簡易檢索 / 詳目顯示

研究生: 賴正偉
Cheng-Wei Lai
論文名稱: 鋁金屬覆蓋層於氧化銦鋅錫薄膜電晶體特性改善之研究
Performance Improvement of Indium-Zinc-Oxide Thin-Film Transistors with Al-Metal Capping Layer
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 劉舜維
Shun-Wei Liu
李志堅
Chih-Chien Lee
王錫九
Shea-Jue Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 152
中文關鍵詞: 高載子遷移率金屬覆蓋層氧化銦鋅錫金屬氧化物薄膜電晶體
外文關鍵詞: High mobility, Metal-capping-layer, InSnZnO, Metal oxide thin-film-transistor
相關次數: 點閱:144下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬氧化物半導體薄膜電晶體(Oxide-TFT)由於其高載子遷移率、高可見光透明性、大面積均勻性、低溫製成及低漏電流…等,於近年來常被應用於大尺寸面板甚至是攜帶型產品中作為驅動或是補償電路的元件使用,不過由於顯示器開始朝向高解析度及高畫面更新率做發展,電晶體的載子遷移率勢必須要進一步的提升,因此,本論文將以提升金屬氧化物薄膜電晶體之載子遷移率作為研究的主軸,相較於常見的氧化銦鎵鋅,氧化銦鋅錫擁有先天上較高遷移率的優勢,利用其特點同時搭配金屬覆蓋層,進一步提升主動層的載子濃度,來達成目標。
    首先,我們利用調變氧化銦鋅錫在磁控濺鍍生長時的氧氣流量及濺鍍功率,分析在不同製程條件下元件在電特性上的表現,找出最佳主動層製程參數,並針對薄膜進行AFM、XRD等材料分析,接著,為了進一步提升載子遷移率,我們以搭配鋁(Al)金屬覆蓋層來實現,探討其覆蓋面積、覆蓋厚度及後退火參數對於元件電性的影響,比較出各種參數調變下的電特性差異,同時以XPS材料分析來證明,找出擁有最佳特性的調變參數,其載子遷移率高達58.76(cm2 / V∙s)。


    Metal-oxide Thin-Film Transistors (Oxide-TFTs) have been used in large-sized panels in recent years due to their high carrier mobility, high visible light transparency, large-area uniformity, and low-temperature fabrication, and low leakage current. It is even used as the component of a driving or compensation circuit for portable devices. However, as displays begin to develop towards high resolution and high refresh rate, the carrier mobility of transistors must be further improved. Therefore, in this work, we will focus on the research of improving the carrier mobility of metal oxide thin-film transistors.
    First, we use the modulation of the oxygen flow rate and sputtering power of indium zinc tin oxide during magnetron sputtering to analyze the electrical characteristics of the device under different process conditions, find the best active layer process parameters, and AFM and XRD material analysis of thin films, then, to further improve the carrier mobility, we implemented it with an aluminum (Al) metal capping layer and discussed the influence of its coverage area, thickness and post-annealing parameters on the electrical properties of the device. The differences in electrical characteristics under various parameter modulations were compared, and the XPS material analysis was used to prove that the modulation parameters with the best characteristics were found, and the carrier mobility was as high as 58.76 (cm2 / V∙s).

    論文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 4 1.3 論文大綱 5 第二章 材料與製程介紹及理論基礎 6 2.1 金屬氧化物半導體材料介紹 6 2.1.1 金屬氧化物半導體材料概述 6 2.1.2 非晶金屬氧化物半導體傳輸機制 7 2.1.3 非晶氧化銦鋅錫材料特性與電性影響 9 2.2 金屬氧化物薄膜電晶體結構 11 2.3 金屬氧化物薄膜電晶體操作模式 13 2.4 金屬氧化物薄膜電晶體之參數萃取方式 18 2.4.1I-V 特性量測 18 2.4.2 載子遷移率 (Mobility, μ) 19 2.4.3 臨界電壓 (Threshold Voltage, VTH) 20 2.4.4 次臨界斜率 (Subthreshold Swing, S.S) 21 2.4.5 開關電流比 (On/Off Current Ratio, Ion/Ioff) 23 2.4.6 接觸電阻 (Contact Resistance, RC) 23 2.5 薄膜材料特性分析 25 2.5.1 原子力顯微鏡 (Atomic Force Microscope , AFM) 25 2.5.2 紫外光/可見光光譜儀 (Ultraviolet/Visible Spectrophotometer, UV/VIS) 25 2.5.3 薄膜厚度輪廓測量儀 (Alpha-Step, α-step) 27 2.5.4 X光繞射儀(X Ray Diffractometer, XRD)27 2.5.5 X射線光電子能譜儀 ( X-ray Photoelectron Spectroscopy, XPS) 28 第三章 元件主動層濺鍍之氧氣流量占比及濺鍍功率之調變與研究 30 3.1 簡介 30 3.1.1 文獻回顧 30 3.1.2 研究大綱 31 3.2 實驗步驟 32 3.3 不同濺鍍氧氣流量占比之元件實驗分析 39 3.3.1 不同濺鍍氧氣流量占比之元件電特性分析 39 3.3.2 不同濺鍍氧氣流量占比之元件遲滯特性分析 44 3.3.3 不同濺鍍氧氣流量占比之材料分析 47 3.4 不同濺鍍功率之元件實驗分析 50 3.4.1 不同濺鍍功率之元件電特性分析 50 3.4.2 不同濺鍍功率之元件遲滯特性分析 55 3.4.3 不同濺鍍功率之材料分析 57 第四章 搭配鋁金屬覆蓋層於金屬氧化物薄膜電晶體之調變與研究 59 4.1. 簡介 59 4.1.1. 文獻回顧 59 4.1.2. 研究大綱 61 4.2. 實驗步驟 62 4.3. 不同金屬覆蓋層厚度之元件實驗分析 69 4.3.1. 不同金屬覆蓋層厚度之元件電特性分析 69 4.3.2. 不同金屬覆蓋層厚度之元件遲滯特性分析 78 4.3.3. 不同金屬覆蓋層厚度之元件穩定性分析 82 4.4. 不同金屬覆蓋層後退火溫度之元件實驗分析 86 4.4.1. 不同金屬覆蓋層後退火溫度之元件之元件電特性分析 86 4.4.2. 金屬覆蓋層後退火對IZTO薄膜影響之XPS分析 95 4.4.3. 不同金屬覆蓋層後退火溫度之元件之元件遲滯特性分析 95 4.4.4. 不同金屬覆蓋層後退火溫度之元件穩定性分析 105 4.5. 不同金屬覆蓋層後退火時間之元件實驗分析 108 4.5.1. 不同金屬覆蓋層後退火時間之元件電特性分析 108 4.5.2. 不同金屬覆蓋層後退火時間之元件遲滯特性分析 117 4.5.3. 不同金屬覆蓋層後退火溫度之元件穩定性分析 121 第五章 結論與未來展望 124 5.1 結論 124 5.2 未來展望 126 參考文獻 127

    [1]Powell, M.J. and D.H. Nicholls, " STABILITY OF AMORPHOUS-SILICON THIN-FILM TRANSISTORS, " IEE Proceedings I: Solid State and Electron Devices, vol. 130, no. 1, pp. 2-4, 1983.
    [2]K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, " AmorphousOxide Semiconductors for High-Performance Flexible Thin-Film Transistors, " Japanese Journal of Applied Physics, " vol. 45, no. 5B, pp. 4303-4308, 2006.
    [3]C. L. Fan, F. P. Tseng, B. J. Li1, Y. Z. Lin, S. J. Wang, W. D. Lee, and B. R. Huang, " Improvement in reliability of amorphous indium–gallium–zinc oxide thin-filmtransistors with Teflon/SiO2 bilayer passivation under gate bias stress, " Japanese Journal of Applied Physics, " vol. 55, no. 2, 2016.
    [4]https://corporate.jp.sharp.
    [5]S. Wang, and M. Wong, " Stacked-Interconnect for Monolithic Integration of Low-Temperature Polysilicon and Amorphous Metal-Oxide Thin-Film Transistors, " IEEE Electron Device Letters, vol. 42, no. 9, pp. 1331-1333, 2021.
    [6]C. L. Fan, W. Y. Lin, and C. Y. Chen, " New Low-Frame-Rate Compensating Pixel Circuit Based on Low-Temperature Poly-Si and Oxide TFTs for High-Pixel-Density Portable AMOLED Displays, " Micromachines, vol. 12, no. 12, 2021.
