簡易檢索 / 詳目顯示

研究生: 謝宜宏
Yi-hung Hsieh
論文名稱: 固態氧化物燃料電池密封之研究
Research on Solid Oxide Fuel Cell Sealing
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 周振嘉
Chen-Chia Chou
周賢鎧
Shyan-Kay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 96
中文關鍵詞: 固態氧化物燃料電池壓力密封流量洩漏率電池堆
外文關鍵詞: Compressive seals
相關次數: 點閱:136下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在固態氧化物燃料電池(Solid Oxide Fuel Cell)的研究中,密封裝置是一個相當重要的關鍵,一般文獻在密封方式上大多使用硬密封(Rigid bonded seals)方式與壓力密封(Compressive seals)方式。硬密封具有較佳的密封效能,但密封材料條件嚴苛且不易維修拆卸。壓力密封可解決硬密封之缺點,但仍有密封效能隨著施加壓力大小改變、電池試片承受過大壓力容易損壞等缺點。本研究主要目的是找出壓力密封適合的密封結構與密封材料。
    本研究所設計之單電池壓力密封結構,將使用不鏽鋼(AISI 304)與雲母片(Mica)為密封材料,並製作簡易模型測試兩種材料其各自的密封性能。於不鏽鋼密封方式,測試出最適合之溝槽尺寸為Gap A與變形壓力1000kgf(9.8kN)之組合。模擬單電池氣體流動情況,量測不同溫度下的流量洩漏率,5%H2燃料氣體,流量設定為100sccm,兩者均於800℃時有較小的流量洩漏率,不鏽鋼為1%,雲母為2%。此外,亦進行三個熱循環測試,皆能保持良好密封性能。
    單電池測試部分,使用Ni-YSZ/YSZ/Pt-YSZ半電池試片,採不鏽鋼搭配雲母片於不同密封處之組合式密封結構,5%H2燃料氣體、流量設定為100sccm時,於800℃有較佳的流量洩漏率為3%,最高的功率密度為58.86 mW/cm2。若改為15%H2燃料氣體,800℃時最高功率密度為66.22 mW/cm2。與文獻相比,本研究之密封結構設計可有效提升電池發電效益。最後,根據單電池密封方式之概念,提出以3-cell堆疊的電池堆初步設計整體結構與密封方式。


    In solid oxide fuel cell (SOFC) studies, sealing is an important issue. It can be generally categorized into rigid bonded seals and compressive seals in the literature. Rigid bonded seals have better sealing performance, but sealing materials are limited and maintenance is difficult. Compressive seals can resolve above issues, but its performance depends on the applied pressure and cell specimens may damage if over-pressurized. The purpose of this research is to obtain suitable compressive seals structure and sealing materials.
    In this research, compressive seal structure of the single cell utilized stainless steel (AISI 304) and Mica as sealing materials. In order to evaluate the sealing performance of each material, simplified test models were first adopted respectively. In stainless steel seals, the most suitable gap size (Gap A) and compressive pressure (9.8kN) were determined by experiments. Simulating the gas flow in a single-cell, the leakage rates of the flow at different temperatures were measured. The fuel gas was 5% H2 and the flow rate was set to be 100 sccm. Both sealing materials had fewer leakage rate at 800℃—1% for stainless steel and 2% for Mica. Moreover, three thermal cycles were tested and the sealing performances were preserved.
    In the single-cell test, using Ni-YSZ/YSZ/Pt-YSZ specimens, the cell was sealed with the combination of stainless steel and mica at different locations. When the flow rate of 5% H2 fuel gas was 100 sccm, the better leakage rate of 3% occurred at 800℃ with the best power density of 58.86 mW/cm2. If gas changed to 15%, the best power density was 66.22 mW/cm2 at 800 ℃. Compared with the literature, the seal structure designed in this research can effectively enhance SOFC power generation efficiency. Finally, based on the single-cell sealing concept, a preliminary design of 3-cell stacks was proposed.

