, C. X. (2005). Effect of densification processes on the properties of plasma-sprayed YSZ electrolyte coatings for solid oxide fuel cells. Surface and coatings technology, 190(1), 60-64.
    [64] Vaßen, R., Kaßner, H., Mauer, G., & Stöver, D. (2010). Suspension plasma spraying: process characteristics and applications. Journal of thermal spray technology, 19, 219-225.
    [65] Jordan, E. H., Jiang, C., & Gell, M. (2015). The solution precursor plasma spray (SPPS) process: a review with energy considerations. Journal of Thermal Spray Technology, 24, 1153-1165.
    [66] Marr, M., Kuhn, J., Metcalfe, C., Harris, J., & Kesler, O. (2014). Electrochemical performance of solid oxide fuel cells having electrolytes made by suspension and solution precursor plasma spraying. Journal of Power Sources, 245, 398-405.
    [67] Bogaerts, A., Neyts, E., Gijbels, R., & Van der Mullen, J. (2002). Gas discharge plasmas and their applications. Spectrochimica Acta Part B: Atomic Spectroscopy, 57(4), 609-658.
    [68] Merche, D., Vandencasteele, N., & Reniers, F. (2012). Atmospheric plasmas for thin film deposition: A critical review. Thin Solid Films, 520(13), 4219-4236.
    [69] Schutze, A., Jeong, J. Y., Babayan, S. E., Park, J., Selwyn, G. S., & Hicks, R. F. (1998). The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE transactions on plasma science, 26(6), 1685-1694.
    [70] Yokoyama, T., Kogoma, M., Moriwaki, T., & Okazaki, S. (1990). The mechanism of the stabilisation of glow plasma at atmospheric pressure. Journal of Physics D: Applied Physics, 23(8), 1125.
    [71] FAUCHAIS, P. (1990). Plasmas thermiques. Production et applications. Techniques de l'ingénieur. Génie électrique, 4(D2820), 1-25.
    [72] Light, N., & Kesler, O. (2013). Air plasma sprayed Cu–Co–GDC anode coatings with various Co loadings. Journal of power sources, 233, 157-165.
    [73] Hsu, Y. W., Li, H. C., Yang, Y. J., & Hsu, C. C. (2011). Deposition of zinc oxide thin films by an atmospheric pressure plasma jet. Thin Solid Films, 519(10), 3095-3099.
    [74] Soukup, L., Hubička, Z., Churpita, A., Čada, M., Pokorný, P., Zemek, J., ... & Jastrabı́k, L. (2003). Investigation of the atmospheric RF torch-barrier plasma jet for deposition of CeOx thin films. Surface and Coatings Technology, 169, 571-574.
    [75] Devia, D. M., Rodriguez-Restrepo, L. V., & Parra, E. R. (2015). Methods employed in optical emission spectroscopy analysis: a review. Ingeniería y ciencia, 11(21), 239-267.
    [76] Raval, N., Maheshwari, R., Kalyane, D., Youngren-Ortiz, S. R., Chougule, M. B., & Tekade, R. K. (2019). Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In Basic fundamentals of drug delivery (pp. 369-400). Academic Press.
    [77] Akhtar, K., Khan, S. A., Khan, S. B., & Asiri, A. M. (2018). Scanning electron microscopy: Principle and applications in nanomaterials characterization. Handbook of materials characterization, 113-145.
    [78] Nanakoudis, A. (2019). EDX analysis with SEM: How does it work. ThermoFisher Scientific.
    [79] Yang, T., Fan, X., & Zhou, J. (2020). Total Reflection X-Ray Fluorescence Spectroscopy. Open Access Library Journal, 7(8), 1-12.
    [80] Heal, G. R. (2002). Thermogravimetry and derivative thermogravimetry. Principles of thermal analysis and calorimetry, 52.
    [81] Deng, X. L., Nikiforov, A. Y., Vanraes, P., & Leys, C. (2013). Direct current plasma jet at atmospheric pressure operating in nitrogen and air. Journal of Applied Physics, 113(2), 023305.
    [82] Walkup, R. E., Saenger, K. L., & Selwyn, G. S. (1986). Studies of atomic oxygen in O2 + CF4 rf discharges by two‐photon laser‐induced fluorescence and optical emission spectroscopy. The Journal of chemical physics, 84(5), 2668-2674.
    [83] Wang, R. X., Nian, W. F., Wu, H. Y., Feng, H. Q., Zhang, K., Zhang, J., ... & Fang, J. (2012). Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation. The European Physical Journal D, 66, 1-7.
    [84] Chung, T. H., Ra Kang, H., & Keun Bae, M. (2012). Optical emission diagnostics with electric probe measurements of inductively coupled Ar/O2/Ar-O2 plasmas. Physics of Plasmas, 19(11), 113502.
    [85] Kumar, S., Park, J., Singh, V. K., Nam, S. H., Yoo, C. Y., & Lee, Y. (2021). Univariate and multivariate analyses of Gd in gadolinia-doped ceria using laser-induced breakdown spectroscopy. Optik, 240, 166909.
    [86] Kumar, S., Park, J., Yoo, C. Y., Nam, S. H., & Lee, Y. (2022). Quantitative analysis of ceria co-doped with samarium and gadolinium using laser-induced breakdown spectroscopy. Analytical Methods, 14(6), 597-605.
    [87] Park, J., Kumar, S., Han, S. H., Singh, V. K., Nam, S. H., Yoo, C. Y., & Lee, Y. (2021). Multivariate stoichiometric analysis of gadolinium-doped ceria using low-power low-resolution laser-induced breakdown spectroscopy. Optik, 247, 167919.
    [88] Solovyev, A. A., Rabotkin, S. V., Shipilova, A. V., & Ionov, I. V. (2019). Magnetron sputtering of gadolinium-doped ceria electrolyte for intermediate temperature solid oxide fuel cells. Int. J. Electrochem. Sci, 14, 575-584.
    [89] Liu, H., Mao, X., & Jiang, S. (2022). Influence of substrate temperature on the microstructure of YSZ films and their application as the insulating layer of thin film sensors for harsh temperature environments. Ceramics International, 48(10), 13524-13530.
    [90] Tsipas, S. A., & Golosnoy, I. O. (2011). Effect of substrate temperature on the microstructure and properties of thick plasma-sprayed YSZ TBCs. Journal of the European Ceramic Society, 31(15), 2923-2929.
    [91] Kainbayev, N., Sriubas, M., Virbukas, D., Rutkuniene, Z., Bockute, K., Bolegenova, S., & Laukaitis, G. (2020). Raman study of nanocrystalline-doped ceria oxide thin films. Coatings, 10(5), 432.
    [92] Cheng, Z., & Liu, M. (2007). Characterization of sulfur poisoning of Ni–YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy. Solid State Ionics, 178(13-14), 925-935.
    [93] Sato, Tsutomu, and Shoji Tateyama. "Temperature dependence of the linewidth of the first-order Raman spectrum for crystalline CeO2." Physical Review B 26.4 (1982): 2257.
    [94] Dalmoro, A., Barba, A. A., & d’Amore, M. (2013). Analysis of size correlations for microdroplets produced by ultrasonic atomization. The Scientific World Journal, 2013.
    [95] J. Chen, F. Liang, L. Liu, S. Jiang, B. Chi, J. Pu, et al., "Nano-structured (La, Sr)(Co, Fe)O3-YSZ composite cathodes for intermediate temperature solid oxide fuel cells," Journal of Power Sources, vol. 183, pp. 586-589 (2008).
    [96] Bayeh, A. W., Lin, G. Y., Chang, Y. C., Kabtamu, D. M., Chen, G. C., Chen, H. Y., ... & Wang, C. H. (2020). Oxygen-vacancy-rich cubic CeO2 nanowires as catalysts for vanadium redox flow batteries. ACS Sustainable Chemistry & Engineering, 8(45), 16757-16765.
    [97] Zhou, H., Xi, J., Li, Z., Zhang, Z., Yu, L., Liu, L., ... & Chen, L. (2014). CeO2 decorated graphite felt as a high-performance electrode for vanadium redox flow batteries. Rsc Advances, 4(106), 61912-61918.

    無法下載圖示 全文公開日期 2028/08/24 (校內網路)
    全文公開日期 2028/08/24 (校外網路)
    全文公開日期 2028/08/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE