簡易檢索 / 詳目顯示

研究生: 安德魯
Glen - Andrew Porter
論文名稱: 沉積鈦薄膜於不同基材上之熱應力分析
Characteristics and Thermal Behavior of Sputtered Titanium Thin Films on Various Substrates
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 黃榮芳
Rong-Fung Huang
褚晴暉
Ching-Hwei Chue
張瑞慶
Rwei-Ching Chang
楊鍚杭
Hsi-Harng Yang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 193
中文關鍵詞: 薄膜濺射熱應力X射線
外文關鍵詞: sputtering, thermal stress, x-ray diffraction, thin films, titanium
相關次數: 點閱:269下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Titanium films are growing in popularity, and are soon expected to replace copper for metallization purposes. However, the thermal stress behavior of titanium films had not been extensively studied, and therefore not clearly understood. Thus, the main goal of this work was to develop a systematic process to analyze and model the dσ/dT evolution between 20oC and 300oC, in sputtered, titanium thin films. A biaxial stress state has been legitimately assumed.

    In the laboratory, titanium films, with a nominal thickness of 200 nm, were deposited on five different kinds of unheated substrates, by RF magnetron sputtering. These substrates included titanium plate, soda-lime glass and three kinds of p-type silicon wafers, having crystallographic orientations of (100), (110) and (111). X-ray diffraction was used to characterize the crystallographic evolution with respect to temperature. By utilizing a heating chamber and special tooling, the lattice spacings were measured in-situ, and the thermal stress behaviors were estimated with either the sin2ψ method or the d-spacing method.

    All titanium films on silicon substrates displayed a stress that grew more compressive with a rise in temperature, largely due to the nature of their thermal expansions. The films deposited on silicon (111) appeared to be uniquely amorphous in the as-sputtered state, but at temperatures above 100oC, they resumed the same crystallographic orientations typically found in the other films. The stresses in the titanium films on the soda-lime glass and titanium plate substrates were both highly compressive, but the stress remained unchanged throughout the temperature cycle from 20oC to 300oC. The uneventful stress behavior was expected for films on these two substrates, since their differences in thermal expansion are nearly zero.

    The results appear to support the following conclusions:

    • The choice of a substrate has a great influence on the residual intrinsic stresses formed during deposition, and a smaller, although still significant, effect on the thermal stress evolution.
    • The sputtering parameters (i.e., deposition temperature, bias voltage, working gas pressure), play a dominant role in the crystallographic texture and growth behavior, whereas, the substrate epitaxy plays only a minor role, with the one exception of titanium on silicon (111).
    • The geometry of the sputtering chamber and the physical conditions of the deposition process have an extremely strong influence on the residual stress.
    • Because of the anisotropy in stiffness, according to the individual grain orientations, certain grains appear to bear more strain under a compressive stress, whereas, other grains may remain in tension.
    • The variance in the CTE has a much more powerful bearing on the stress behavior than any uncertainty surrounding the true value of the film modulus.
    • The electrical resistance is reduced as a result of the thermal cycle, which indicates more crystallographic order after heating.
    • Surface profiling indicated that the roughnesses of the films can exceed the film thicknesses, even at temperatures as low as 60°C, which implies that some amount of material transport is occurring, and that the Stoney method has a limited precision, especially for extremely thin films.

    Out of all the film and substrate combinations covered by this study, the stress behavior of the titanium films on the silicon (100) substrates was investigated the most intensely. A modified stress rule from the literature was used to analyze the component stresses, and polynomial estimations of the CTE were used to enhance accuracy. A simple linear function of stress has been implemented to capture how the changes in the CTE affect the extrinsic stress estimation, and this effect has been termed, the “curl”.

    A special behavior in the titanium films on silicon (100) substrates was identified to be an intrinsic stress relaxation. This behavior was considered to be a special occurrence of a strain-induced-restructuring, having an activation energy delivered by the extrinsic, thermal stress. Two scale models are suggested from different viewpoints, which both assume that the intrinsic stress is directly proportional to the concentration of lattice defects per unit area of film. The first model presumes a volumetric distortion, and thereby adopts an appropriate supporting clinical analysis (the differential thermal expansion method). The second model works from a thermodynamic standpoint (the defect diffusion coefficients and their associated free energies), and effectively explains the role of strain-induced-restructuring in the observed stress relaxation. Of these two models, the second offers the most ample insight to the nature of intrinsic stress relaxation.

    Some specific conclusions regarding this phenomena are as follows:

    • The residual, intrinsic stress is caused primarily by stacking defects on the atomic scale.
    • The intrinsic stress relaxation behavior is not primarily viscoelastic.
    • The geometry of thin films, which have a much greater surface-area-to-volume ratio than bulk materials, supplies unique opportunities for strain to cause restructuring and material transport to occur.
    • The thermodynamic calculations show that the derivative of the thermal stress is equivalent to the negative entropy of the system, which implies that a thermally induced stress relaxation produces more crystallographic order.
    • A Sherby-Hockett model of inelastic stress completely explains the thermal stress deviation above 220oC. The resultant curve-fitting fairly represents the average actual laboratory results.

    Chapter 1 Introduction 1 1-1 RESEARCH MOTIVATION . . . . . . . 1 1-1.1 Commercial Applications of Thin Films . . . . 1 1-1.2 Keypoints of the Research Frontier . . . . . 1 1-1.2.1 The Unique Geometry of Thin Films . . . . 2 1-1.2.2 The Confusion Surrounding Inaccurate Generalizations . 4 1-1.2.3 The Current Absence of a Standard Quality Procedure for a Comprehensive Stress Analysis 5 1-2 LITERATURE REVIEW . . . . . . . 6 1-2.1 Sources of Stress . . . . . . . 6 1-2.1.1 Intrinsic Stresses due to Epitaxial Mismatch Strain . . 7 1-2.1.2 Intrinsic Stresses due to Deposition (Residual Stress) . 7 1-2.1.3 Extrinsic Stresses . . . . . . 9 1-2.1.4 Thermal Effects . . . . . . 9 1-2.1.5 The Comprehensive Stress Behavior . . . . 10 1-2.2 Development of Mathematical Models . . . . 11 1-2.2.1 Modeling the Intrinsic Stress . . . . . 11 Satomi’s Deposition Rate Model . . . . 11 Hoffman’s “Grain Boundary Relaxation” (GBR) Model . 12 Windischmann’s “Volumetric Distortion” Model . . 13 Nix and Clemens’ “Island Zipping” Model . . . 14 The Seel & Freund Zipping Model . . . . 15 Cammarata’s Island Growth Model . . . . 16 Floro’s Superposed Volmer-Weber Growth Model . . 17 1-2.2.2 Modeling the Extrinsic Stress . . . . . 18 1-3 RESEARCH OBJECTIVES . . . . . . . 19 1-3.1 A Physical Analysis of the Titanium Thin Films . . . 19 1-3.2 A Standard Quality Procedure for a Comprehensive Stress Analysis 20 1-3.2.1 The CTE Rule for Thermal Stress in Films . . . 20 1-3.2.2 The Factorization and Variable Reduction Analysis Strategy 20 1-3.3 To Characterize the Thermal Stress Behavior of Titanium Thin Films 20 Chapter 2 Experimental Procedures 21 2-1 MATERIALS AND THEIR PROPERTIES . . . . . 21 2-1.1 Silicon Substrates . . . . . . . 23 2-1.1.1 (100) Silicon . . . . . . . 24 2-1.1.2 (110) Silicon . . . . . . . 24 2-1.1.3 (111) Silicon . . . . . . . 24 2-1.2 Soda Lime Glass Substrates . . . . . . 24 2-1.3 Titanium Substrates . . . . . . . 25 2-2 PHYSICAL VAPOR DEPOSITION BY SPUTTERING . . . 27 2-2.1 Choosing the Deposition Conditions . . . . . 27 2-2.2 Substrate Preparation . . . . . . . 27 2-2.3 Deposition Parameters . . . . . . 28 2-3 FILM CHARACTERIZATION . . . . . . 29 2-3.1 X-Ray Diffraction . . . . . . . 29 2-3.1.1 The XRD Equipment and Heating Chamber . . . 31 2-3.1.2 Experimental Procedures . . . . . 31 2-3.1.3 The Suitability of XRD for Estimating the Mean Biaxial Film Strain 32 2-3.2 Profilometry . . . . . . . . 33 2-3.2.1 Film Thickness Measurements . . . . 34 2-3.2.2 Substrate Curvature Measurements . . . . 34 2-3.3 Atomic Force Microscopy . . . . . . 35 2-3.3.1 Experimental Procedures . . . . . 36 2-3.4 Electrical Properties . . . . . . . 36 2-3.4.1 Experimental Procedures . . . . . 39 2-4 STRESS MEASUREMENT . . . . . . . 40 2-4.1 Using X-Ray Diffraction to Measure the Stress . . . 40 2-4.1.1 Asymmetric X-Ray Diffraction . . . . 41 2-4.1.2 The Relationship Between dψ and the CTE . . . 42 2-4.1.3 The Advantages of Using XRD to Measure the Stress . 43 2-4.1.4 The Limitations of Using XRD to Measure the Stress . 44 2-4.2 Stress Measurement via the sin2ψ Method . . . . 45 2-4.2.1 The Mathematical Derivation of the sin2ψ Method . . 46 2-4.2.2 The Limitations of the sin2ψ Method . . . 47 2-4.3 Stress Measurement via the d-Spacing Method . . . 48 2-4.3.1 The Relationship Between the Stress and the d-Spacing . 48 2-4.3.2 The Limitations of the d-Spacing Method . . . 49 2-4.4 Stress Measurement via the Stoney Method . . . . 50 2-4.4.1 The Relationship Between the Stress and the Curvature . 50 2-4.4.2 The Limitations of the Stoney Method . . . 52 Chapter 3 Experimental Results 53 3-1 X-RAY DIFFRACTION . . . . . . . 53 3-1.1 The Ti / Si (100): L-series . . . . . . 53 3-1.1.1 The Intensity vs 2θ, Major Peaks and Grain Orientation for the Ti / Si (100): L-series 53 3-1.1.2 The Intensity vs. Temperature for the Ti / Si (100): L-series . 54 3-1.1.3 The Average Peak Shift vs. Temperature for the Ti / Si (100): L-series 56 3-1.1.4 The FWHM for the Ti / Si (100): L-series . . . 56 3-1.2 The Ti / Si (110): H-Series . . . . . . 57 3-1.2.1 The Intensity vs 2θ, Major Peaks and Grain Orientation for the Ti / Si (110): H-Series 57 3-1.2.2 The Intensity vs. Temperature for the Ti / Si (110): H-Series 57 3-1.2.3 The Average Peak Shift vs. Temperature for the Ti / Si (110): H-Series 59 3-1.3 The Ti / Si (111): H-Series . . . . . . 59 3-1.3.1 The Intensity vs 2θ, Major Peaks and Grain Orientation for the Ti / Si (111): H-Series 60 3-1.4 The Ti / Soda-Lime Glass: L-Series . . . . . 60 3-1.4.1 The Intensity vs 2θ, Major Peaks and Grain Orientation for the Ti / Glass: L-Series 60 3-1.4.2 The Intensity vs. Temperature for the Ti / Soda-Lime Glass: L-Series 62 3-1.4.3 The Average Peak Shift vs. Temperature for the Ti / Soda-Lime Glass: L-Series 62 3-1.5 The Ti / Ti: L-Series . . . . . . . 62 3-1.5.1 The Intensity vs 2θ, Major Peaks and Grain Orientation for the Ti / Ti: L-Series 62 3-1.5.2 The Intensity vs. Temperature for the Ti / Ti: L-Series . 64 3-1.5.3 The Average Peak Shift vs. Temperature for the Ti / Ti: L-Series 64 3-2 PROFILOMETRY . . . . . . . . 67 3-2.1 Film Thickness . . . . . . . 67 3-2.2 Substrate Curvature and Surface Roughness . . . . 68 3-3 ATOMIC FORCE MICROSCOPY . . . . . . 69 3-4 ELECTRICAL RESISTANCE . . . . . . 72 3-4.1 L-Series Titanium on Silicon (100) Substrates . . . 72 3-5 STRESS ANALYSIS . . . . . . . . 73 3-5.1 Data Collection and Analysis . . . . . . 73 3-5.1.1 Stress Analysis Using the sin2ψ Method . . . 73 3-5.1.2 Stress Analysis Using the d-Spacing Method . . 74 3-5.2 Thermal Stress Estimations . . . . . . 75 3-5.2.1 Thermal Stress in the Ti / Si (100) L-Series Films . . 75 3-5.2.2 Thermal Stress in the Ti / Si (110) H-Series Films . . 76 3-5.2.3 Thermal Stress in the Ti / Si (111), H-Series Films . . 76 3-5.2.4 Thermal Stress in the Ti / Soda-Lime Glass, L-Series Films . 77 3-5.2.5 Thermal Stress in the Ti / Ti, L-Series Films . . . 77 Chapter 4 Effects Arising from the Substrate and Deposition Conditions 81 4-1 THE EFFECTS OF THE SPUTTERING PARAMETERS ON THE FILM CRYSTALLOGRAPHY AND GROWTH 81 4-1.1 Overview of the Sputtering Process . . . . . 81 4-1.1.1 Physical Vapor Deposition . . . . . 81 4-1.1.2 The Physics of Sputtering . . . . . 82 4-1.1.3 The Design of the Sputtering Chamber . . . 84 4-1.2 The Deposition Process . . . . . . 84 4-1.2.1 Material Properties and Material States Affecting Deposition 84 4-1.2.2 The Thornton Structure Zone Model . . . . 86 4-1.2.3 The Ion Flux Ratio . . . . . . 87 4-2 FILM CHARACTERISTICS ARISING FROM DEPOSITION CONDITIONS 88 4-2.1 Film Crystallography . . . . . . . 88 4-2.1.1 Film Crystallography as Indicated by the XRD Intensity . 88 4-2.1.2 Grain Size as Indicated by the XRD FWHM . . . 88 4-2.1.3 Film Crystallography as Indicated by the Electrical Resistance 89 4-2.2 Film Thickness Variation . . . . . . 90 4-2.2.1 Film Thickness vs. the Substrate to Target Distance . . 90 4-2.2.2 Film Thickness vs. the Sputtered Material . . . 91 4-2.3 Stress Generation . . . . . . . 92 4-2.3.1 Stress vs. Film Thickness . . . . . 93 4-2.3.2 Stress vs. Deposition Energy . . . . . 95 4-2.3.3 Stress vs. Deposition Pressure . . . . 95 Chapter 5 Thermal Stress Modeling 99 5-1 ANALYSIS STRATEGIES . . . . . . . 99 5-1.1 The CTE Rule for Thermal Stress in Films . . . . 99 5-1.2 The Factorization and Variable Reduction Analysis Strategy (FAVRA) 104 5-1.2.1 A Description of FAVRA . . . . . 104 5-1.2.2 The Application of FAVRA to the Present Study . . 105 5-2 THE THERMAL STRESS ANALYSIS . . . . . 109 5-2.1 Titanium Films on Silicon (100) Substrates . . . . 109 5-2.1.1 Residual Stress from Deposition . . . . 110 5-2.1.2 Extrinsic Stress Development During Thermal Excursion . 111 5-2.1.3 Inelastic Stress at Elevated Temperatures . . . 111 5-2.1.4 Stress Evolution During Thermal Cycling . . . 111 5-2.2 Titanium Films on Silicon (110) Substrates . . . . 112 5-2.3 Titanium Films on Silicon (111) Substrates . . . . 112 5-2.3.1 Residual Stress from Deposition . . . . 113 5-2.3.2 Extrinsic Stress Development During Thermal Excursion . 113 5-2.3.3 Inelastic Stress at Elevated Temperatures . . . 114 5-2.4 Titanium Films on Soda-Lime Glass and Titanium Plate Substrates . 114 5-3 REFINING THE THERMAL STRESS MODEL . . . . 115 5-3.1 Defining the Curl . . . . . . . 115 5-3.2 Modeling the Curl . . . . . . . 117 5-3.2.1 The Significance of the Modulus vs. the CTE . . . 119 Chapter 6 Intrinsic Stress Relaxation 121 6-1 STRAIN INDUCED RESTRUCTURING . . . . . 122 6-1.1 An Introduction to Strain-Induced-Restructuring . . . 123 6-1.1.1 The Effect of Geometry on the Strain-Induced-Restructuring 124 6-1.1.2 Strain Facilitates Intrinsic Stress Recovery by Dispersing the Volumetric Distortion 125 6-1.2 Evidence of Strain-Induced-Restructuring in Titanium Films . 126 6-1.2.1 Clinical Results Indicating Strain-Induced-Restructuring . 126 6-1.2.2 The Slope of the CTE Rule . . . . . 126 6-1.2.3 The Intrinsic Stress Relaxation is Not Primarily Viscoelastic 127 6-1.3 The Thermodynamics of Strain-Induced-Restructuring . . 127 6-1.4 The Theorem of Strain-Induced-Restructuring . . . 130 6-2 THE DEFECT CONCENTRATION AS A MEASURE OF DISTORTION AND STRESS 132 6-2.1 Measuring the Defect Concentration . . . . . 132 6-2.1.1 The Differential Thermal Expansion Method . . . 133 6-2.1.2 Estimation by X-Ray Diffraction . . . . 133 6-2.2 The Defect Concentration as a Function of the Film Thickness . 134 6-2.2.1 A Single Uniform Growth Layer with a Parabolic Defect Concentration 134 6-2.2.2 Segregated Growth Layers . . . . . 135 6-2.2.3 The Influence of Thickness on the Defect Concentration . 137 6-2.3 Modeling the Defect Concentration, CD . . . . 138 6-2.3.1 The Diffusion Coefficient for Lattice Refinement, DD . 138 6-2.3.2 The Diffusion Coefficient for One Defect, Dd . . 140 6-2.4 Conclusions Concerning the Intrinsic Stress Relaxation . . 142 6-3 INTRINSIC STRESS MODELING . . . . . . 143 6-3.1 The Intrinsic Stress as a Function of the Defect Concentration . 143 6-3.2 Modeling the Intrinsic Stress Relaxation as a Function of the Defect Concentration 144 6-3.2.1 Using the Defect Concentration as Calculated from the Differential Thermal Expansion 144 6-3.2.2 Using the Defect Concentration as Calculated from the Diffusion Coefficients 146 6-3.3 Conclusions on the Stress Relaxation Models 147 Chapter 7 Intrinsic Stress Evolution at Higher Temperatures 149 7-1 SURFACE OXIDATION . . . . . . . 150 7-2 DIFFUSION AT THE SUBSTRATE INTERFACE . . . . 151 7-2.1 Diffusion of Silicon into Titanium . . . . . 151 7-2.2 Diffusion of Titanium into Silicon . . . . . 152 7-3 PLASTICITY AND DEFORMATION . . . . . 153 7-3.1 Inelastic Strain . . . . . . . 153 7-3.1.1 The Hockett-Sherby Model of Inelastic Strain . . 153 7-3.2 Shear Stress Evolution . . . . . . 154 7-4 THE VARIABILITY OF MATERIALS PROPERTIES . . . 156 7-4.1 The Curl is Non-Linear . . . . . . 156 7-4.2 The Graded Interface . . . . . . . 156 7-5 COMPREHENSIVE INTERACTION . . . . . 157 Chapter 8 Conclusions 159 8-1 STRESS EFFECTS FROM THE MATERIALS AND DEPOSITION PARAMETERS 159 8-2 GENERAL OBSERVATIONS OF THE THERMAL STRESS BEHAVIOR 159 8-2.1 Titanium Films on Silicon (100) Substrates . . . . 159 8-2.2 Titanium Films on Silicon (110) Substrates . . . . 160 8-2.3 Titanium Films on Silicon (111) Substrates . . . . 160 8-2.4 Titanium Films on Soda-Lime Glass and Titanium Substrates . 161 8-3 SPECIAL CONCLUSIONS ON THE STRESS BEHAVIOR . . 161 8-3.1 Conclusions Concerning the Extrinsic Stress . . . . 161 8-3.1.1 Conclusions Concerning the Stress Generated from Thermal Expansion 162 8-3.1.2 Conclusions Concerning the Inelastic Stress . . . 162 8-3.2 Conclusions Concerning the Intrinsic Stress . . . . 162 8-3.2.1 Conclusions Concerning the Residual Stress from Deposition 162 8-3.2.2 Conclusions Concerning the Intrinsic Stress Relaxation Phenomenon 163 References 165 Appendices 181 A Diffusion Applied to a Thin Film . . . . . . 181 B The Defect Concentration Along the z-Plane, CZ . . . . 184 C Estimating the Vibrational Frequency, υ . . . . . 186 D Calculating the Geometrical Coefficient, γ . . . . . 187 E Approximations of the Enthalpy, Entropy and the Internal Energy . . 189 F Impurity Concentration Profiles in Semiconductors . . . . 191 Case A: Constant Surface Concentration Diffusion . . . . 192 Case B: Constant Total Dopant Diffusion . . . . . 192

    SAE Residual Stress Measurement by X-Ray Diffraction, Editors: A. Ahmad, P. Prevey, C. Ruud, SAE International, Warrendale, PA, 2003.
    I. A. Alhomoudi, G. Newaz, “Residual Stresses and Raman Shift Relation in Anatase TiO2 Thin Film”, Thin Solid Films (2009) doi: 10.1016/j.tsf.2009.02.141.
    C. Apblett, P. J. Ficalora, “Stress Generation in Thin Cu-Ti Films in Vacuum and Hydrogen”, Journal of Applied Physics 69:8 (1991) 4431-4432.
    C. Atkinson, C. Y. Chen, “The Influence of Layer Thickness on the Stress Intensity Factor of a Crack Lying in an Elastic (Viscoelastic) Layer Embedded in a Different Elastic (Viscoelastic) Medium (Mode III Analysis)”, International Journal of Engineering Science 34:639 (1996).
    D. Aurongzeb, “Growth Instability and Surface Phase Transition of Ti Thin Film on Si(111): An Atomic Force Microscopy Study”, Applied Surface Science 252 (2006) 6135-6140.
    M. J. Aziz, Y. C. Zhao, H. J. Gossman, S. Mitha, S. P. Smith, D. Schiferl, “Pressure and Stress Effects on the Diffusion of B and Sb in Si and Si-Ge Alloys”, Physical Review B 73 (2006) 054101.
    M. Bai, K. Kato, N. Umehara, Y. Miyake, “Nanoindentation and FEM Study of the Effect of Internal Stress on Micro Nano Mechanical Property of Thin CNx Films”, Thin Solid Films 377-378 (2000) 138-147.
    Structure of Metals: Crystallographic Methods, Principles and Data, 3rd Revised Edition, Editors: C. S. Barrett, T. B. Massalski, Pergamon Press, 1980.
    E. Bemporad, M. Sebastiani, C. Pecchio, S. De Rossi, “High Thickness Ti/TiN Multilayer Thin Coatings for Wear Resistant Applications”, Surface & Coatings Technology 201 (2006) 2155-2165.
    M. Bielawski, “Residual Stress Control in TiN/Si Coatings Deposited by Unbalanced Magnetron Sputtering”, Surface & Coatings Technology 200 (2006) 3987-3995.
    M. Birkholz, C. Genzel, and T. Jung, “X-Ray Diffraction Study of Residual Stress and Preferred Orientation in Thin Titanium Films Subjected to a High Ion Flux During Deposition”, Journal of Applied Physics 96 (2004) 7202-7211.
    J. L. Bogdanoff, “Note on Thermal Stresses”, Journal of Applied Mechanics 21:88 (1954).
    F. Braud, J. Torres, J. Palleau, J. L. Mermet, M. J. Mouche, “Ti-Diffision Barrier in Cu-Based Metallization”, Applied Surface Science 91 (1995) 251-256.
    W. Bruckner, J. Thomas, C. M. Schneider, “Evolution of Stress and Microstructure in NiFe (20 wt.%) Thin Films During Annealing”, Thin Solid Films 385 (2001) 225-229.
    W. Buckel, “Internal Stresses”, Journal of Vacuum Science & Technology, 6:4 (1969) 606-609.
    H. Bufler, “Theory of Elasticity of a Multilayered Medium”, Journal of Elasticity 1:125-143, (1971).
    R. C. Cammarata, “Surface and Interface Stress Effects in Thin Films”, Progress in Surface Science 46:1 (1994) 1-38.
    R. C. Cammarata, “Dynamic Aspects Regarding the Mechanical Behavior of Multilayered Thin Films and their Measurements”, Scripta Materialia (2004).
    R. C. Cammarata, K. Sieradzki, “Surface Stress Effects on the Critical Film Thickness for Epitaxy”, Applied Physics Letters 55:12 (1989) 1197-1198.
    R. C. Cammarata, K. Sieradzki, “Effects of Surface Stress on the Elastic Moduli of Thin Films and Superlattices”, Physical Review Letters 62:17 (1989) 2005-2008.
    R. C. Cammarata, K. Sieradzki, “Thermodynamics of Thin Film Epitaxy”, Journal of Applied Mechanics 69 (2002) 415-418.
    R. C. Cammarata, K. Sieradzki, F. Spaepen, “Simple Model for Interface Stresses with Application to Misfit Dislocation Generation in Epitaxial Thin Films”, Journal of Applied Physics 87:3 (2000) 1227-1234.
    R. C. Cammarata, T. M. Trimble, D. J. Srolovitz, Journal of Materials Research 15 (2000) 2468.
    R. C. Chang, F. Y. Chen, C. T. Chuang, Y. C. Tung, “Residual Stresses of Sputtering Titanium Thin Films at Various Substrate Temperatures”, Journal of Nanoscience and Nanotechnology, 10 (2010) 4562-4567.
    W. J. Chang, T. H. Fang, C. I. Weng, “Thermoviscoelastic Stresses in Thin Films/Substrate System”, Thin Solid Films 515 (2007) 3693-3697.
    Theory of Viscoelasticity - An Introduction, 2nd Ed., Editor: R. M. Christensen, Academic Press, New York, 1982.
    C. K. Chao, F. M. Chen, “Thermal Stresses in an Isotropic Trimaterial Interacted with a Pair of Point Heat Source and Heat Sink”, International Journal of Solids & Structures 41 (2004) 6233-6247.
    C. K. Chao, M. H. Shen, “Solutions of Thermoelastic Crack Problems in Bonded Dissimilar Media Or Half-Plane Medium”, International Journal of Solids & Structures 32 (1995) 3537.
    P. Chaudhari, “Mechanisms of Stress Relief in Polycrystalline Films”, IBM Journal of Research and Development 13:2 (1969) 197-204.
    P. Chaudhari, “Hillock Growth in Thin Films”, Journal of Applied Physics 45:10 (1974) 4339-4346.
    P. Chaudhari, S. Mader, J. F. Freedman, “Mechanisms of Stress Relief in Thin Films”, Journal of Vacuum Science Technology 6 (1969) 618-621.
    J. Chen, J. A. Barnard, “Growth, Structure and Stress of Sputtered TiB2 Thin Films”, Materials Science and Engineering A191 (1995) 233-238.
    W. T. Chen, “Computation of Stresses and Displacements in a Layered Elastic Medium”, International Journal of Engineering Science 9 (1971) 775-800.
    B. Chenevier, O. Chaix-Pluchery, P. Gergaud, O. Thomas, F. La Via, “Thermal Expansion and Stress Development in the First Stages of Silicidation In Ti/Si Thin Films”, Journal of Applied Physics 94:11 (2003) 7083-7090.
    S. L. Cheng, H. Y. Huang, Y. C. Peng, L. J. Chen, B. Y. Tsui, C. J. Tsai, S. S. Guo, Y. R. Yang, J. T. Lin, “Formation of TiSi2 Thin Films on Stressed (001)Si Substrates”, Applied Surface Science 142 (1999) 295-299.
    C. L. Chiang, J. P. Chu, F. X. Liu, P. K. Liaw, R. A. Buchanan, “A 200 nm Thick Glass-Forming Metallic Film for Fatigue-Property Enhancements”, Applied Physics Letters 88 (2006) 131902.
    H. Cho, H. Y. Kim, S. Miyazaki, “Fabrication and Characterization of Ti-Ni Shape Memory Thin Film Using Ti/Ni Multilayer Technique”, Science & Technology of Advanced Materials 6 (2005) 678-683.
    H. Cho, H.Y. Kim, S. Miyazaki, “Alloying process of sputter-deposited Ti/Ni multilayer thin films”, Materials Science & Engineering A 438-440 (2006) 699-702.
    H. J. Choi, S. Thangjitham, “Stress Analysis of a Multilayered Anisotropic Elastic Media”, ASME Journal of Applied Mechanics 58 (1991) 382-387.
    H. J. Choi, S. Thangjitham, “Thermal Stresses in a Multilayered Anisotropic Medium”, ASME Journal of Applied Mechanics 58 (1991) 1021-1027.
    H. M. Choi, S. K. Choi, O. Anderson, K. Bange, “Influence of Film Density on Residual Stress and Resistivity for Cu Thin Films Deposited by Bias Sputtering”, Thin Solid Films 358 (2000) 202-205.
    S. T. Choi, Y. Y. Earmme, “Elastic Study on Singularities Interacting with Interfaces using the Alternating Technique: Part I - Anisotropic Trimaterial”, International Journal of Solids & Structures 39 (2002) 943-957.
    S. T. Choi, Y. Y. Earmme, “Elastic Study on Singularities Interacting with Interfaces using the Alternating Technique: Part II - Isotropic Trimaterial”, International Journal of Solids & Structures 39 (2002) 1199-1211.
    W. J. Chou, G. P. Yu, J. H. Huang, “Effect of Heat Treatment on the Structure and Properties of Ion-Plated TiN Films”, Surface and Coatings Technology, 168 (2003) 43-50.
    K. Christova, Z. Dimitrova, E. Skordeva, “Mechanical Stress in Amorphous Ge-As-S(Se) Film/Si Substrate System”, Thin Solid Films 306 (1997) 174-177.
    J. P. Chu, C. H. Lin, V. S. John, “Barrier-Free Cu Metallization with a Novel Copper Seed Layer Containing Various Insoluble Substances”, Vacuum 83 (2009) 668-671.
    C. T. Chuang, C. K. Chao, R. C. Chang, K. Y. Chu, “Effects of Internal Stresses on the Mechanical Properties of Deposition Thin Films”, Journal of Materials Processing Technology 201 (2008) 770-774.
    R. M. Cohen, “Point defects and diffusion in thin films of GaAs”, Materials Science and Engineering R 20:4-5 (1997) 167-280.
    “Diffusion in Semiconductors”, by H.C. Casey Jr., G.L. Pearson, in Point Defects in Solids, Vol. 2, Editors: J. H. Crawford, L. M. Slifkin, Plenum Press, New York, 1975, p. 163.
    Elements of X-Ray Diffraction, 3rd Edition, Editors: B. D. Cullity, S. R. Stock, Prentice Hall, Newark, 2001, p. 293.
    R. E. Cuthrell, F. P. Gerstile, Jr., and D. M. Mattox, "Measurement of Residual Stress in Films of Unknown Elastic Modulus", Review of Scientific Instrumentation 60:6 (1989) 1018.
    F. M. D’Heurle, J. M. E. Harper, “Note on the Origin of Intrinsic Stresses in Films Deposited via Evaporation and Sputtering”, Thin Solid Films 171 (1989) 81-92.
    C. A. Davis, “A Simple Model for the Formation of Compressive Stress in Thin Films by Ion Bombardment”, Thin Solid Films 226:1 (1993) 30-34.
    M. M. DeLima, R. G. Lacerda, J. Vilcarromero, F. C. Marques, “Coefficient of Thermal Expansion and Elastic Modulus of Thin Films”, Journal of Applied Physics 86:9 (1999) 4936-4942.
    C. Detavernier, C. Lavoie, and F. M. d’Heurle, “Thermal Expansion of the Isostructural PtSi and NiSi: Negative Expansion Coefficient in NiSi and Stress Effects in Thin Films”, Journal of Applied Physics 93:5 (2003) 2510-2515.
    F. A. Doljack, R. W. Hoffman, “The Origins of Stress in Thin Nickel Films”, Thin Solid Films 12:1 (1972) 71-74.
    C. Duong, W. G. Knauss, “A Nonlinear Thermoviscoelastic Stress and Fracture Analysis of an Adhesive Bond”, Journal of the Mechanics and Physics of Solids 43:10 (1995) 1505.
    System Identification: Parameter and State Estimation, Editor: Pieter Eykhoff, Wiley & Sons, 1974.
    W. L. Fang, C. Y. Lo, “On the Thermal Expansion Coefficients of Thin Films”, Sensors and Actuators 84 (2000) 310-314.
    J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, C. V. Thompson, “The Dynamic Competition Between Stress Generation and Relaxation Mechanisms During Coalescence of Volmer-Weber Thin Films”, Journal of Applied Physics 89:9 (2001) 4886-4897.
    Thin Film Materials: Stress, Defect Deformation and Surface Evolution, Editors: L. B. Freund, S. Suresh, Cambridge University Press, 2003.
    Metallurgical Thermodynamics, 2nd Edition, Editor: D. R. Gaskell, McGraw-Hill International, 1980.
    D. S. Gardner, P. A. Flinn, “Mechanical Stress as a Function of Temperature for Aluminum Alloy Films”, Journal of Applied Physics 67:4 (1990) 1831-1844.
    P. Gergaud, O. Thomas, B. Chenevier, “Stresses Arising from a Solid State Reaction Between Palladium Films and Si(001) Investigated by In-Situ Combined X-Ray Diffraction and Curvature Measurements”, Journal of Applied Physics 94:3 (2003) 1584-1591.
    Diffusion in Solids, Editor: M. E. Glicksman, John Wiley & Sons, Inc., New York, 2000.
    D. S. Grummon, J. P. Zhang, T. J. Pence, “Relaxation and Recovery of Extrinsic Stress in Sputtered Titanium-Nickel Thin Films on (100)-Si”, Materials Science and Engineering A 273–275 (1999) 722–726.
    P. Gudmundson, A. Wikstrom, “Stresses in Thin Films and Interconnect Lines”, Microelectronic Engineering 60 (2002) 17-29.
    G. Guisbiers, M. Kazan, O. Van Overschelde, M. Wautelet, S. Pereira, “Mechanical and Thermal Properties of Metallic and Semiconductive Nanostructures”, Journal of Physical Chemistry 112 (2008) 4097-4103.
    G. Guisbiers, S. Strehle, M. Wautelet, “Modeling of Residual Stresses in Thin Films Deposited by Electron Beam Evaporation”, Microelectronic Engineering 82 (2005) 665-669.
    G. Guisbiers, O. Van Overschelde, M. Wautelet, “Nanoparticulate Origin of Intrinsic Residual Stress in Thin Films”, Acta Materialia 55 (2007) 3541-3546.
    G. Guisbiers, M. Wautelet, “Size, Shape and Stress Effects on the Melting Temperature of Nano-Polyhedral Grains on a Substrate”, Nanotechnology 17 (2006) 2008-2011.
    G. Guisbiers, M. Wautelet, L. Buchaillot, “Comparison of Intrinsic Residual Stress Models in Metallic thin Films”, Scripta Materialia 60 (2009) 419-422.
    T. Hanabusa, K. Kusaka, O. Sakata, “Residual Stress and Thermal Stress Observation in Thin Copper Films”, Thin Solid Films 459 (2004) 245-248.
    R. Hashimoto, Y. Abe, T. Nakada, “High Mobility Titanium-Doped In2O3 Thin Films Prepared by Sputtering/Post-Annealing Technique”, Applied Physics Express 1 (2008) 1-3.
    Y. He, J. Z. Zhang, W. Q. Yao, D. X. Li, X. Teng, “Effect of Temperature on Residual Stress and Mechanical Properties of Ti Films Prepared by Both Ion Implantation and Ion Beam Assisted Deposition”, Applied Surface Science 255 (2009) 4484-4490.
    R. D. Heidenreich, W. Shockley, “Report on Strength in Solids”, Physical Society of London 57 (1948) 37.
    “Formation and Growth of Voids and/or Gas Bubbles in Thin Films”, by J. R. Lloyd, S. Nakahara, in Thin Films and Interfaces, Vol. 10, Materials Research Society Symposia Proceedings, Editors: P. S. Ho, K. N. Tu, North-Holland, 1981, p. 289-293.
    J. E. Hockett, O. D. Sherby, “Large Strain Deformation of Polycrystalline Metals at Low Homologous Temperatures”, Journal of the Mechanics and Physics of Solids 23:2 (1975) 87-98.
    Y. Y. Hu, W. M. Huang, “Elastic and Elastic-Plastic Analysis of Multilayer Thin Films: Closed-Form Solutions”, Journal of Applied Physics 96 (2004) 4154-4160.
    N. Huang, “Thermoviscoelastic Response of Fiber-Reinforced-Plastic Laminates with Initial Deflection Imperfection”, Journal of Thermal Stresses 20 (1997) 543.
    S. S. Huang, X. Zhang, “Extension of the Stoney formula for film–substrate systems with gradient stress for MEMS applications”, Journal of Micromechanics & Microengineering 16 (2006) 382–389.
    C. Y. Hui, H. D. Conway, Y. Y. Lin, “A Reexamination of Residual Stresses in Thin Films and of the Validity of Stoney’s Estimate”, ASME Journal of Electronic Packaging 122 (2000) 267-273.
    D. Ishida, K. Kanemoto, K. H. Shin, P. B. Lim, H. Uchida, M. Inoue, “Magnetic Properties of Magnetostrictive Films on Piezoelectric Single Crystal Substrates”, Journal of Magnetism and Magnetic Materials 310:2/3 (2007) e901-e903.
    K. Ishii, "High-Rate Low Kinetic Energy Gas-Flow-Sputtering System", Journal of Vacuum Science Technology A 7:2 (1989) 256-258.
    S. R. Iyengar, R. S. Alwar, “Stress in a Layered Half-Plane”, ASCE Journal of Engineering Mechanics 56 (1964) 63-69.
    J. I. Jang, M. J. Lance, S. Q. Wen, T. Y. Tsui, G. M. Pharr, “Indentation-Induced Phase Transformations in Silicon: Influences of Load, Rate and Indenter Angle on the Transformation Behavior”, Acta Materialia 53 (2005) 1759-1770.
    J. F. Jongste, G. C. A. M. Janssen, S. Radelaar, “Formation of Titanium Disilicide During Rapid Thermal Annealing, Observed by In-Situ Stress Measurements”, Applied Surface Science 53 (1991) 212-218.
    T. Jung and A. Westphal, “Zirconia Thin Film Deposition on Silicon by Reactive Gas Flow Sputtering: The Influence of Low Energy Particle Bombardment”, Materials Science & Engineering A 140 (1991) 528-533.
    L. Karlsson, L. Hultman, J. E. Sundgren, “Influence of Residual Stresses on the Mechanical Properties of TiCxN1-x (x = 0, 0.15, 0.45) Thin Films Deposited by Arc Evaporation”, Thin Solid Films 371 (2000) 167-177.
    J. Keckes, M. Hafok, E. Eiper, A. Hofer, R. Resel, C. Eisenmenger-Sittner, “Evaluation of Experimental Stress–Strain Dependence in Thermally Cycled Al Thin Film on Si(100)”, Powder Diffraction 19:4 (2004) 367-371.
    C. A. Klein, “How Accurate are Stoney’s Equation and Recent Modifications?”, Journal of Applied Physics 88 (2000) 5487-5489.
    E. Klokholm, “Delamination and Fracture of Thin Films”, IBM Journal of Research & Development 31:5 (1987) 585-591.
    R. Knepper, S. P. Baker, “Coefficient of Thermal Expansion and Biaxial Elastic Modulus of β Phase Tantalum Thin Films”, Applied Physics Letters 90 (2007) 181908.
    G. Knuyt, “A Model for the Behavior of Tensile and Compressive Residual Stresses Developed in Thin Films Produced by Ion Beam-Assisted Deposition Techniques”, Thin Solid Films 467 (2004) 275-283.
    H. Kostenbauer, G. A. Fontalvo, M. Kapp, J. Keckes and C. Mitterer, “Annealing of Intrinsic Stresses in Sputtered TiN Films: The Role of Thickness-Dependent Gradients of Point Defect Density”, Surface and Coatings Technology 201 (2007) 4777-4780.
    H. Kostenbauer, G. A. Fontalvo, J. Keckes and C. Mitterer, “Intrinsic Stresses and Stress Relaxation in TiN/Ag Multilayer Coatings During Thermal Cycling”, Thin Solid Films 516 (2008) 1920-1924.
    O. Kraft, W. D. Nix, “Measurement of the Lattice Thermal Expansion Coefficients for Thin Metal Films on Substrates,” Journal of Applied Physics 83 (1998) 3035-3038.
    N. Kuratani, O. Imai, A. Ebe, S. Nishiyama, K. Ogata, “Internal Stress in Thin Films Prepared by Ion Beam and Vapor Deposition”, Surface & Coatings Technology, 66 (1994) 310-312.
    Y. Kuru, M. Wohlschlogel, U. Welzel, E. J. Mittemeijer, “Interdiffusion and Stress Development in Cu–Pd Thin Film Diffusion Couples”, Thin Solid Films 516 (2008) 7615–7626.
    Defects and Diffusion in Solids: An Introduction, Editors: C. Laird, S. Mrowec, Elsevier Scientific Publishing Company, Amsterdam, 1980.
    F. C. Larche, J. W. Cahn, “The Effect of Self-Stress on Diffusion in Solids”, Acta Metallurgica 30 (1982) 1835-1845.
    F. C. Larche, J. W. Cahn, “The Interactions of Composition and Stress in Crystalline Solids”, Acta Metallurgica, 33:3 (1985) 331-357.
    S. S. Lee, “Boundary Element Analysis of Singular Hygrothermal Stresses in a Bonded Viscoelastic Thin Film”, International Journal of Solids & Structures 38 (2001) 401.
    Theory of Elasticity of an Anisotropic Elastic Body, Editor: S. G. Lekhnitskii (translated from the revised 1977 Russian edition) Mir Publishers, 1981.
    H. C. Liu, S. P. Murarka, “Elastic and Viscoelastic Analysis of Stress in Thin Films”, Journal of Applied Physics 72:8 (1992) 3458-3463.
    S. G. Malhotra, Z. U. Rek, S. M. Yalisove, J. C. Bilello, “Analysis of Thin Film Stress Measurement Techniques”, Thin Solid Films 301:1-2 (1997) 45-54.
    A. Mani, P. Aubert, F. Mercier, H. Khodja, C. Berthier and P. Houdy, “Effects of Residual Stress on the Mechanical and Structural Properties of TiC Thin Films Grown by RF Sputtering”, Surface and Coatings Technology 194:2-3 (2005) 190-195.
    “Atomistic Film Growth and Some Growth-related Film Properties”, Chapter 9, and “Adhesion and Deadhesion”, Chapter 11, in Handbook of Physical Vapor Deposition (PVD) Processing, Editor: D. M. Mattox, William Andrew Publishing/Noyes Publications, 1998.
    T. Matsue, T. Hanabusa, Y. Ikeuchi, “Residual Stress and Its Thermal Relaxation in TiN Films”, Thin Solid Films 281-282 (1996) 344-347.
    T. Matsue, T. Hanabusa, Y. Miki, K. Kusaka, E. Maitani, “Residual Stress in TiN Film Deposited by Arc Ion Plating”, Thin Solid Films 343-344 (1999) 257-260.
    T. Matsue, T. Hanabusa, Y. Ikeuchi, K. Kusaka, O. Sakata, “Alteration of Internal Stresses in SiO2/Cu/TiN Thin Films by X-ray and Synchrotron Radiation due to Heat Treatment” Vacuum 80 (2006) 836-839.
    T. Matsue, T. Hanabusa, K. Kusaka O. Sakata, “Effect of Heating on the Residual Stresses in TiN Films Investigated Using Synchrotron Radiation”, Vacuum 83:3 (2009) 585-588.
    A. V. Mazur, M. M. Gasik, “Thermal Expansion of Silicon at Temperatures up to 1100 oC”, Journal of Materials Processing Technology 209 (2009) 723-727.
    R. Messier, A. P. Giri, R. A. Roy, “Revised Structure Zone Model For Thin Film Physical Structure”, Journal of Vacuum Science & Technology A 2:2 (1984) 500-503.
    B. A. Movchan, A. V. Demchishin, “Study of the Structure and Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminium Oxide and Zirconium Dioxide”, Physics of Metals & Metallography 28 (1969) 83-90.
    K. H. Muller, “Stress and Microstructure of Sputter-Deposited Thin Films: Molecular Dynamics Investigations”, Journal of Applied Physics 62:5 (1987) 1796-1799.
    S. P. Murarka, “Silicide Thin Films and Their Applications in Microelectronics”, Intermetallics 3 (1995) 173-186.
    S. P. Murarka, D. B. Fraser, “Thin Film Interaction Between Titanium and Polycrystalline Silicon”, Journal of Applied Physics 51:1 (1980) 342-349.
    S. P. Murarka, D. B. Fraser, “Silicide Formation in Thin Cosputtered (Titanium + Silicon) Films on Polycrystalline Silicon and SiO2”, Journal of Applied Physics 51:1 (1980) 350-356.
    R. V. Nagabushnam, R. K. Singh, S. Sharan, “Effect of Stress on Silicide Formation Kinetics in Thin Film Titanium-Selicon System”, Materials Science in Semiconductor Processing 1 (1998) 249-255.
    W. D. Nix, B. M. Clemens, “Crystallite Coalescence : A Mechanism for Intrinsic Tensile Stresses in Thin Films”, Journal of Materials Research 14 (1999) 3467-3473.
    Residual Stress Measurement by Diffraction and Interpretation, Editors: I. C. Noyan, J. B. Cohen, Springer-Verlag, New York, 1987.
    H. Oettel, R. Wiedemann, S. Preissler, “Residual Stresses in Nitride Hard Coatings Prepared by Magnetron Sputtering and Arc Evaporation”, Surface and Coatings Technology 74-75 (1995) 273-278.
    Y. Okada, Y. Tokumaru, “Precise Determination of Lattice Parameter and Thermal Expansion Coefficient of Silicon Between 300 and 1500 K”, Journal of Applied Physics 56:2 (1984) 314-320.
    E. Orowan, “Surface Energy and Surface Tension in Solids and Liquids”, Proceedings of the Royal Society of London A 316 (1970) 473-491.
    J. T. Pan, I. Blech, “In-Situ Stress Measurement of Refractory Metal Silicides During Sintering”, Journal of Applied Physics 55:8 (1984) 2874-2880.
    E. Parthe, Journal of Crystallography (Zeitschrift fur Kristallographie) 119 (1963) 204.
    Y. Pauleau, “Generation and Evolution of Residual Stresses in Physical Vapour-Deposited Thin Films”, Vacuum 61 (2001) 175-181.
    M. Peach, J. S. Koehler, “The Forces Exerted on Dislocations and the Stress Fields Produced by Them”, Physical Review 80:3 (1950) 436-439.
    Y. C. Peng, L. J. Chen, W. Y. Hsieh, Y. R. Yang, Y. F. Hsieh, “Enhancement of C-49 to C-54 TiSi2 Phase Transformation on (001)Si with an Ultrathin TiN Seed Layer”, Applied Surface Science 142 (1999) 336-340.
    T. Pienkos, A. Proszynski, D. Chocyk, L. Gladyszewski, G. Gladyszewski, “Stress Development During Evaporation of Cu and Ag on Silicon”, Microelectronic Engineering 70 (2003) 442-446.
    C. Polop, C. Rosiepen, S. Bleikamp, R. Drese, J. Mayer, A. Dimyati, T. Michely, “The STM View of the Initial Stages of Polycrystalline Ag Film Formation”, New Journal of Physics 9 (2007) 74-92.
    Phase Transformations in Metals and Alloys, 2nd Edition, Editors: D. A. Porter, K. E. Easterling, CRC Press - Taylor & Francis Group, Boca Raton, Florida, 2004.
    G. A. Porter, C. K. Chao, R. C. Chang, C. T. Chuang, “Mechanical Behavior of a Point Heat Source and a Point Heat Sink in a Thermoviscoelastic Trimaterial”, Journal of Engineering Mathematics 61 (2008) 99-109.
    G. A. Porter, C. K. Chao, R. C. Chang, Y. C. Li, “Effects of Different Interlayers on Indium-Tin Oxide Thin Films Sputtered on Flexible PET Substrates”, Journal of the Chinese Institute of Engineers 36 (2011) 34-39.
    J. M. Pureza, M. M. Lacerda, A. L. De Oliviera, J. F. Fragalli, R. A. S. Zanon, “Enhancing Accuracy to Stoney Equation”, Applied Surface Science 255 (2009) 6426-6428.
    D. T. Quinto, A. T. Santhanam, P. C. Jindal, “Mechanical Properties, Structure and Performance of Chemically Vapor-Deposited and Physically Vapor-Deposited Coated Carbide Tools”, Materials Science & Engineering A, 105-106 (1988) 443-452.
    Elasticity – Theory and Applications, Editors: H. Reismann, P. S. Pawlik, John Wiley & Sons, 1980.
    D. Resnik, U. Aljancic, D. Vrtacnik, M. Mozek, S. Amon, “Mechanical Stress in Thin Film Microstructures on Silicon Substrate”, Vacuum 80 (2005) 236-240.
    Phase Diagrams in Metallurgy, Their Development and Application, Editor: F. N. Rhines, McGraw-Hill Book Company, 1956.
    D. S. Rickerby, A. M. Jones, B. A. Bellamy, “X-Ray Diffraction Studies of Physically Vapour-Deposited Coatings”, Surface and Coatings Technology 37 (1989) 111-137.
    N. Satomi, M. Kitamura, T. Sasaki, M. Nishikawa, “Internal Stress Control of Boron Thin Film”, Fusion Engineering and Design 39-40 (1998) 493-497.
    H. Savaloni, A. Taherizadeh, A. Zendehnam, “Residual Stress and Structural Characteristics in Ti and Cu Sputtered Films on Glass Substrates at Different Substrate Temperatures and Film Thickness”, Physica B 349 (2004) 44-55.
    O. Sayman, F. Sen, E. Celik, Y. Arman, “Thermal Stress Analysis of WC-Co/Cr-Ni Multilayer Coatings on 316L Steel Substrate During Cooling Process”, Materials and Design 30 (2009) 770-774.
    R. A. Schapery, “Application of Thermodynamics to Thermomechanical, Fracture, and Birefringent Phenomena in Viscoelastic Media”, Journal of Applied Physics 35:5 (1964) 1451.
    U. Schmid, H. Seidel, “Effect of High Temperature Annealing on the Electrical Performance of Titanium/Platinum Thin Films”, Thin Solid Films 516 (2008) 898-906.
    Handbook of Thin-Film Deposition Processes and Techniques, Editor: K. K. Schuegraf, Noyes Publication, New Jersey, 1988.
    Diffusion in Solids, 2nd Edition, Editor: P. Shewmon, TMS Society, 1989.
    R. O. Simmons, R. W. Balluffi, Using Differential Thermal Expansion to Measure Point Defect Concentration, Physics Review 117 (1960) 1.
    G. A. Slack, S. F. Bartram, “Thermal Expansion of some Diamondlike Crystals”, Journal of Applied Physics 46:1 (January 1975) 89-94.
    Thin Film Deposition, Editor: D. L. Smith, McGraw Hill, 1995.
    J. W. Son, P. Y. Moetakef, B. Jalan, O. Bierwagen, N. J. Wright, R. Engel-Herbert, S. Stemmer, “Epitaxial SrTiO3 Films with Electron Mobilities Exceeding 30,000cm2V−1s−1”, Nature Materials 9 (2010) 482-484.
    G. G. Stoney, “The Tension of Metallic Films Deposited by Electrolysis”, Proceedings of the Royal Society of London; Series A: Containing Papers of a Mathematical and Physical Character, 82:553 (1909) 172-175.
    K. I. Sugino, A. Okazaki, “Low-Temperature Thermal Expansion of Silicon”, Japanese Journal of Applied Physics 29:4 (April 1990) 700-705.
    J. E. Sundgren, “Structure and Properties Of TiN Coatings”, Thin Solid Films 128 (1985) 21-44.
    Semiconductor Devices: Physics and Technology, 2nd Ed., Editor: S.M. Sze, Wiley, New York, 2002.
    S. Tamulevicius, “Stress and Strain in the Vacuum Deposited Thin Films”, Vacuum 51:2 (1998) 127-139.
    B. A. Taylor, M. F. Wayne, W. K. S. Chiu, “Residual Stress Measurement in Thin Carbon Films by Raman Spectroscopy and Nanoindentation”, Thin Solid Films 429 (2003) 190-200.
    J. A. Thornton, “Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings”, Journal of Vacuum Science Technology 11 (1974) 666-670.
    J. A. Thornton, D. W. Hoffman, “Internal Stresses in Titanium, Nickel, Molybdenum and Tantalum Films Deposited by Cylindrical Magnetron Sputtering”, Journal of Vacuum Science Technology 14:1 (1977) 164-168.
    J. A. Thornton, D. W. Hoffman, “Stress-Related Effects in Thin Films”, Thin Solid Films 171 (1989) 5-31.
    "Stress Determination for Coatings", by J. A. Sue, G. S. Schajer, in Surface Engineering, Vol. 5, ASM Handbook, Editor: G. E. Totten, ASM International, 1994, p. 647-653.
    A. C. Vermeulen, “Considerations for Collecting Reliable XRD Residual Stress Data Across the Full 2θ Range”, Advances in X-Ray Analysis 49 (2006) 1-10.
    H. Watanabe, N. Yamada, M. Okaji, “Linear Thermal Expansion Coefficient of Silicon from 293 to 1000 oK”, International Journal of Thermophysics 25:1 (January 2004) 221-227.
    M. Wautelet, A. S. Shirinyan, “Phase Stability of Nanosystems: The Thermodynamic Approach”, IEEE Conference on Emerging Technologies - Nanoelectronics (2006) 16-20.
    F. E. Wawner Jr., K. R. Lawless, “Epitaxial Growth of Titanium Thin Films”, Journal of Vacuum Science Technology 6:4 (1969) 588-590.
    U. Welzel, J. Ligot, P. Lamparter, A. C. Vermeulen, E. J. Mittemeijer, “Stress Analysis of Polycrystalline Thin Films and Surface Regions by X-Ray Diffraction”, Journal of Applied Crystallography 38 (2005) 1-29.
    M. Wen, G. Liu, J. F. Gu, W. M. Guan, J. Lu, “Dislocation Evolution in Titanium During Surface Severe Plastic Deformation”, Applied Surface Science 255 (2009) 6097-6102.
    H. Windischmann, “An Intrinsic Stress Scaling Law for Polycrystalline Thin Films Prepared by Ion Beam Sputtering”, Journal of Applied Physics 62:5 (1987) 1800-1807.
    H. Windischmann, “Intrinsic Stress in Sputter-Deposited Thin Film”, Critical Reviews in Solid State and Materials Sciences 17 (1992) 547.
    J. Zang, F. Liu, “Theory of Bending of Si Nanocantilevers Induced by Molecular Adsorption: A Modified Stoney Formula for the Calibration of Nanomechanochemical Sensors”, Nanotechnology 18 (2007) 405501 (4pp).
    X. C. Zhang, B. S. Xu, H. D. Wang, Y. X. Wu, “An Analytical Model for Predicting Thermal Residual Stresses in Multilayer Coating Systems”, Thin Solid Films 488 (2005) 274-282.
    Y. Zhang, Y. P. Zhao, “Applicability Range of Stoney’s Formula and Modified Formulas for a Film/Substrate Bilayer”, Journal of Applied Physics 99, 053513 (2006); doi:10.1063/1.2178400 (7 pages)
    Y. J. Zhang, Y. T. Cheng, D. S. Grummon, “Indentation Stress Dependence of the Temperature Range of Microscopic Superelastic Behavior of Nickel-Titanium Thin Films”, Journal of Applied Physics 98 (2005) 1-4.
    M. L. Zhu, P. B. Kirby, “Governing Equation for the Measurement of Non-Uniform Stress Distributions in Thin Films Using Substrate Deformation Technique”, Applied Physics Letters 88 (2006).
    http://bama.ua.edu/~gthomps/research/index.htm
    http://en.wikipedia.org/wiki/Shear_modulus#Shear_modulus_of_metals
    http://miam.physics.mcgill.ca:81/materials-chemicals/solids/soda-lime-float-glass-properties
    http://www.advanced-energy.com
    http://www.ias.ac.in/resonance/Sept2003/pdf/Sept2003p41-48.pdf
    http://www.svc.org
    http://www.themetallurgist.co.uk/articles/titanium_and_titanium_alloys_key_engineering_materials_for_aerospace_applications.shtml
    http://www.valleydesign.com/sodalime.htm

    QR CODE