    [7]王木俊、劉傳璽," 薄膜電晶體液晶顯示器原理與實務 ",新北市,新文京開發出版 股份有限公司,2008.
    [8]https://www.samsung.com/tw/smartphones/galaxy-z-flip3-5g/
    [9]D. H. Lee, S. Y. Han, G. S. Hermanc, and C. h. Chang, " Inkjet printed high-mobility indium zinc tin oxide thin film transistors, " Journal of Materials Chemistry, vol. 19, no. 20, pp. 3135-3137, 2009.
    [10]M. Nakata, C. Zhao, and J. Kanicki, " DC sputtered amorphous In–Sn–Zn–O thin-film transistors: Electrical properties and stability, " Solid-State Electronics, vol. 116, pp. 22-29, 2016.
    [11]X. Xiao, W. Deng, S. Chi, Y. Shao, X. He, L. Wang, and S. Zhang, " Effect of O2 Flow Rate During Channel Layer Deposition on Negative Gate Bias Stress-Induced Vth Shift of a-IGZO TFTs, " IEEE Transactions on Electron Devices, vol. 60, no. 12, pp. 4159-4164, 2013.
    [12]S. Junfei, D. Chengyuan, D. Wenjun, W. Jie, C. Yuting, and Z. Runze, " The influence of RF power on the electrical properties of sputtered amorphous In– Ga–Zn–O thin films and devices, " Journal of Semiconductors, vol. 34, no. 8, 2013.
    [13]M. Orita, H. Ohta, M. Hirano, S. Narushima, and H. Hosono, " Amorphous transparent conductive oxide InGaO3 (ZnO)m (m≤ 4): a Zn4s conductor, " Philosophical Magazine Part B, vol. 81, no. 5, pp. 501-515, 2001.
    [14]D. C. Paine, T. Whitson, D. Janiac, R. Beresford, C. Ow-Yang, and B. Lewis, " A study of low temperature crystallization of amorphous thin film indium-tin-oxide, " Journal of Applied Physics, vol. 85, no. 12, pp. 8445-8450, 1999.
    [15]M. Yasukawa, H. Hosono, N. Ueda, and H. Kawazoe, " Novel Transparent and Electroconductive Amorphous Semiconductor: amorphous AgSbO3 Film, " Journal of Applied Physics, vol. 34, no. 3A, pp. L281-L284, 1995.
    [16]X. Zhou, S. Q. Wang, G. J. Lian, and G. C. Xiong, " Growth of n-type ZnO thin films by using mixture gas of hydrogen and argon, " Chinese Physics, vol.15, no. 1, 2006.
    [17]Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, " P- channel thin-film transistor using p-type oxide semiconductor, SnO, " Applied Physics Letters, vol. 93, no. 3, p. 032113, 2008.
    [18]E. Arca, K. Fleischer, and I. V. Shvets, " Magnesium, nitrogen codoped Cr2O3: A p-type transparent conducting oxide, " Applied Physics Letters, vol. 99, no. 11, p. 111910, 2011.
    [19]A. J. Bosman, and C. Crevecoeur, " Mechanism of the Electrical Conduction in Li-Doped NiO, " Physical Review, vol. 144, no. 2, pp. 763-770, 1966.
    [20]D. C. Look, G. M. Renlund, R. H. Burgener, and J. R. Sizelove, " As-doped p-type ZnO produced by an evaporation∕sputtering process, " Applied Physics Letters, vol. 85, no. 22, pp. 5269-5271, 2004.
    [21]M. L. Tu, Y. K. Su, and C. Y. Ma, " Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering, " Journal of Applied Physics, vol. 100, no. 5, p. 053705, 2006.
    [22]X. Ding, C. Qin, T. Xu, J. Song, J. Zhang, X. Jiang, and Z. Zhang, " Stability enhancement in InGaZnO thin-film transistor with a novel Al2O3/HfO2/Al2O3 as gate insulator, " Molecular Crystals and Liquid Crystals, vol. 651, no. 1, pp. 235-242, 2017.
    [23]T. Kamiya, K. Nomura, and H. Hosono, " Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping, " Journal of Display Technology, vol. 5, no. 7, pp. 273-288, 2009.
    [24]H. Hosono, " Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application, " Journal of Non-Crystalline Solids, vol. 352, pp. 851-858, 2006.
    [25]H. Hosono, M. Yasukawa, and H. Kawazoe, " Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides, " Journal of Non-Crystalline Solids, vol. 203, pp. 334-344, 1996.
    [26]W. Yu, D. Han, H. Li, J. Dong, X. Zhou, Z. Yi, Z. Luo, S. Zhang, X. Zhang, and Y. Wang, " Titanium doped zinc oxide thin film transistors fabricated by cosputtering technique, " Applied Surface Science, vol. 459, pp. 345-348, 2018.
    [27]Q. Tang, X. Chen, J. Wan, H. Wu, and C. Liu, " Influence of Ga Doping on Electrical Performance and Stability of ZnO Thin-Film Transistors Prepared by Atomic Layer Deposition, " IEEE Transactions on Electron Devices, vol. 67, no. 8, pp. 3129-3134, 2020.
    [28]H. Hosono, K. Nomura, Y. Ogo, T. Uruga, and T. Kamiya, " Factors controlling electron transport properties in transparent amorphous oxide semiconductors, " Journal of NonCrystalline Solids, vol. 354, pp. 2796-2800, 2008.
    [29]H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, " High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer, " Applied Physics Letters, vol. 86, no. 1, p. 013503, 2005.
    [30]T. Kamiya, K. Nomura, and H. Hosono, " Present status of amorphous In-Ga-Zn-O thinfilm transistors, " Science and Technology of Advanced Materials, vol. 11, no. 4, p. 044305, Aug 2010.
    [31]K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, " Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors, " Japanese Journal of Applied Physics, vol. 48, no. 1, p. 010203, 2009.
    [32]戴亞翔," TFT-LCD 面板的驅動與設計 ",五南圖書出版社股份有限公司,2008.
    [33]J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and C. J. Kim, " Control of threshold voltage in ZnO-based oxide thin film transistors, " Applied Physics Letters, vol. 93, no. 3, p. 033513, 2008.
    [34]P. Barquinha, L. Pereira, G. Gonalves, R. Martins, and E. Fortunato, " The effect of deposition conditions and annealing on the performance of high-mobility GIZO TFTs, " Electrochemical and Solid-State Letters, vol. 11, no. 9, pp. H248-H251, 2008. 148
    [35]J. H. Jeong, H. W. Yang, J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, J. Song, and C. S. Hwang, " Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors, " Electrochemical and Solid-State Letters, vol. 11, no. 6, pp. H157-H159, 2008.
    [36]K. Ide, Y. Kikuchi, K. Nomura, M. Kimura, T. Kamiya, and H. Hosono, " Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors, " Applied Physics Letters, vol. 99, no. 9, p. 093507, 2011
    [37]P. Barquinha, A. M. Vila, G. Goncalves, L. Pereira, R. Martins, J. R. Morante, and E. Fortunato, " Gallium-indium-zinc-oxide-based thin-film transistors: Influence of the source/drain material, " IEEE Transactions on Electron Devices, vol. 55, no. 4, pp. 954- 960, 2008.
    [38]J. R. Yim, S. Y. Jung, H. W. Yeon, J. Y. Kwon, Y. J. Lee, J. H. Lee, and Y. C. Joo, " Effects of metal electrode on the electrical performance of amorphous In-Ga-Zn-O thin film transistor, " Japanese Journal of Applied Physics, vol. 51, no. 1, p. 011401, 2011.
    [39]E. N. Cho, J. H. Kang, and I. Yun, " Contact resistance dependent scaling-down behavior of amorphous InGaZnO thin-film transistors, " Current Applied Physics, vol. 11, no. 4, pp. 1015-1019, 2011.
    [40]H. Kim, K. K. Kim, S. N. Lee, J. H. Ryon, and R. D. Dupuis, " Low resistance Ti/Au contacts to amorphous gallium indium zinc oxides, " Applied Physics Letters, vol. 98, no. 11, p. 112107, 2011.
    [41]J. R. Yim, S. Y. Jung, H. W. Yeon, J. Y. Kwon, Y. J. Lee, J. H. Lee, and Y. C. Joo, " Effects of Metal Electrode on the Electrical Performance of Amorphous In–Ga–Zn–O Thin Film Transistor, " Japanese Journal of Applied Physics, vol. 51, no. 1, p.011401, 2012.
    [42]Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, " Specific contact resistances between amorphous oxide semiconductor In-Ga-Zn-O and metallic electrodes, " Thin Solid Films, vol. 516, no. 17, pp. 5899-5902, 2008.
    [43]W. S. Kim, Y. K. Moon, K. T. Kim, J. H. Lee, B. D. Ahn, and J. W. Park, " An investigation of contact resistance between metal electrodes and amorphous gallium–indium–zinc oxide (a-GIZO) thin-film transistors, " Thin Solid Films, vol. 518, no. 22, pp. 6357-6360, 2010.
    [44]G. Wu, and A. K. Sahoo, " Influence of Oxygen Flow Rate on Channel Width Dependent Electrical Properties of Indium Gallium Zinc Oxide Thin-Film Transistors, " Nanomaterials, vol. 10, no. 15, pp. 1-15, 2020.
    [45]E. Chong, Y. S. Chun, S. H. Kim, and S. Y. Lee, " Effect of oxygen on the threshold voltage of a-IGZO TFT, " Journal of Electrical Engineering & Technology, vol. 6, no. 4, pp. 539-542, 2011.
    [46]J. W. Niu, R. X. Ma, Y. Y. Wang, S.N. Li, S. Y. Cheng, Z. L. Liu, " Effects of parameters on the performance of amorphous IGZO thin films prepared by RF magnetron sputtering, " Optoelectronics Letters, vol. 10, no. 5, pp. 347-351, Setp 2014.
    [47]B. S. Yang, S. Oh, Y. J. Kim, S. J. Han, H. W. Lee, H. J. Kim, " Effect of sputter power on the photobias stability of zinc-tin-oxide field-effect transistors, " Journal of Vacuum Science & Technology B, vol. 32, no. 1, p. 011202, 2014.
    [48]C. S. Fuh, P. T. Liu, W. H. Huang, and S. M. Sze, " Effect of Annealing on Defect Elimination for High Mobility Amorphous Indium-Zinc-Tin-Oxide Thin-Film Transistor, " IEEE Electron Device Letters, vol. 35, no. 11, pp. 1103-1105, 2014.
    [49]R. Li, S. Dai, J. Su, Y. Ma, Y. Wang, D. Zhou, and X. Zhang, " Effect of thermal annealing on the electrical characteristics of an amorphous IZTO:Li thin film transistor fabricated using the magnetron sputtering method, " Materials Science in Semiconductor Processing, vol. 96, pp. 8-11, 2019.
    [50]I. Noviyana, A. D. Lestari, M. Putri, M. S. Won, J. S. Bae, Y. W. Heo, and H. Y. Lee, " High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide, " Materials, vol. 10, no. 7, Jun 2017.
    [51]S. Kim, Y. W. Jeon, Y. Kim, D. Kong, H. K. Jung, M. K. Bae, J. H. Lee, B. D. Ahn, S. Y. Park, J. H. Park, J. Park, H. I. Kwon, D. M. Kim, " Impact of Oxygen Flow Rate on the Instability Under Positive Bias Stresses in DC-Sputtered Amorphous InGaZnO Thin-Film Transistors, " IEEE Electron Device Letters, vol. 33, no. 1, p. 6087997, Jan 2012.
    [52]X. Zhou, Y. Shao, L. Zhang, H. Lu, H. He, D. Han, Y. Wang, S. Zhang, " Oxygen Interstitial Creation in a-IGZO Thin-Film Transistors under Positive Gate-Bias Stress, " IEEE Electron Device Letters, vol. 38, no. 9, pp. 1252-1255, Sept 2017.
    [53]C. C. Lo, T. E. Hsieh, " The Influences of Oxygen Incorporation on the Defect Trap States of a-IGZO Thin-film Transistors, " The Electrochemical Society, vol. 45, no. 7, pp. 239-243, 2012.
    [54]B. C. You, S. J. Wang, R. M. Ko2, J. H. Wu, C. E. Lin, " Enhanced electrical performance and reliability of Ti-IGZO thinfilm transistors with Hf1-xAlxO gate dielectrics, " Japanese Journal of Applied Physics, vol. 59, 2019.
    [55]C. H. Hunga, S. J. Wanga, P. Y. Liua, C. H. Wuc, H. P. Yana, N. S. Wua, T. H. Lin, " Improving the electrical and hysteresis performance of amorphous igzo thinfilm transistors using co-sputtered zirconium silicon oxide gate dielectrics, " Materials Science in Semiconductor Processing, vol. 67, pp. 84-91, 2017.
    [56]J. Raja, K. Jang, H. H. Nguyen, T. T. Trinh, W. Choi, J. Yi, " Enhancement of electrical stability of a-IGZO TFTs by improving the surface morphology and packing density of active channel, " Current Applied Physics, vol. 13, pp. 246-251, 2013.
    [57]S. Choi, J. Y. Kim, H. Kang, D. Ko, J. Rhee, S. J. Choi, D. M. Kim, D. H. Kim, " Effect of Oxygen Content on Current Stress-Induced Instability in Bottom-Gate Amorphous InGaZnO Thin-Film Transistors, " Materials, vol. 12, no. 19, 2019.
    [58]D. H. Kim, Y. S. Rim, K. H. Kim, " Properties of IZTO Thin Films Prepared by Using a Hetero-Target Sputtering System, " Journal of the Korean Physical Society, vol. 54, no. 3, pp. 1309-1314, 2009.
    [59]J. T. Jang, J. Park, B. D. Ahn, D. M. Kim, S. J. Choi, H. S. Kim, D. H. Kim, " Effect of direct current sputtering power on the behavior of amorphous indiumgallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation, " Applied Physics Letters, vol. 106, p. 123505, 2015.
    [60]Hai Q. Chiang, Brian R. McFarlane, David Hong, Rick E. Presley, John F. Wager, " Processing effects on the stability of amorphous indium gallium zinc oxide thin-film transistors, " Journal of Non-Crystalline Solids, vol. 354, pp. 2826-2830, 2008
    [61]B. Kim, E. Chong, D. H. Kim, Y. W. Jeon, D. H. Kim, S. Y. Lee, " Origin of threshold voltage shift by interfacial trap density in amorphous InGaZnO thin film transistor under temperature induced stress, " Applied Physics Letters, vol. 99, p. 062108, 2011.
    [62]M. Moreira, E. Carlos, C. Dias, J. Deuermeier, M. Pereira, P. Barquinha, R. Branquinho, R. Martins, E. Fortunato, " Tailoring IGZO Composition for Enhanced Fully Solution-Based Thin Film Transistors, " Nanomaterials, vol. 9, no. 9, 2019.
    [63]G. H. Kim, B. D. Ahn, H. S. Shin, W. H. Jeong, H. J. Kim, H. J. Kim, " Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors, " Applied Physics Letters, vol. 94, no. 23, 2009.
    [64]M. H. Cho, M. J. Kim, H. Seul, P. S. Yun, J. U. Bae, K. Park, J. K. Jeong, " Impact of cation compositions on the performance of thin-film transistors with amorphous indium gallium zinc oxide grown through atomic layer deposition, " Journal of Information Display, vol. 20, no. 2, pp. 73-80, 2019.
    [65]C. H. Wu, K. M. Chang, H. Y. Hsu, " High-performance HfO2/ZrO2/IGZO thin-film transistors deposited using atmospheric pressure plasma jet, " Electronics Letters, vol. 50, no. 23, pp. 1747-1749, 2014.
    [66]L. Lu, M. Wong, " A Bottom-Gate Indium-Gallium-Zinc Oxide Thin-Film Transistor With an Inherent Etch-Stop and Annealing-Induced Source and Drain Regions, " IEEE Transactions on Electron Devices, vol. 62, no. 2, pp. 574-579, 2015.
    [67]N. Kumar, J. Kumar, S. Panda, " Back-Channel Electrolyte-Gated a-IGZO Dual-Gate Thin-Film Transistor for Enhancement of pH Sensitivity Over Nernst Limit, " IEEE Electron Device Letters, vol. 37, no. 4, pp. 500-503, 2016.
    [68]H. W. Lee, W. J. Cho, " Effects of vacuum rapid thermal annealing on the electrical characteristics of amorphous indium gallium zinc oxide thin films, " Journal of the Korean Physical Society, vol. 8, no. 1, 2018.
    [69]C. Peng, S. Yang, C. Pan, X. L, " Effect of Two-Step Annealing on High Stability of a-IGZO Thin-Film Transistor, " IEEE Transactions on Electron Devices, vol. 67, no. 10, pp. 4262-4268, 2020.