    摘要 I Abstract II 致謝 III 目錄 IV 圖索引 VIII 表索引 XIV 第一章 緒論................................................................1 1.1 研究背景與動機......................................................1 1.2 研究目的............................................................3 1.3 論文架構............................................................6 第二章 理論基礎與文獻探討..................................................7 2.1 燃料電池簡介........................................................7 2.1.1 燃料電池之歷史......................................................8 2.1.2 燃料電池之種類......................................................11 2.2 固態氧化物燃料電池..................................................13 2.2.1 固態氧化物燃料電池之運作原理........................................13 2.2.2 固態氧化物燃料電池之組成元件........................................14 2.2.2.1 電解質..............................................................15 2.2.2.2 陽極................................................................15 2.2.2.3 陰極................................................................16 2.2.2.4 雙極板..............................................................16 2.2.3 固態氧化物燃料電池之分類............................................16 2.2.3.1 管狀式SOFC..........................................................17 2.2.3.2 平板式SOFC..........................................................19 2.3 固態氧化物燃料電池密封之簡介與相關研究..............................22 2.3.1 SOFC密封之簡介......................................................22 2.3.2 SOFC密封之相關研究..................................................26 第三章 固態氧化物燃料電池密封設計與洩漏測試................................30 3.1 平板式SOFC密封方式設計..............................................30 3.2 密封材料............................................................37 3.2.1 不鏽鋼(AISI 304)..................................................37 3.2.2 雲母片(Mica)......................................................39 3.3 密封性能測試........................................................41 3.3.1 量測方式與設備......................................................41 3.3.1.1 壓力量測方式........................................................41 3.3.1.2 流量量測方式........................................................42 3.3.1.3 熱循環量測方式......................................................43 3.3.1.4 實驗設備............................................................44 3.3.2 量測結果與分析......................................................46 3.3.2.1 壓力量測方式........................................................46 3.3.2.2 流量量測方式........................................................50 3.3.2.3 熱循環量測方式......................................................52 3.4 單電池密封設計......................................................54 第四章 固態氧化物燃料電池之單電池測試......................................57 4.1 單電池之構造........................................................58 4.1.1 單電池之零組件......................................................59 4.1.2 單電池PEN試片規格簡介[35]...........................................61 4.2 單電池性能測量方式..................................................63 4.2.1 極化電阻之測量......................................................63 4.2.2 發電效益(Power density)之測量.......................................66 4.2.3 升溫方式與量測設備..................................................67 4.3 單電池性能測量結果與分析............................................68 4.3.1 單電池密封效能......................................................68 4.3.2 交流阻抗分析單電池之極化電阻(Polarization resistance).............70 4.3.3 半電池發電效益(Power density)之測量...............................74 4.4 單電池性能量測燃料濃度與流量之影響..................................77 4.4.1 燃料濃度改變之性能測試..............................................77 4.4.2 燃料流量改變之性能測試..............................................79 4.5 電池堆設計..........................................................82 第五章 結論與未來研究方向..................................................89 5.1 結論................................................................89 5.2 未來研究方向........................................................90 參考文獻.....................................................................92

    [1] IPCC, Climate Change 2007:The Physical Science Basis, 2007.
    [2] 經濟部能源局, 油價資訊管理與分析系統.
    [3] K.S. Weil, The state-of-the-art in sealing technology for solid oxide fuel cells, JOM 58 (2006) 37-44.
    [4] S.P. Simner and J.W. Stevenson, Compressive mica seals for SOFC applications, Journal of Power Sources 102 (2001) 310-316.
    [5] W.R. Grove, Philos. Mag. Ser. , 1839.
    [6] G.J.K. Acres, Recent advances in fuel cell technology and its applications, Journal of Power Sources 100 (2001) 60-66.
    [7] H. Gregor, Fuel cell technology handbook, CRC PRESS, 2003.
    [8] V. Wolf, L. Arnold and H.A. Gasteiger, Handbook of Fuel Cells, WILEY, 2003.
    [9] 黃鎮江, 燃料電池, 全華科技圖書, 民92.
    [10] E. Bompard, R. Napoli, B. Wan and G. Orsello, Economics evaluation of a 5kW SOFC power system for residential use, International Journal of Hydrogen Energy 33 (2008) 3243-3247.
    [11] T. Inagaki, F. Nishiwaki, J. Kanou, S. Yamasaki, K. Hosoi, T. Miyazawa, M. Yamada and N. Komada, Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte, Elsevier Ltd, Oxford, OX5 1GB, United Kingdom, 2006, pp. 512-517.
    [12] S.C. Singhal and K. Kendall, High Temperature Solid Oxide Fuel Cells, Elsevier, 2003.
    [13] H.Y. Jung, S.H. Choi, H. Kim, J.W. Son, J. Kim, H.W. Lee and J.H. Lee, Fabrication and performance evaluation of 3-cell SOFC stack based on planar 10 cm x 10 cm anode-supported cells, Journal of Power Sources 159 (2006) 478-483.
    [14] D. Rotureau, J.P. Viricelle, C. Pijolat, N. Caillol and M. Pijolat, Development of a planar SOFC device using screen-printing technology, Journal of the European Ceramic Society 25 (2005) 2633-2636.
    [15] J.W. Fergus, Metallic interconnects for solid oxide fuel cells, Materials Science and Engineering A 397 (2005) 271-283.
    [16] N.M. Sammes, Y. Du and R. Bove, Design and fabrication of a 100 W anode supported micro-tubular SOFC stack, Journal of Power Sources 145 (2005) 428-434.
    [17] F. Tietz, H.P. Buchkremer and D. Stover, Components manufacturing for solid oxide fuel cells, Solid State Ionics 152-153 (2002) 373-381.
    [18] L. Blum, W.A. Meulenberg, H. Nabielek and R. Steinberger-Wilckens, Worldwide SOFC technology overview and benchmark, International Journal of Applied Ceramic Technology 2 (2005) 482-492.
    [19] F. Nishiwaki, T. Inagaki, J. Kano, J. Akikusa, N. Murakami and K. Hosoi, Development of disc-type intermediate-temperature solid oxide fuel cell, Journal of Power Sources 157 (2006) 809-815.
    [20] R.N. Singh, Sealing technology for solid oxide fuel cells (SOFC), International Journal of Applied Ceramic Technology 4 (2007) 134-144.
    [21] K.S. Weil, C.A. Coyle, J.S. Hardy, J.Y. Kim and G.-G. Xia, Alternative planar SOFC sealing concepts, Fuel Cells Bulletin 2004 (2004) 11-16.
    [22] R.N. Singh, High-temperature seals for Solid Oxide Fuel Cells (SOFC), Journal of Materials Engineering and Performance 15 (2006) 422-426.
    [23] S. Taniguchi, M. Kadowaki, T. Yasuo, Y. Akiyama, Y. Miyake and K. Nishio, Improvement of thermal cycle characteristics of a planar-type solid oxide fuel cell by using ceramic fiber as sealing material, Journal of Power Sources 90 (2000) 163-169.
    [24] Y.-S. Chou, J.W. Stevenson and L.A. Chick, Ultra-low leak rate of hybrid compressive mica seals for solid oxide fuel cells, Journal of Power Sources 112 (2002) 130-136.
    [25] M. Bram, S. Reckers, P. Drinovac, J. Monch, R.W. Steinbrech, H.P. Buchkremer and D. Stover, Deformation behavior and leakage tests of alternate sealing materials for SOFC stacks, Journal of Power Sources 138 (2004) 111-119.
    [26] J. Duquette and A. Petric, Silver wire seal design for planar solid oxide fuel cell stack, Journal of Power Sources 137 (2004) 71-75.
    [27] H. Yoshida, H. Yakabe, K. Ogasawara and T. Sakurai, Development of envelope-type solid oxide fuel cell stacks, Journal of Power Sources 157 (2006) 775-781.
    [28] M.C. Tucker, C.P. Jacobson, L.C. De Jonghe and S.J. Visco, A braze system for sealing metal-supported solid oxide fuel cells, Journal of Power Sources 160 (2006) 1049-1057.
    [29] S. Sang, W. Li, J. Pu and L. Jian, Novel Al2O3-based compressive seals for IT-SOFC applications, Journal of Power Sources 177 (2008) 77-82.
    [30] 黃代聖, 固態燃料電池相關元件製造, 機械工程研究所, 台灣科技大學, 台灣, 民國95年7月.
    [31] S. Le, K. Sun, N. Zhang, M. An, D. Zhou, J. Zhang and D. Li, Novel compressive seals for solid oxide fuel cells, Journal of Power Sources 161 (2006) 901-906.
    [32] 王繼敏, 不鏽鋼與金屬腐蝕, 科技圖書股份有限公司, 1992.
    [33] 賈德昌, 電子材料, 滄海書局, 2002.
    [34] Y.-S. Chou and J.W. Stevenson, Long-term thermal cycling of Phlogopite mica-based compressive seals for solid oxide fuel cells, Journal of Power Sources 140 (2005) 340-345.
    [35] 江志明, 固態氧化物燃料電池以高導電離子導體改良之新型陽極, 機械工程研究所, 國立台灣科技大學, 台灣, 民國96年7月.
    [36] F.P.F. van Berkel, F.H. van Heuveln and J.P.P. Huijsmans, Characterization of solid oxide fuel cell electrodes by impedance spectroscopy and I-V characteristics, Solid State Ionics 72 (1994) 240-247.
    [37] S.B. Adler, Limitations of charge-transfer models for mixed-conducting oxygen electrodes, Solid State Ionics 135 (2000) 603-612.
    [38] Q.-A. Huang, R. Hui, B. Wang and J. Zhang, A review of AC impedance modeling and validation in SOFC diagnosis, Electrochimica Acta 52 (2007) 8144-8164.
    [39] 李明展, 固態氧化物燃料電池封裝設計與超彈性Ni-Ti封裝元件有限元素分析, 機械工程研究所, 國立台灣科技大學, 台灣, 民國96年6月.

    無法下載圖示 全文公開日期 2013/07/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE