簡易檢索 / 詳目顯示

研究生: 王上瑜
Shang-Yu Wang
論文名稱: 以濺鍍法製備固態氧化物燃料電池之鎳-氧化鋯薄膜陽極與錳酸鍶鑭薄膜陰極之研究
The Study of Sputter-Deposited Ni-YSZ Thin Film Anode and LSM Thin Film Cathode for SOFC
指導教授: 周賢鎧
Shyankay Jou
口試委員: 郭東昊
Dong-Hau Kuo
周振嘉
Chen-Chia Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 103
中文關鍵詞: 濺鍍薄膜陽極薄膜陰極固態氧化物燃料電池
外文關鍵詞: sputtering, thin film anode, thin film cathode, SOFC
相關次數: 點閱:409下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主要分為兩大部分,第一部份以Ni-YSZ碟型基材作為陽極支撐(anode-supported),第二部份以YSZ碟型基材作為電解質支撐(electrolyte -supported),利用這兩種不同材料作為固態氧化物燃料電池的支撐系統,再利用濺鍍的方式製備多孔結構的薄膜電極,藉以增加三相界面反應點,進而降低反應極化電阻。
    實驗第一部份是以60wt%的NiO和40wt%的8YSZ混合粉末壓錠成形,經燒結與吹氫還原形成多孔Ni-YSZ碟型基材,電解質與陰極分別以反應式濺鍍和共濺鍍的方式沉積8YSZ薄膜與PtOx-YSZ複合薄膜,最後再進行退火熱處理使PtOx-YSZ還原成多孔Pt-YSZ複合薄膜陰極。由於經過熱處理後8YSZ薄膜會產生裂縫,而燃料電池對於電解質的要求必須極為緻密,因此造成在量測電池效能時由於電解質有裂縫而使兩端電極導通無法量測。
    實驗第二部份是以8YSZ粉末壓錠成形,經高溫燒結形成緻密的電解質碟型基材,厚度為0.5mm。陽極以共濺鍍方式沉積NiO-YSZ複合薄膜,陰極以濺鍍方式沉積LSM薄膜。另外,為了使LSM薄膜產生多孔結構,嘗試與PMMA和Ag共濺鍍,再經過800℃高溫熱氧化將PMMA去掉和讓Ag揮發而產生孔隙,並使LSM薄膜與NiO-YSZ薄膜由非晶質轉變為結晶相,之後進行800℃吹氫還原將NiO-YSZ薄膜還原為多孔性Ni-YSZ薄膜。
    本實驗進行單電池量測是採用雙氣室量測系統,於量測時在陽極端通入20%H2-80%Ar混合氣,陰極則曝露在空氣下。以Ni-YSZ薄膜陽極與LSM薄膜陰極製備電解質支撐之燃料電池,量測結果在800℃開路電壓為0.9V與最大功率密度31.35 mW/cm2。這結果也證實了利用磁控式濺鍍法製備的薄膜陽極與薄膜陰極應用在固態氧化物燃料電池的可行性。而由於利用PMMA與LSM共濺鍍無法產生多孔結構,和利用Ag與LSM共濺鍍使得薄膜的熱膨脹係數增大與基材附著性不佳,造成量測電池性能無法有效提升。


    In this study, we study two different configurations of solid oxide fuel cell (SOFC). One is anode-supported SOFC using Ni-YSZ disc, the other is electrolyte-supported SOFC using YSZ disc. By using sputter deposition technique, we produced a thin film with porous structure as the electrode. The porous sturucture is excepted to increase the three phase boundary, and decrease the polarization loss of the cell.
    The first part of study used 60wt% NiO and 40wt% 8YSZ mixed powders to form a NiO-YSZ disc which was then sintered and reduced in H2 to form Ni-YSZ. 8YSZ and PtOx-YSZ thin film were sputter-deposited and worked as electrolyte and cathode of SOFC, respectively. The PtOx-YSZ were converted to Pt-YSZ after annealing in air. The YSZ thin film were found cracked after heat treatment, resulting in test fail under performance measurement of the cell.
    The second part of study used 8YSZ disc as the electrolyte. The Ni-YSZ and LSM thin film were deposited by sputtering as anode and cathode, respectively. Besides, in order to produce porous structure, we tried to use PMMA and Ag with LSM by co-sputtering for cathode of SOFC.
    Performance of the cell was measured in two chamber system by using the gas of 20%H2-80%Ar as anode flow and exposed cathode to air. For the LSM thin film cathode, the maximum open circuit voltage is 0.9V and the maximum power density is 31.35 mW/cm2 at 800℃. This result demonstrate that it was feasible to use thin film as electrode for SOFC. Due to technical problems incurred when using co-sputter of PMMA with LSM, or co-sputter of Ag with LSM, the performance of the cell didn’t increase effectively.

    摘要…………………………………………………………………………………Ⅰ Abstract………………………………………………………………………………Ⅲ 目錄………………………………………………………………………………Ⅶ 表目錄……………………………………………………………………………Ⅹ 圖目錄………………………………………………………………………XI 第一章 前言………………………………………………………………………1 第二章 文獻回顧…………………………………………………………………6 2.1 燃料電池簡介……………………………………………………………6 2.2 固態氧化物燃料電池……………………………………………………7 2.3 固態氧化物燃料電池之工作原理………………………………………9 2.4 固態電解質………………………………………………………………11 2.5 電極結構與工作原理……………………………………………………14 2.5.1 陰極材料—錳酸鍶鑭氧化物(La xSr1-x MnO3)與Pt-YSZ………16 2.5.2 陽極材料—Ni-YSZ陶金陽極……………………………………18 2.5.3 陽極功能層(anode functional layer,AFL)………………20 2.6 燃料電池之電化學原理與量測系統………………………………22 2.6.1 電極之極化曲線(polarization Curve)………………22 2.6.2 單氣室之量測系統(Single Chamber System)……………………23 2.6.3 雙氣室之量測系統(Two Chamber System)………………………24 第三章 實驗原理………………………………………………26 3.1 真空鍍膜製程………………………………………………26 3.2 電漿的產生(Plasma) ………………………………26 3.3 磁控式濺鍍(Magnetron Sputtering) ……………………………27 3.4 射頻濺射………………………………………………28 3.5反應式濺鍍(Reactive Sputtering) ……………………………28 第四章 實驗方法與步驟…………………………………………………………30 4.1 實驗材料與藥品規格……………………………………………………30 4.2 實驗儀器與裝置………………………………………………………31 4.2.1 磁控式共濺鍍系統(Magnetron Co-sputtering System)…………32 4.2.2 真空爐(石英管狀爐)…………………………………………33 4.2.3 量測燃料電池之系統…………………………………………34 4.3 實驗步驟…………………………………………………………………37 4.3.1 矽基材清洗流程……………………………………………………37 4.3.2 陽極製備…………………………………………………………38 4.3.2-1 Ni-YSZ圓錠基材…………………………………………38 4.3.2-2 Ni-YSZ薄膜陽極…………………………………………41 4.3.3 Ni-YSZ陽極功能層(anode functional layer,AFL)…………42 4.3.4 8YSZ電解質之製備……………………………………………….43 4.3.5 陰極之製備………………………………………………………..45 4.3.5-1 Pt-YSZ薄膜陰極…………………………………………45 4.3.5-2 錳酸鍶鑭氧化物(La0.7Sr0.3MnO3)薄膜陰極………………..47 第五章 實驗結果與討論…………………………………………………………50 5.1 多孔性Ni-YSZ陽極之碟型基材…………………………………………50 5.1.1 XRD分析…………………………………………………………50 5.1.2 SEM形貌分析……………………………………………………52 5.2 Ni-YSZ陽極功能層與8YSZ薄膜電解質…………………………………54 5.3 Pt-YSZ薄膜陰極…………………………………………………………57 5.3.1 XRD分析……………………………………………………………57 5.3.2 SEM形貌分析……………………………………………………59 5.4 碟型8YSZ電解質…………………………………………………………62 5.5 Ni-YSZ多孔性薄膜陽極…………………………………………………63 5.5.1 XRD分析……………………………………………………………63 5.5.2 SEM形貌分析………………………………………………………64 5.6 錳酸鍶鑭(La0.7Sr0.3MnO3,LSM)薄膜陰極………………………………66 5.6.1 濺鍍LSM薄膜……………………………………………………66 5.6.2 利用C與LSM共濺鍍…………………………………………….68 5.6.3 利用PMMA與LSM共濺鍍………………………………………69 5.6.4 利用Ag與LSM共濺鍍……………………………………………73 5.7 固態氧化物燃料電池測試……………………………………………77 5.7.1 單電池量測(Ⅰ) …………………………………………………77 5.7.2 單電池量測(Ⅱ) ……………………………………………………81 5.7.3 單電池量測(Ш) ……………………………………………………87 第六章 結論…………………………………………………………………………91 參考文獻……………………………………………………………………………93 附錄………………………………………………………………………………103

    1.陳俊偉,「固態氧化物燃料電池氧化鋯電解質之韌性與金屬雙極板抗氧化性研究」,國立台灣科技大學材料所碩士論文,民國94年7月。
    2.黃江鎮,燃料電池,全華科技圖書,民國92年11月,第6-1頁。
    3.E. Ponthieu, “European fuel cell research, development and demonstrations: Future programmers and aims”, J. Power Sources 72 (1998) 244.
    4.R. A. George, N. F. Bessette, “Reducing the manufacturing cost of tubular SOFC technology”, J. Power Sources 71 (1998) 131-137.
    5.須齋 嵩,「燃料電池的最新開發動向」,電子材料,日本東京工業調查會45 (2006) 56-57.
    6.王先毅、呂明生等人編,材料會訊,第十二卷,第一期,94年 3月,第46頁。
    7.D. Rotureau, J.-P. Viricelle, C. Pijolat, N.Caillol and M. Pijolat, “Development of a Planar SOFC Device Using Screen-Printing Technology”, J. Eur. Ceram. Soc. 25 (2005) 2633-2636.
    8.H. Abe, K. Murata, T. FuKui, W.-J. Moon, K. Kanek and M. Naito, “Micro Structural Control of Ni-YSZ Cermet Anode for Planner Thin-Film Solid Oxide Fuel Cells”, Thin Solid Films 496 (2006) 49-52.
    9.M. Radovic and E. Lara-Curzio, “Mechanical properties of tape cast nickel-basked anode materials for solid oxide fuel cells before and after reduction in hydrogen”, Acta Mater. 52 (2004) 5747-5756.
    10.S. P. Jiang and S. H. Chan, “Development of Ni/Y2O3-ZrO2 Cermet Anode for Solid Oxide Fuel Cells”, Mater. Sci. Technol. 20 (2004) 1109-1118.
    11.Hiroya Abe, Kenji Murata, Takehisa Fukui, W.-J. Moon, Kenji Kaneko, Makio Naito, “Microstructural control of Ni-YSZ cermet anode for planar thin-film SOFCs”, Fuel Cells Bulletin 3 (2006) 12-15.
    12.J. Van herle, R. Ihringer, R. Vasquez Cavieres, L. Constantin, O. Bucheli, “Anode supported solid oxide fuel cells with screen-printed cathodes”, J. Eur. Ceram. Soc. 21 (2001) 1855-1859.
    13.Y. J. Leng, S. H. Chan, K. A. Khor, S. P. Jiang, “ Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte”, J. Hydrogen Energy 29 (2004) 1025-1033.
    14.Sun-Dong Kim, Jong-Jin Lee, Hwan Moon, Sang-Hoon Hyun, Jooho Moon, Joosun Kim,, Hae-Weon Lee, “Effects of anode and electrolyte microstructures on performance of solid oxide fuel cells”, J. Power Sources 169 (2007) 265-270.
    15.Kongfa Chen, Zhe Lü, Xiangjun Chen, Na Ai, Xiqiang Huang, Xiaobo Du, Wenhui Su, “Development of LSM-based cathodes for solid oxide fuel cells based on YSZ films” J. Power Sources 172 (2007) 742-748.
    16.Oh Hyun Kwon, Gyeong Man Choi, “Electrical conductivity of thick film YSZ”, Solid State Ionics 177 (2006) 3057-3062.
    17.Hong Huang, Masafumi Nakamura, Peichen Su, Rainer Fasching, Yuji Saito, Fritz B. Prinz, “High-Performance Ultrathin Solid Oxide Fuel Cells for Low-Temperature Operation” J. Electrochem. Soc. 154 (2007) B20-B24.
    18.黃鎮江編,「燃料電池之簡介」,燃料電池,台北,全華科技,民國94年,3月,第1 ~9頁。
    19.N. Q. Minh, “High-Tenperature Fuel Cells. Part 2: The Solid Oxide Cells”, Chem. Tech. 21 (1991) 120-26.
    20.A. H. Heuer and L.W. Hobbs. (Eds), Advances in Ceramics, Vol. 3, Science and Technology of Zirconia, American Ceramic Society, Columbus, OH, USA,1981.
    21.A. B. Stambouli and E. Traversa, “Solid Oxide fuel Cells(SOFCs):a Review of an Environmentally clean and Efficient Source of Energy”, Renew. Sust. Energ. Rev. 6 (2002) 433-455.
    22.黃炳照,鄭銘堯,「固態氧化物燃料電池之進展」,化工技術,第十卷,第6期,民國91年,6月,第132-148頁。
    23.蔡景文譯,「固態氧化物質型燃料電池系統」,電機月刊,第二卷,第九期,民國81年,9月,第158-163頁。
    24.T.L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, W. Huang, “Material research for planar SOFC stack”, Solid State Ionics 148 (2002) 513-519.
    25.衣寶廉(編)、黃朝榮、林修正(校訂),「固態氧化物燃料電池」,燃料電池-原理與應用,台北,五南圖書,民國94年,第430~550頁。
    26.司洪濤,李春正,G. L. HUFFMAN,「節約能源與污染預防之燃料電池技術介紹」,環境工程會刊,民國90年,11月。
    27.S. M. Haile, “Fuel cell materials and component”, Acta Mater. 51 (2003) 59-81.
    28.R. Steven, 2nd ,“Textbook on Zirconia”, Magnesium Elektron, New York, 1983 p.38.
    29.N. Bonanos, R. K. Slotwinski, B. C. H. Steel and E. P. Butler, “High ionic conductivity in polycrystalline tetragonal Y2O3-ZrO2”, J. Mater. Sci. Lett., 3 (1984) 245.
    30.郭景坤等譯,「陶瓷的結構與性能」,科學出版社,北京,6 (1998) p.94。
    31.A. H. Heuer and M. Ruhle, “On the nucleation of the martensitic transformation in zirconia”, Acta Metall., 33 (1985) 2101-2112.
    32.M. Rühle et al., “Phase transformations in ZrO2-containing ceramics: II. The martensitic reaction in t-ZrO2”, Sci. Technol. Zirconia, Adv. Ceram. 3 (1981), pp. 184–201.
    33.A. G. Evans and R. M. Cannon, “Toughening of brittle solids by martensitic transformations”, Acta metal. 34 (1986) 761-800.
    34.F. F. Lange, “Transformation toughening: Part 5: Effect of temperature and alloy on fracture toughness”, J. Mater. Sci. 17 (1982) 255-62.
    35.G. M. Wolten, “Diffusionless phase transformations in zirconia and hafnia” J, Am. Ceram. Soc. 46 (1963) 418.
    36.J. F. Baumard and P. Abelard, in Science and Technology of Zirconia II, N. Claussen, M. Rühle, and A. H. Heuer (eds.), Am. Cera. Soc., Columbus, OH , 555 (1984).
    37.N. L. Robertson and J. N. Michaels, “Oxygen Exchange on Platinum Electrodes in Zirconia Cells: Location of Electrochemical Reaction Sites”, J. Electrochem. Soc., 137 (1990) 129-135.
    38.T. H. Etsell and S. N. Flengas, “Overpotential Behavior of Stabilized Zirconia Solid Electrolyte Fuel Cells”, J. Electrochem. Soc. 118 (1971) 1890-1900.
    39.Meilin Liu, “Mixed-Conduction Electrodes for SOFCs Fundamentals and Chaaracterization”, 2005 Taiwan SOFC Symposium May 30-June 3, 2005, INER, Taiwan.
    40.S. C. Singhal and K. Kendall. (Eds),High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier, Birmingham, UK, 2003.
    41.A. Weber and E. Ivers-Tiffée, “Materials and Concepts for Solid Oxide Fuel Cells (SOFCs) in Stationary and Mobile Applications”, J. Power Sources 127 (2004) 273–283.
    42.張鈞源,「複合材料電極濺鍍於鐵電材料之電性研究」,台灣科技大學材料所碩士論文,民國94年7月。
    43.許凱超,「以反應式濺鍍及還原反應製備多孔性薄膜電極」,國立台灣科技大學材料科技研究所碩士論文,民國90年7月。
    44.J. H. Lee, H. Moon, H. W. Lee, J. Kim, J. D. Kim, J. H. Yoon, “Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni-YSZ cermet”, J. Solid State Ionics 148 (2002) 15-26.
    45.W. Hu, H. Guan, X. Sun, S. Li, M. Fukumoto, I. Okane, “Electrical and Thermal Conductivities of Nickel- Zirconia Cermets”, J. Am. Ceram. Soc. 81 (1998) 2209.
    46.Hideto Koide, Yoshiyuki Someya, Toshihiko Yoshida and Toshio Maruyama, “Properties of Ni/YSZ cermet as anode for SOFC”, Solid State Ionics 132 (2000) 253-260.
    47.Takehisa Fukui, Satoshi Ohara, Makio Naito, Kiyoshi Nogi, “Performance and stability of SOFC anode fabricated from NiO-YSZ composite particles”, J. Power Sources 110 (2002) 91-95.
    48.Teruhisa Horita, Haruo Kishimoto, Katsuhiko Yamaji, Yueping Xiong, Natsuko Sakai, Manuel E. Brito, Harumi Yokokawa, “Materials and reaction mechanisms at anode/electrolyte interfaces for SOFCs”, Solid State Ionics 177 (2006) 1941-1948.
    49.Sun Dong Kim, Sang Hoon Hyun, Jooho Moon, Jong-Hee Kim, Rak Hyun Song, “Fabrication and characterization of anode-supported electrolyte thin films for intermediate temperature solid oxide fuel cells”, J. Power Sources 139 (2005) 67-72.
    50.RaJendra N. Basu, Günter Blass, Hans Peter Buchkremer, Detlev Stöver, Frank Tietz, Egbert Wessel, Izaak C. Vinke, “Simplified processing of anode-supported thin film planar solid oxide fuel cells”, J. Eur. Ceram. Soc. 25 (2005) 463-471.
    51.E. Wanzenberg, F. Tietz, P. Panjan, D. Stöver, “Influence of pre- and post-heat treatment of anode substrates on the properties of DC-sputtered YSZ electrolyte films”, Solid State Ionics 159 (2003) 1-8.
    52.Na Ai, Zhe Lü, Kongfa Chen, Xiqiang Huang, Xiaobo Du, Wenhui Su, “Effects of anode surface modification on the performance of low temperature SOFCs”, J. Power Sources 171 (2007) 489-494.
    53.王月、熊楚強 主編,新版電化學,台北,新文京出版社,民國93年,第109~130頁。
    54.T. W. Napporn, X. J. Be´dard, F. Morin and M. Meuniera , “Operating Conditions of a Single-Chamber SOFC”, J. Electrochem. Soc. 151 (2004) A2088-A2094.
    55.B. E. Buergler, M. E. Siegrist and L. J. Gauckler, “Single chamber solid oxide fuel cells with integrated current-collectors”, Solid State Ionics 176, (2005) 1717-1722.
    56.M. Guillodo , P. Vernoux and J. Fouletier, “Electrochemical Properties of Ni–YSZ Cermet in Solid Oxide Fuel Cells Effect of Current Collecting”, Solid State Ionics 127 (2000) 99-107.
    57.B. Chapman, Glow Discharge Process, John Wiley and Sons, New York, 1982.
    58.羅吉宗編,「第二章 電漿物理」,薄膜科技與應用,台北,全華科技,民國94年。
    59.柯賢文編,「第五章 濺鍍鍍膜」,表面與薄膜處理技術,台北,全華科技,民國94年。
    60.D. L. Smith, Thin film Deposition Principles and Practice, The McGraw-Hill Companies, Inc., 1999, p 483-499.
    61.M. Ohring, The Materials Science of Thin Film, Academic Press, 1992.
    62.C. Y. Chang, F. Kai, GaAs High-Speed Devices, John Wiley and Sons, Inc., 1994, p 142-143.
    63.J. R. Hollahan and W. Kern (Eds), Thin Film Process, Academic Press, New York , 1978.
    64.J. Chapin, U.S. Patent No.438482, 1974; S. Schiller, “Target magnetic-field effects on deposition rate in rf magnetron sputtering”, Thin Solid Films, 40 (1997), 327.
    65.W. D. Westwood and S. Maniv, “The Current-Voltage Characteristic of Magnetron Sputtering System”, J. Appl. Phys. 54 (1983) 6841-6846.
    66.S. Maniv and W. D. Westwood, “Calculation of the Current-Voltage-Pressure Characteristic of Dc Diode Sputtering Discharge”, J. Appl. Phys. 53 (1982) 856-860.
    67.吳姿慧,「以共濺鍍法製備固態氧化物燃料電池之鎳-氧化鋯陽極薄膜研究」,國立台灣科技大學材料科技研究所碩士論文,民國95年5月。
    68.Selmar de Souza, Steven J. Visco, Lutgard C. De Jonghe, “Thin-film solid oxide fuel cell with high performance at low-temperature”, Solid State Ionics 98 (1997) 57-61.
    69.F. Tietz, F.J. Dias, B. Dubiel, H.J. Penkalla, “Manufacturing of NiO / NiTiO3 porous substrates and the role of zirconia impurities during sintering”, Mater. Sci. Eng. 68 (1999) 35-41.
    70.Tsou. C., Huang Y.S.,Chang H.C., “On the determination of thermal expansion coefficient of Thermal Oxide”, Nanotechnol. Conf. Trade Show Nanotech Techn. Proc. 8-12 (2005) 339-342.
    71.葉東育,「以共濺鍍法製備固態氧化物燃料電池之銅-氧化鈰-氧化鋯與鎳-氧化鈰-氧化鋯複合薄膜陽極之研究」,國立台灣科技大學材料科技研究所碩士論文,民國96年7月。

    QR CODE