    [70]Y. S. Rim, H. Chen, X. Kou, H. S. Duan, H. Zhou, M. Cai, H. J. Kim, Y. Yang, " Boost Up Mobility of Solution-Processed Metal Oxide Thin-Film Transistors via Confi ning Structure on Electron Pathways, " Journal of the Korean Physical Society, vol. 26, no. 25, pp. 4273-4278, 2014.
    [71]J. Su, Q. Wang, Y. Ma, R. Li, S. Dai, Y. Wang, H. Yang, X. Zhang, " Amorphous InZnO:Li/ZnSnO:Li dual-active-layer thin film transistors, " Materials Research Bulletin , vol. 111, pp. 165-169, 2019.
    [72]J. L. Wua, H. Y. Lina, B. Y. Sua, Y. C. Chena, S. Y. Chu, S. Y. Liua, C. C. Changc, C. J. Wu, " X-ray reflectivity and surface energy analyses of the physical and electrical properties of α-IGZO/GZO double active layer thin film transistors, " Ceramics International, vol. 40, no. 1B, pp. 2419-2425, 2014.
    [73]X. Li, D. Geng, M. Mativenga, Y. Chen, J. Jang, " Effect of Bulk-Accumulation on Switching Speed of Dual-Gate a-IGZO TFT-Based Circuits, " IEEE Electron Device Letters, vol. 35, no. 12, pp. 1242-1244, 2014.
    [74]M. Chun, J. G. Um, M. S. Park, M. D. H. Chowdhury, J. Jang, " Effect of top gate potential on bias-stress for dual gate amorphous indium-galliumzinc-oxide thin film transistor, " AIP Advances, vol. 6, no.7, 2016.
    [75]S, Hong, S. Lee, M. Mativenga, J. Jang, " Reduction of Negative Bias and Light Instability of a-IGZO TFTs by Dual-Gate Driving, " IEEE Electron Device Letters, vol. 35, no. 1, pp. 93-95, 2014.
    [76]H. W. Zan, C. C. Yeh, H. F. Meng, C. C. Tsai, L. H. Chen, " Achieving High Field-Effect Mobility in Amorphous IndiumGallium-Zinc Oxide by Capping a Strong Reduction Layer, " Advanced Materials, vol. 24, no. 26, pp. 3509-3514, 2012.
    [77]T. Kim, M. J. Kim, J. Lee, J. K. Jeong, " Boosting Carrier Mobility in Zinc Oxynitride Thin-Film Transistors via Tantalum Oxide Encapsulation, " ACS Applied Materials and Interfaces, vol. 11, no. 25, pp. 22501-22509, 2019.
    [78]J. M. Park, H. D. Kim, S. C. Jang, M. J. Kim, K. B. Chung, Y. J. Kim, H. S. Kim, " Improved Field-Effect Mobility of In–Ga–Zn–O TFTs by Oxidized Metal Layer, " IEEE Transactions on Electron Devices, vol. 67, no. 11, pp. 4924-4928, 2020.
    [79]S. T. Kim, Y. Shin, P. S. Yun, J. U. Bae, I. J. Chung, J. K. Jeong, " Achieving High Carrier Mobility Exceeding 70 cm2 /Vs in Amorphous Zinc Tin Oxide Thin-Film Transistors, " Electronic Materials Letters, vol. 13, no. 5, pp. 406-411, 2017.
    [80]S. H. Leea, S. Leea, S. C. Jang, N. Ona, H. S. Kimb, J. K. Jeong, " Mobility enhancement of indium-gallium oxide via oxygen diffusion induced by a metal catalytic layer, " Journal of Alloys and Compounds, vol. 862, 158009, 2021.
    [81]J. M. Park, H. D. Kim, H. Joh, S. C. Jang, K. Park, Y. C. Park, H. H. Nahm, Y. H. Kim, S. Jeon, H. S. Kim, " Metal-induced n+/n homojunction for ultrahigh electron mobility transistors, " NPG Asia Materials, vol. 12, no. 1, 2020.

    無法下載圖示 全文公開日期 2027/08/20 (校內網路)
    全文公開日期 2027/08/20 (校外網路)
    全文公開日期 2027/08/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE