簡易檢索 / 詳目顯示

研究生: Misganu Chewaka Fite
Misganu Chewaka Fite
論文名稱: 外接磁場之於混合超電容之效應
The Effect of the External Magnetic Field on Hybrid Supercapacitors
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 今榮東洋子
Toyoko Imae
王復民
Fu-Ming Wang
陳瑞山
Ruei-San Chen
袁俊傑
Chinn-Jye Yuan
吳乃立
Nae-Lih Wu
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 182
中文關鍵詞: 摻雜氮的氧化石墨烯金屬氧化物混合超電容外部磁場碳點聚苯胺不對稱裝置
外文關鍵詞: Nitrogen-doped graphene oxide, Metal oxide, Hybrid supercapacitor, External magnetic field, Carbon dot, Polyaniline, Asymmetric device
相關次數: 點閱:297下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究描述了摻雜有氮和硼參雜之原子的碳奈米角和石墨烯的電化學性質。從摻雜氮的石墨烯的電化學分析到合成摻氮的氧化石墨烯(NG)電極的電化學分析,可以獲得最高的電容性,原因是摻雜劑氮提供了與電解質相互作用的自由價電子。
    將金屬氧化物(MOs)(磁鐵礦(Fe3O4),氧化鈷(Co3O4)和氧化鎳(NiO))在NG上原始位置教合,以生產用於超電容器材料的二元MOs/NG複合材料。在使用亥姆霍茲線圈產生的外部磁場(EMF)為0和8.98 mT的條件下測量了混合複合電極。這些二元組分混合電極的電化學分析表明,在5 mV/s 時的比電容為(697 F/g , 747 F/g), (963 F/g, 1092 F/g), 和 (973 F/g, 1254 F/g)。在二元NiO/NG, Co3O4/NG, 和 Fe3O4/NG混合電極的EMF(0,8.98 mT)下的掃描速率。 MOs和EMF的添加下的這些特徵分別與MOs的電導率和EMF的Lorentz效應有關。此外,這些混合電極表現出良好的比電容和更好的充放電曲線,但最佳電極(Fe3O4/NG)在EMF下的循環保持能力為92%,並顯示出振盪。
    將導電材料(CM)(聚苯胺(PA)或碳點(Cdots))原位教合,以用於超級電容器材料的三元NG/CM/磁鐵礦雜化物。此外,當將(0,8.98 mT)的EMF用於NG/PA/Fe3O4和NG/Cdots/Fe3O4混合電極的電化學測量時,最高比電容為(1064 F/g,2001 F/g)在(0,8.98 mT)的EMF下,以5 mV/s的掃描速率分別獲得了(1438 F/g,2213 F/g)。 NG/磁鐵礦的二元雜化物中包含的Cdots含量為4 wt%,PA的含量為ng的25 wt%,與NG形成對比。三元NG/Cdots(1:1,4)/Fe3O442混合電極在(0的EMF)下以400 W/kg的比功率密度顯示出最高的比能量密度(99.7 Wh/kg,143.0 Wh/kg),分別為8.98 mT)。這些報告表明,合適的三元混合材料可有效提高比電容,提高比能量密度並在EMF下保持超級電容器的耐久性。
    在均勻EMF下比電容的增加與整體電解質濃度 的3/5倍成正比;但是,功效值與理論估計值不同。由於有洛倫茲力引起的對流,在EMF存在下,復電容幾乎增加了一倍,這是由於電荷轉移阻力減小,延遲時間常數增大,離子擴散的促進以及上升引起的。雙層電容的大小。目前的結果將為改善電動勢下電容效率的機制開闢新的窗口。
    最後,將NG/Fe3O4(正電極)和NG/Cdots/Fe3O442(負電極)組裝為非對稱器件,在400.0 W下重量電容為252.2 F / g,重量能量密度為90.1 Wh/kg。在1 M NaCl水性電解質中以1.6 V的電勢獲得/ kg重量功率密度。


    This thesis described the electrochemical properties of carbon nanohorn and graphene doped nitrogen and boron heteroatoms. The highest capacitance performance was obtained from electrochemical analysis of graphene doped nitrogen because the dopant nitrogen affords free valance electron that interacts with electrolyte.
    Metal oxides (MOs) (magnetite (Fe3O4), cobalt oxide (Co3O4) and nickel oxide (NiO)) were in situ hybridized on NG to produce binary MOs/NG hybrid composites for supercapacitor materials. The hybrid composite electrodes were measured under the external magnetic fields (EMFs) of 0 and 8.98 mT produced using a Helmholtz coil. The electrochemical analyses of these binary component hybrid electrodes have shown the specific capacitance of (697 F/g, 747 F/g), (963 F/g, 1092 F/g), and (973 F/g, 1254 F/g) at 5 mV/s scan rate under the EMFs of (0, 8.98 mT) from binary NiO/NG, Co3O4/NG, and Fe3O4/NG hybrid electrodes, respectively. These features under the addition of MOs and the EMF are associated to the conductivity of MOs and the Lorentz effect of the EMF, respectively. In addition, these hybrid electrodes have shown good specific capacitance and better charge-discharge profile, but the cycle retention ability of the best electrode (Fe3O4/NG) under the EMF was 92% and it has shown oscillation.
    Conductive material (CM) (polyaniline (PA) or carbon dots (Cdots)) was in situ hybridized to develop ternary NG/CM/magnetite hybrids for supercapacitor materials. Further, when the EMFs of (0, 8.98 mT) were applied to the electrochemical measurements of the NG/PA/Fe3O4 and NG/Cdots/Fe3O4 hybrid electrodes, the highest specific capacitance of (1064 F/g, 2001 F/g) and (1438 F/g, 2213 F/g) was obtained at a scan rate of 5 mV/s under the EMFs of (0, 8.98 mT), respectively. A 4 wt% content of Cdots and 25 wt% of PA contrast to that of NG was included in the binary hybrids of NG/Magnetite and has shown higher capacitance performance. Ternary NG/Cdots/Fe3O4 hybrid electrode has shown the highest specific energy density of (99.7 Wh/kg, 143.0 Wh/kg) at the specific power density of 400 W/kg under the EMF of (0, 8.98 mT), respectively. These reports show that suitable ternary hybrid materials effectively enhance the specific capacitance, increase the specific energy density and maintain the durability of supercapacitors under the EMF.
    The increase in specific capacitance under the uniform EMF was proportional to 3/5 power of bulk electrolyte concentration; however, the power value was different from the theoretical estimation. The complex capacitance was almost doubled in the presence of the EMF due to the convection induced by the Lorentz force that was responsible for the reduced charge transfer resistance, the escalation of the relaxation time constant, the facilitation of the ion diffusion, and hence the rise of the double-layer capacitance. The present result will open a new window for the improvement mechanisms on the capacitance efficiency under the EMF.
    Finally, NG/Fe3O4 (positive electrode) and NG/Cdots/Fe3O4 (negative electrode) were assembled as asymmetric device, 252.2 F/g gravimetric capacitance and a 90.1 Wh/kg gravimetric energy density at 400.0 W/kg gravimetric power density was obtained in 1 M NaCl aqueous electrolyte at a potential window of 1.6 V.

    Abstract i Acknowledgements v List of Nomenclatures xiii List of Acronyms xvii Lists of Scheme xix Chapter 1: Introduction and Motivation 1 1.1 The Demand for Energy Storage 1 1.2 The Working Principles of Electrochemical Capacitors 3 1.2.1 Capacitors versus supercapacitors 4 1.2.2 Supercapacitors versus batteries 6 1.2.3 Principles of energy storage mechanisms 6 1.3 Classification of Supercapacitors and Supercapacitor Materials 7 1.3.1 Electrostatic double-layer capacitors 7 1.3.2 Pseudocapacitors 10 1.3.3 Hybrid capacitors 13 1.5 Electrolytes of Supercapacitors 15 1.6 Applications of Supercapacitors 17 1.7 Basics of Electromagnetism 19 1.7.1 Electric charges generate field vectors 19 1.7.2 Classification of magnetic materials. 23 1.7.3 Applications of External Magnetic Field 26 1.8. Statement of the Problem 27 1.8 The Study Approaches 29 1.9 Objectives of the Study 31 1.9.1 General objectives 31 1.9.2 Specific objectives of the study 31 Chapter 2: Experimental Section and Instruments 33 2.1 Introduction 33 2.2 Materials 34 2.3 Materials preparation 35 2.3.1 Binary hybrid composites preparation 35 2.3.2 Ternary hybrid composite preparation 37 2.4 Instruments 40 2.4.1 Electrode Preparation and Electrochemical Characterization 41 Chapter 3: Effect of the External Magnetic Field on Hybrid Supercapacitors of Nitrogen-doped Graphene with Magnetic Metal Oxides 45 3.1 Introduction 45 3.2 Results and Discussion 46 3.2.1 Characterization of carbon materials 46 3.3.2 Electrochemical properties of carbon material electrodes 54 3.3.3 Characterization of binary MOs/NG hybrid composites 60 3.3.4 Electrochemical properties of nitrogen-doped graphene oxide and metal oxides/nitrogen-doped graphene oxide hybrid electrodes 64 3.3.5 The effect of the EMF on metal oxides/nitrogen-doped graphene oxide hybrid supercapacitor electrodes 70 3.4 Conclusions 71 Chapter 4: Capacitance Enhancement of Nitrogen-doped Graphene Oxide/Magnetite with Polyaniline or Carbon dots Under External Magnetic Field: Supported by Theoretical Estimation. 73 4.1 Introduction 73 4.2 Results and Discussion 75 4.2.1 Characterization of ternary NG/PA/Fe3O4 and NG/PA/Fe3O4 hybrid composites 75 4.2.2 Electrochemical characterization of ternary hybrid (NG/PA/Fe3O4 and NG/PA/Fe3O4) electrodes 82 4.2.3 Effect mechanism of the external magnetic field on supercapacitor. 98 4.3 Conclusions 108 Chapter 5: Magnetite Decorated Nitrogen-doped Graphene with Carbon dots for Asymmetric Supercapacitor with High Energy Density 111 5.1 Introduction 111 5.2 Results and Discussion 114 5.3 Conclusions 123 Chapter 6: Summary and Future Outlooks 125 6.1 Summary 125 6.2 Future Outlooks 129 6.2.1 Future outlooks on hybrid composites engineering 129 6.2.2 Future applications of hybrid composites 131 6.2.3 Future outlooks of applied external field 131 References 134

    [1] Al‐Ghussain, L., Global warming: review on driving forces and mitigation. Environ. Prog. Sustain. Energy 2019, 38 (1), 13-21.
    [2] Sher, F.; Iqbal, S. Z.; Albazzaz, S.; Ali, U.; Mortari, D. A.; Rashid, T., Development of biomass derived highly porous fast adsorbents for post-combustion CO2 capture. Fuel 2020, 282, 118506.
    [3] Li, B.; Duan, Y.; Luebke, D.; Morreale, B., Advances in CO2 capture technology: A patent review. Applied Energy 2013, 102, 1439-1447.
    [4] Delina, L. L.; Sovacool, B. K., Of temporality and plurality: an epistemic and governance agenda for accelerating just transitions for energy access and sustainable development. Curr Opin Environ Sustain 2018, 34, 1-6.
    [5] Muzaffar, A.; Ahamed, M. B.; Deshmukh, K.; Thirumalai, J., A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sust. Energ. Rev. 2019, 101, 123-145.
    [6] Conway, B. E., Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media: 2013.
    [7] Libich, J.; Máca, J.; Vondrák, J.; Čech, O.; Sedlaříková, M., Supercapacitors: Properties and applications. J Energy Storage 2018, 17, 224-227.
    [8] Lin, R.; Taberna, P.-L.; Chmiola, J.; Guay, D.; Gogotsi, Y.; Simon, P., Microelectrode study of pore size, ion size, and solvent effects on the charge/discharge behavior of microporous carbons for electrical double-layer capacitors. J. Electrochem. Soc. 2008, 156 (1), A7.
    [9] Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. In Nanoscience and technology: a collection of reviews from Nature journals, World Scientific: 2010; pp 320-329.
    [10] Ho, J.; Jow, T. R.; Boggs, S., Historical introduction to capacitor technology. IEEE Electr. Insul. Mag. 2010, 26 (1), 20-25.
    [11] Pattathil, P.; Sivakumar, N.; Sonia, T. S., Capacitor to Supercapacitor: An Introduction. Nanostructured Ceram. Oxides Supercapacitor Appl 2014, 1.
    [12] Miller, J. R.; Burke, A., Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem Soc Interface 2008, 17 (1), 53.
    [13] Miller, E. E.; Hua, Y.; Tezel, F. H., Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors. J Energy Storage 2018, 20, 30-40.
    [14] Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E., Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 2014, 26 (14), 2219-2251.
    [15] Majumder, P.; Dutta, K.; Dutta, P., Synthesis, Properties of Graphene Oxide-Metal Oxide Mixed Nanocomposites and their Applications-Review.
    [16] Ma, Z.; Huang, X.; Dou, S.; Wu, J.; Wang, S., One-pot synthesis of Fe2O3 nanoparticles on nitrogen-doped graphene as advanced supercapacitor electrode materials. J. Phys. Chem. C 2014, 118 (31), 17231-17239.
    [17] Yan, X.; Wang, Y.; Ma, Z., Synthesis, characterization and electrochemical performance of cobalt oxides for supercapacitor. Int. J. Electrochem. Sci. 2018, 13, 1074-1083.
    [18] Yang, M.; Zhou, Z., Recent breakthroughs in supercapacitors boosted by nitrogen‐rich porous carbon materials. Adv. Sci. 2017, 4 (8), 1600408.
    [19] Fan, W.; Xia, Y.-Y.; Tjiu, W. W.; Pallathadka, P. K.; He, C.; Liu, T., Nitrogen-doped graphene hollow nanospheres as novel electrode materials for supercapacitor applications. J. Power Sources 2013, 243, 973-981.
    [20] Hulicova‐Jurcakova, D.; Seredych, M.; Lu, G. Q.; Bandosz, T. J., Combined effect of nitrogen‐and oxygen‐containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 2009, 19 (3), 438-447.
    [21] Yu, P.; Wen, X.; Toh, Y.-R.; Lee, Y.-C.; Huang, K.-Y.; Huang, S.; Shrestha, S.; Conibeer, G.; Tang, J., Efficient electron transfer in carbon nanodot–graphene oxide nanocomposites. J. Mater. Chem. C 2014, 2 (16), 2894-2901.
    [22] Tuerhong, M.; Yang, X.; Xue-Bo, Y., Review on carbon dots and their applications. Chin. J. Anal. Chem. 2017, 45 (1), 139-150.
    [23] Etefa, H. F.; Imae, T.; Yanagida, M., Enhanced Photosensitization by Carbon Dots Co-adsorbing with Dye on p-Type Semiconductor (Nickel Oxide) Solar Cells. ACS Appl. Mater. Interfaces 2020, 12 (16), 18596-18608.
    [24] Liu, W.; Li, C.; Ren, Y.; Sun, X.; Pan, W.; Li, Y.; Wang, J.; Wang, W., Carbon dots: surface engineering and applications. J. Mater. Chem. B 2016, 4 (35), 5772-5788.
    [25] Ahmed, M. M.; Imae, T., Effect of external magnetic field on cyclic voltammetry of exfoliated graphene-based magnetic composites with conductive polymer and carbon dots. J. Magn. Magn. Mater. 2019, 491, 165604.
    [26] Unnikrishnan, B.; Wu, C.-W.; Chen, I.-W. P.; Chang, H.-T.; Lin, C.-H.; Huang, C.-C., Carbon dot-mediated synthesis of manganese oxide decorated graphene nanosheets for supercapacitor application. ACS Sustain. Chem. Eng. 2016, 4 (6), 3008-3016.
    [27] Eftekhari, A.; Li, L.; Yang, Y., Polyaniline supercapacitors. J. Power Sources 2017, 347, 86-107.
    [28] Huang, Y.; Tao, J.; Meng, W.; Zhu, M.; Huang, Y.; Fu, Y.; Gao, Y.; Zhi, C., Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 2015, 11, 518-525.
    [29] Tayel, M. B.; Soliman, M. M.; Ebrahim, S.; Harb, M. E., Sprayed polyaniline layer onto chemically reduced graphene oxide as electrode for high performance supercapacitor. Synth Met 2016, 217, 237-243.
    [30] Wang, H.; Lin, J.; Shen, Z. X., Polyaniline (PANi) based electrode materials for energy storage and conversion. J. Sci. Adv. Mater. Dev. 2016, 1 (3), 225-255.
    [31] Asen, P.; Shahrokhian, S., One step electrodeposition of V2O5/polypyrrole/graphene oxide ternary nanocomposite for preparation of a high performance supercapacitor. Int. J. Hydrog. Energy 2017, 42 (33), 21073-21085.
    [32] De, B.; Banerjee, S.; Verma, K. D.; Pal, T.; Manna, P.; Kar, K. K., Transition Metal Oxides as Electrode Materials for Supercapacitors. In Handbook of Nanocomposite Supercapacitor Materials II, Springer: 2020; pp 89-111.
    [33] Xia, H.; Meng, Y. S.; Yuan, G.; Cui, C.; Lu, L., A symmetric RuO2/RuO2 supercapacitor operating at 1.6 V by using a neutral aqueous electrolyte. Electrochem. Solid St. 2012, 15 (4), A60.
    [34] Naderi, H. R.; Norouzi, P.; Ganjali, M. R.; Gholipour-Ranjbar, H., Synthesis of a novel magnetite/nitrogen-doped reduced graphene oxide nanocomposite as high performance supercapacitor. Adv Powder Technol 2016, 302, 298-308.
    [35] Liu, F.; Su, H.; Jin, L.; Zhang, H.; Chu, X.; Yang, W., Facile synthesis of ultrafine cobalt oxide nanoparticles for high-performance supercapacitors. J. Colloid Interface Sci. 2017, 505, 796-804.
    [36] Meng, G.; Yang, Q.; Wu, X.; Wan, P.; Li, Y.; Lei, X.; Sun, X.; Liu, J., Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor. Nano energy 2016, 30, 831-839.
    [37] Patil, U.; Salunkhe, R.; Gurav, K.; Lokhande, C., Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Appl. Surf. Sci. 2008, 255 (5), 2603-2607.
    [38] Pan, D.; Zhang, M.; Wang, Y.; Yan, Z.; Jing, J.; Xie, J., In situ fabrication of nickel based oxide on nitrogen-doped graphene for high electrochemical performance supercapacitors. Chem. Phys. Lett. 2017, 685, 457-464.
    [39] Li, Y.; Mei, Y.; Zhang, L.-Q.; Wang, J.-H.; Liu, A.-R.; Zhang, Y.-J.; Liu, S.-Q., Manganese oxide nanowires wrapped with nitrogen doped carbon layers for high performance supercapacitors. J. Colloid Interface Sci. 2015, 455, 188-193.
    [40] Xiong, X.; Ding, D.; Chen, D.; Waller, G.; Bu, Y.; Wang, Z.; Liu, M., Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy 2015, 11, 154-161.
    [41] Li, Q.; Wei, Q.; Xie, L.; Chen, C.; Lu, C.; Su, F.-Y.; Zhou, P., Layered NiO/reduced graphene oxide composites by heterogeneous assembly with enhanced performance as high-performance asymmetric supercapacitor cathode. RSC Adv. 2016, 6 (52), 46548-46557.
    [42] Chang, H.; Kang, J.; Chen, L.; Wang, J.; Ohmura, K.; Chen, N.; Fujita, T.; Wu, H.; Chen, M., Low-temperature solution-processable Ni(OH)2 ultrathin nanosheet/N-graphene nanohybrids for high-performance supercapacitor electrodes. Nanoscale 2014, 6 (11), 5960-5966.
    [43] Pal, S.; Majumder, S.; Dutta, S.; Banerjee, S.; Satpati, B.; De, S., Magnetic field induced electrochemical performance enhancement in reduced graphene oxide anchored Fe3O4 nanoparticle hybrid based supercapacitor. J. Phys. D: Appl. Phys. 2018, 51 (37), 375501.
    [44] Ali, A.; Hira Zafar, M. Z.; ul Haq, I.; Phull, A. R.; Ali, J. S.; Hussain, A., Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49.
    [45] Gul, S.; Khan, S. B.; Rehman, I. U.; Khan, M. A.; Khan, M., A comprehensive review of magnetic nanomaterials modern day theranostics. Front. Mater. 2019, 6, 179.
    [46] Deng, J.; Kang, L.; Bai, G.; Li, Y.; Li, P.; Liu, X.; Yang, Y.; Gao, F.; Liang, W., Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials. Electrochim. Acta 2014, 132, 127-135.
    [47] Šljukić, B.; Banks, C. E.; Compton, R. G., Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. Nano Lett. 2006, 6 (7), 1556-1558.
    [48] Ling, D.; Lee, N.; Hyeon, T., Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res. 2015, 48 (5), 1276-1285.
    [49] Li, Z.; Wang, S. X.; Sun, Q.; Zhao, H. L.; Lei, H.; Lan, M. B.; Cheng, Z. X.; Wang, X. L.; Dou, S. X.; Lu, G. Q., Ultrasmall manganese ferrite nanoparticles as positive contrast agent for magnetic resonance imaging. Adv. Healthc. Mater. 2013, 2 (7), 958-964.
    [50] Kim, K. S.; Park, J.-K., Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab Chip 2005, 5 (6), 657-664.
    [51] Boal, A. K.; Frankamp, B. L.; Uzun, O.; Tuominen, M. T.; Rotello, V. M., Modulation of spacing and magnetic properties of iron oxide nanoparticles through polymer-mediated “bricks and mortar” self-assembly. Chem. Mater. 2004, 16 (17), 3252-3256.
    [52] Xu, J.; Sun, J.; Wang, Y.; Sheng, J.; Wang, F.; Sun, M., Application of iron magnetic nanoparticles in protein immobilization. Molecules 2014, 19 (8), 11465-11486.
    [53] Vignesh, V.; Subramani, K.; Sathish, M.; Navamathavan, R., Electrochemical investigation of manganese ferrites prepared via a facile synthesis route for supercapacitor applications. Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 668-677.
    [54] Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X. W., Recent advances in metal oxide‐based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24 (38), 5166-5180.
    [55] Fite, M. C.; Rao, J.-Y.; Imae, T., Effect of External Magnetic Field on Hybrid Supercapacitors of Nitrogen-doped Graphene with Magnetic Metal Oxides. Bull. Chem. Soc. Jpn. 2020, 93 (9), 1139-1149.
    [56] Chang, C. C.; Imae, T., Synergistic performance of composite supercapacitors between carbon nanohorn and conducting polymer. ACS Sustain. Chem. Eng. 2018, 6 (4), 5162-5172.
    [57] Ahmed, M. M.; Imae, T., Electrochemical properties of a thermally expanded magnetic graphene composite with a conductive polymer. Phys. Chem. Chem. Phys. 2016, 18 (15), 10400-10410.
    [58] Mondal, S.; Rana, U.; Malik, S., Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. J. Phys. Chem. C 2017, 121 (14), 7573-7583.
    [59] Zhang, J.; Ma, J.; Zhang, L. L.; Guo, P.; Jiang, J.; Zhao, X., Template synthesis of tubular ruthenium oxides for supercapacitor applications. J. Phys. Chem. C 2010, 114 (32), 13608-13613.
    [60] Wang, X.; Yuan, A.; Wang, Y., Supercapacitive behaviors and their temperature dependence of sol-gel synthesized nanostructured manganese dioxide in lithium hydroxide electrolyte. J. Power Sources 2007, 172 (2), 1007-1011.
    [61] Xu, C.; Zhao, Y.; Yang, G.; Li, F.; Li, H., Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications. Chem. Commun. 2009, (48), 7575-7577.
    [62] Cheng, J.; Cao, G.-P.; Yang, Y.-S., Characterization of sol-gel-derived NiOx xerogels as supercapacitors. J. Power Sources 2006, 159 (1), 734-741.
    [63] Cao, C.-Y.; Guo, W.; Cui, Z.-M.; Song, W.-G.; Cai, W., Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. J. Mater. Chem. 2011, 21 (9), 3204-3209.
    [64] Xu, J.; Gao, L.; Cao, J.; Wang, W.; Chen, Z., Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim. Acta 2010, 56 (2), 732-736.
    [65] Rakhi, R.; Chen, W.; Cha, D.; Alshareef, H. N., Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano lett. 2012, 12 (5), 2559-2567.
    [66] Maheswari, N.; Muralidharan, G., Supercapacitor behavior of cerium oxide nanoparticles in neutral aqueous electrolytes. Energy Fuels 2015, 29 (12), 8246-8253.
    [67] Owusu, K. A.; Qu, L.; Li, J.; Wang, Z.; Zhao, K.; Yang, C.; Hercule, K. M.; Lin, C.; Shi, C.; Wei, Q., Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. commun. 2017, 8 (1), 1-11.
    [68] Aghazadeh, M.; Karimzadeh, I.; Ganjali, M. R., Electrochemical evaluation of the performance of cathodically grown ultra-fine magnetite nanoparticles as electrode material for supercapacitor applications. J Mater Sci Mater Electron 2017, 28 (18), 13532-13539.
    [69] Tipsawat, P.; Wongpratat, U.; Phumying, S.; Chanlek, N.; Chokprasombat, K.; Maensiri, S., Magnetite (Fe3O4) nanoparticles: Synthesis, characterization and electrochemical properties. Appl. Surf. Sci. 2018, 446, 287-292.
    [70] Shivakumara, S.; Penki, T. R.; Munichandraiah, N., Preparation and electrochemical performance of porous hematite (α-Fe2O3) nanostructures as supercapacitor electrode material. J Solid State Electrochem 2014, 18 (4), 1057-1066.
    [71] Dubal, D. P.; Ayyad, O.; Ruiz, V.; Gomez-Romero, P., Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 2015, 44 (7), 1777-1790.
    [72] Ujihara, M.; Ahmed, M. M. M.; Imae, T.; Yamauchi, Y., Massive-exfoliation of magnetic graphene from acceptor-type GIC by long-chain alkyl amine. J. Mater. Chem. A 2014, 2 (12), 4244-4250.
    [73] Wang, R.; Han, M.; Zhao, Q.; Ren, Z.; Guo, X.; Xu, C.; Hu, N.; Lu, L., Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors. Sci. Rep. 2017, 7 (1), 1-9.
    [74] Wen, Z.; Da-Wei, H.; Yong-Sheng, W.; Xiang, D.; Hao, X., Synthesis and electrochemical properties of three-dimensional graphene/polyaniline composites for supercapacitor electrode materials. Chin. Phys. B 2015, 24 (4), 047204.
    [75] Feng, M.; Lu, W.; Zhou, Y.; Zhen, R.; He, H.; Wang, Y.; Li, C., Synthesis of polypyrrole/nitrogen-doped porous carbon matrix composite as the electrode material for supercapacitors. Sci. Rep. 2020, 10 (1).
    [76] Wu, M.-S.; Lin, Y.-P.; Lin, C.-H.; Lee, J.-T., Formation of nano-scaled crevices and spacers in NiO-attached graphene oxide nanosheets for supercapacitors. J. Mater. Chem. 2012, 22 (6), 2442-2448.
    [77] Liu, Y.; Wang, H.; Zhou, J.; Bian, L.; Zhu, E.; Hai, J.; Tang, J.; Tang, W., Graphene/polypyrrole intercalating nanocomposites as supercapacitors electrode. Electrochim. Acta 2013, 112, 44-52.
    [78] Wang, B.; Park, J.; Wang, C.; Ahn, H.; Wang, G., Mn3O4 nanoparticles embedded into graphene nanosheets: preparation, characterization, and electrochemical properties for supercapacitors. Electrochim. Acta 2010, 55 (22), 6812-6817.
    [79] Xiang, C.; Li, M.; Zhi, M.; Manivannan, A.; Wu, N., A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J. Power Sources 2013, 226, 65-70.
    [80] Khattak, A. M.; Yin, H.; Ghazi, Z. A.; Liang, B.; Iqbal, A.; Khan, N. A.; Gao, Y.; Li, L.; Tang, Z., Three dimensional iron oxide/graphene aerogel hybrids as all-solid-state flexible supercapacitor electrodes. RSC Adv. 2016, 6 (64), 58994-59000.
    [81] Wang, G.; Xu, H.; Lu, L.; Zhao, H., Magnetization-induced double-layer capacitance enhancement in active carbon/Fe3O4 nanocomposites. J. Energy Chem. 2014, 23 (6), 809-815.
    [82] Bhattacharya, G.; Kandasamy, G.; Soin, N.; Upadhyay, R. K.; Deshmukh, S.; Maity, D.; McLaughlin, J.; Roy, S. S., Novel π-conjugated iron oxide/reduced graphene oxide nanocomposites for high performance electrochemical supercapacitors. RSC Adv. 2017, 7 (1), 327-335.
    [83] Mezgebe, M. M.; Yan, Z.; Wei, G.; Gong, S.; Zhang, F.; Guang, S.; Xu, H., 3D graphene-Fe3O4-polyaniline, a novel ternary composite for supercapacitor electrodes with improved electrochemical properties. Mater. Today Energy 2017, 5, 164-172.
    [84] Moyseowicz, A.; Śliwak, A.; Miniach, E.; Gryglewicz, G., Polypyrrole/iron oxide/reduced graphene oxide ternary composite as a binderless electrode material with high cyclic stability for supercapacitors. Compos. B. Eng. 2017, 109, 23-29.
    [85] Lu, K.; Jiang, R.; Gao, X.; Ma, H., Fe3O4/carbon nanotubes/polyaniline ternary composites with synergistic effects for high performance supercapacitors. RSC Adv. 2014, 4 (94), 52393-52401.
    [86] Yan, Y.; Cheng, Q.; Pavlinek, V.; Saha, P.; Li, C., Fabrication of polyaniline/mesoporous carbon/MnO2 ternary nanocomposites and their enhanced electrochemical performance for supercapacitors. Electrochim. Acta 2012, 71, 27-32.
    [87] Lewandowski, A.; Olejniczak, A.; Galinski, M.; Stepniak, I., Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. J. Power Sources 2010, 195 (17), 5814-5819.
    [88] Maheswari, N.; Muralidharan, G.; Fuels, Supercapacitor behavior of cerium oxide nanoparticles in neutral aqueous electrolytes. Energy 2015, 29 (12), 8246-8253.
    [89] Qu, Q.; Zhang, P.; Wang, B.; Chen, Y.; Tian, S.; Wu, Y.; Holze, R., Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J. Phys. Chem. C 2009, 113 (31), 14020-14027.
    [90] Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev 2015, 44 (21), 7484-7539.
    [91] Huang, S.; Zhu, X.; Sarkar, S.; Zhao, Y., Challenges and opportunities for supercapacitors. APL Mater. 2019, 7 (10), 100901.
    [92] Burke, A.; Liu, Z.; Zhao, H. In Present and future applications of supercapacitors in electric and hybrid vehicles, 2014 IEEE International Electric Vehicle Conference (IEVC), IEEE: 2014; pp 1-8.
    [93] Ku, M.-L.; Li, W.; Chen, Y.; Liu, K. R., Advances in energy harvesting communications: Past, present, and future challenges. IEEE Commun. Surv. Tutor. 2015, 18 (2), 1384-1412.
    [94] Shiue, L.-R.; Wu, D.-S.; Chao, C.-W.; Li, L.-P.; Hsieh, M.-F.; Chung, H.-C.; Lo, W.-T., Electronic timers using supercapacitors. Google Patents: 2004.
    [95] Smith, T.; Mars, J.; Turner, G. In Using supercapacitors to improve battery performance, 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No. 02CH37289), IEEE: 2002; pp 124-128.
    [96] Cochran, J. F.; Heinrich, B., Applications of Maxwell's Equations. John F. Cochran, Bretislav Heinrich: 2004.
    [97] Leslie-Pelecky, D. L.; Rieke, R. D., Magnetic properties of nanostructured materials. Chem. Mater. 1996, 8 (8), 1770-1783.
    [98] Zhu, J.; Chen, M.; Qu, H.; Luo, Z.; Wu, S.; Colorado, H. A.; Wei, S.; Guo, Z., Magnetic field induced capacitance enhancement in graphene and magnetic graphene nanocomposites. Energy Environ. Sci. 2013, 6 (1), 194-204.
    [99] Wei, H.; Gu, H.; Guo, J.; Cui, D.; Yan, X.; Liu, J.; Cao, D.; Wang, X.; Wei, S.; Guo, Z., Significantly enhanced energy density of magnetite/polypyrrole nanocomposite capacitors at high rates by low magnetic fields. Adv Compos Hybrid Mater 2018, 1 (1), 127-134.
    [100] Zhang, Y.; Yuan, B.; Li, L.; Wang, C., Edge electrodeposition effect of cobalt under an external magnetic field. J. Electroanal. Chem. 2020, 865, 114143.
    [101] Koza, J. A.; Uhlemann, M.; Gebert, A.; Schultz, L., Desorption of hydrogen from the electrode surface under influence of an external magnetic field. Electrochem commun 2008, 10 (9), 1330-1333.
    [102] Gorobets, O. Y.; Gorobets, V. Y.; Derecha, D. O.; Brukva, O. M., Nickel electrodeposition under influence of constant homogeneous and high-gradient magnetic field. J. Phys. Chem. C 2008, 112 (9), 3373-3375.
    [103] Shen, K.; Wang, Z.; Bi, X.; Ying, Y.; Zhang, D.; Jin, C.; Hou, G.; Cao, H.; Wu, L.; Zheng, G., Magnetic Field–Suppressed Lithium Dendrite Growth for Stable Lithium‐Metal Batteries. Adv. Energy Mater. 2019, 9 (20), 1900260.
    [104] Zhang, L.; Zeng, M.; Wu, D.; Yan, X., Magnetic field regulating the graphite electrode for excellent lithium-ion batteries performance. ACS Sustain. Chem. Eng. 2019, 7 (6), 6152-6160.
    [105] Zeng, Z.; Liu, Y.; Zhang, W.; Chevva, H.; Wei, J., Improved supercapacitor performance of MnO2-electrospun carbon nanofibers electrodes by mT magnetic field. J. Power Sources 2017, 358, 22-28.
    [106] Haldar, P.; Biswas, S.; Sharma, V.; Chandra, A., Understanding the origin of magnetic field dependent specific capacitance in Mn3O4 nanoparticle based supercapacitors. J. Electrochem. Soc. 2018, 165 (14), A3230.
    [107] Biswas, S.; Chowdhury, A.; Chandra, A., Performance of Na-ion supercapacitors under non-ambient conditions-from temperature to magnetic field dependent variation in specific capacitance. Front. Mater. 2019, 6, 54.
    [108] Hummers Jr, W. S.; Offeman, R. E., Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80 (6), 1339-1339.
    [109] Workie, Y. A.; Sabrina; Imae, T.; Krafft, M. P., Nitric Oxide Gas Delivery by Fluorinated Poly (Ethylene Glycol)@ Graphene Oxide Carrier toward Pharmacotherapeutics. ACS Biomater. Sci. Eng. 2019, 5 (6), 2926-2934.
    [110] Sun, L.; Wang, L.; Tian, C.; Tan, T.; Xie, Y.; Shi, K.; Li, M.; Fu, H., Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv. 2012, 2 (10), 4498-4506.
    [111] Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y., Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS nano 2008, 2 (3), 463-470.
    [112] Park, S.; Ruoff, R. S., Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4 (4), 217-224.
    [113] Cheng, J.; Chen, X.; Wu, J.-S.; Liu, F.; Zhang, X.; Dravid, V. P., Porous cobalt oxides with tunable hierarchical morphologies for supercapacitor electrodes. CrystEngComm 2012, 14 (20), 6702-6709.
    [114] Tarekegne, A. H.; Worku, D. A., Synthesis and Characterization of Reduced Graphene Oxide (rGO) Started from Graphene Oxide (GO) Using the Tour Method with Different Parameters. Adv. Mater. Sci. Eng. 2019, 2019.
    [115] Wu, Z. S.; Winter, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X.; Müllen, K., Three‐dimensional nitrogen and boron co‐doped graphene for high‐performance all‐solid‐state supercapacitors. Adv. Mater. 2012, 24 (37), 5130-5135.
    [116] Sabouri, Z.; Akbari, A.; Hosseini, H. A.; Darroudi, M., Facile green synthesis of NiO nanoparticles and investigation of dye degradation and cytotoxicity effects. J. Mol. Struct. 2018, 1173, 931-936.
    [117] Pang, S. C.; Khoh, W. H.; Chin, S. F., Nanoparticulate magnetite thin films as electrode materials for the fabrication of electrochemical capacitors. J. Mater. Sci. 2010, 45 (20), 5598-5604.
    [118] Ahmed, M. M.; Imae, T.; Hill, J. P.; Yamauchi, Y.; Ariga, K.; Shrestha, L. K., Defect-free exfoliation of graphene at ultra-high temperature. Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 127-132.
    [119] Debelo, T. T.; Ujihara, M., Effect of simultaneous electrochemical deposition of manganese hydroxide and polypyrrole on structure and capacitive behavior. J. Electroanal. Chem. 2020, 113825.
    [120] Pandolfo, A. G.; Hollenkamp, A. F., Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157 (1), 11-27.
    [121] Karthikeyan, K.; Kalpana, D.; Amaresh, S.; Lee, Y. S., Microwave synthesis of graphene/magnetite composite electrode material for symmetric supercapacitor with superior rate performance. RSC Adv. 2012, 2 (32), 12322-12328.
    [122] Wu, D.; Liu, P.; Wang, T.; Chen, X.; Yang, L.; Jia, D., Amino acid-assisted synthesis of Fe2O3/nitrogen doped graphene hydrogels as high performance electrode material. Electrochim. Acta 2018, 283, 1858-1870.
    [123] Wu, M.; Tong, S.; Jiang, L.; Hou, B.; Li, X.; Zhang, Y.; Yue, J.; Jiang, M.; Sheng, L., Nitrogen-doped porous carbon composite with three-dimensional conducting network for high rate supercapacitors. J. Alloys Compd. 2020, 844, 156217.
    [124] Ghaly, H. A.; El-Deen, A. G.; Souaya, E. R.; Allam, N. K., Asymmetric supercapacitors based on 3D graphene-wrapped V2O5 nanospheres and Fe3O4@ 3D graphene electrodes with high power and energy densities. Electrochim. Acta 2019, 310, 58-69.
    [125] Du, C.; Yeh, J.; Pan, N., High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 2005, 16 (4), 350.
    [126] Hiralal, P.; Wang, H.; Unalan, H. E.; Liu, Y.; Rouvala, M.; Wei, D.; Andrew, P.; Amaratunga, G. A., Enhanced supercapacitors from hierarchical carbon nanotube and nanohorn architectures. J. Mater. Chem. 2011, 21 (44), 17810-17815.
    [127] Zhang, L. L.; Zhao, X., Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38 (9), 2520-2531.
    [128] Wang, Y. G.; Li, H. Q.; Xia, Y. Y., Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater. 2006, 18 (19), 2619-2623.
    [129] Salunkhe, R. R.; Hsu, S. H.; Wu, K. C.; Yamauchi, Y., Large‐scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications. ChemSusChem 2014, 7 (6), 1551-1556.
    [130] Zhang, B.-T.; Zheng, X.; Li, H.-F.; Lin, J.-M., Application of carbon-based nanomaterials in sample preparation: A review. Analytica chimica acta 2013, 784, 1-17.
    [131] Hao, Q.; Xia, X.; Lei, W.; Wang, W.; Qiu, J., Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors. Carbon 2015, 81, 552-563.
    [132] Zhang, Y.; Sun, Z.; Wang, H.; Wang, Y.; Liang, M.; Xue, S., Nitrogen-doped graphene as a cathode material for dye-sensitized solar cells: effects of hydrothermal reaction and annealing on electrocatalytic performance. RSC Adv. 2015, 5 (14), 10430-10439.
    [133] Mu, X.; Yuan, B.; Feng, X.; Qiu, S.; Song, L.; Hu, Y., The effect of doped heteroatoms (nitrogen, boron, phosphorus) on inhibition thermal oxidation of reduced graphene oxide. RSC Adv. 2016, 6 (107), 105021-105029.
    [134] Ariharan, A.; Viswanathan, B.; Nandhakumar, V., Nitrogen doped graphene as potential material for hydrogen storage. Graphene 2017, 6 (2), 41-60.
    [135] Indrawirawan, S.; Sun, H.; Duan, X.; Wang, S., Low temperature combustion synthesis of nitrogen-doped graphene for metal-free catalytic oxidation. J. Mater. Chem. A 2015, 3 (7), 3432-3440.
    [136] Xie, G.; Cheng, J.; Li, Y.; Xi, P.; Chen, F.; Liu, H.; Hou, F.; Shi, Y.; Huang, L.; Xu, Z., Fluorescent graphene oxide composites synthesis and its biocompatibility study. J. Mater. Chem. 2012, 22 (18), 9308-9314.
    [137] Pullamsetty, A.; Sundara, R., Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium. J. Colloid Interface Sci. 2016, 479, 260-270.
    [138] Xing, Z.; Ju, Z.; Zhao, Y.; Wan, J.; Zhu, Y.; Qiang, Y.; Qian, Y., One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Sci. Rep. 2016, 6 (1), 1-10.
    [139] Liu, G.; Li, X.; Ganesan, P.; Popov, B. N., Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Appl. Catal. B 2009, 93 (1-2), 156-165.
    [140] Li, J.; Ren, Z.; Zhou, Y.; Wu, X.; Xu, X.; Qi, M.; Li, W.; Bai, J.; Wang, L., Scalable synthesis of pyrrolic N-doped graphene by atmospheric pressure chemical vapor deposition and its terahertz response. Carbon 2013, 62, 330-336.
    [141] Rasines, G.; Lavela, P.; Macías, C.; Zafra, M.; Tirado, J.; Ania, C., On the use of carbon black loaded nitrogen-doped carbon aerogel for the electrosorption of sodium chloride from saline water. Electrochim. Acta 2015, 170, 154-163.
    [142] Li, L.; Dou, Y.; Wang, L.; Luo, M.; Liang, J., One-step synthesis of high-quality N-doped graphene/Fe3O4 hybrid nanocomposite and its improved supercapacitor performances. RSC Advances 2014, 4 (49), 25658-25665.
    [143] Ghorbani-Moghadam, T.; Kompany, A.; Bagheri-Mohagheghi, M.; Abrishami, M. E., Cobalt spin states investigation of Ruddlesden-Popper La2−xSrxCoO4, using X-ray diffraction and infrared spectroscopy. J. Magn. Magn. Mater. 2018, 465, 768-774.
    [144] Sengottaiyan, C.; Jayavel, R.; Bairi, P.; Shrestha, R. G.; Ariga, K.; Shrestha, L. K., Cobalt oxide/reduced graphene oxide composite with enhanced electrochemical supercapacitance performance. Bull. Chem. Soc. Jpn. 2017, 90 (8), 955-962.
    [145] Geleta, T. A.; Imae, T., Influence of Additives on Zinc Oxide-Based Dye Sensitized Solar Cells. Bull. Chem. Soc. Jpn. 2020, 93 (4), 611-620.
    [146] Wang, Y.; Chen, J.; Cao, J.; Liu, Y.; Zhou, Y.; Ouyang, J.-H.; Jia, D., Graphene/carbon black hybrid film for flexible and high rate performance supercapacitor. J. Power Sources 2014, 271, 269-277.
    [147] Duraisamy, N.; Numan, A.; Fatin, S. O.; Ramesh, K.; Ramesh, S., Facile sonochemical synthesis of nanostructured NiO with different particle sizes and its electrochemical properties for supercapacitor application. J. Colloid Interface Sci. 2016, 471, 136-144.
    [148] Jahromi, S. P.; Pandikumar, A.; Goh, B. T.; Lim, Y. S.; Basirun, W. J.; Lim, H. N.; Huang, N. M., Influence of particle size on performance of a nickel oxide nanoparticle-based supercapacitor. Rsc Advan. 2015, 5 (18), 14010-14019.
    [149] Efa, M. T.; Imae, T., Effects of carbon dots on ZnO nanoparticle-based dye-sensitized solar cells. Electrochim. Acta 2019, 303, 204-210.
    [150] Nguyen, T. T.; Deivasigamani, R. K.; Kharismadewi, D.; Iwai, Y.; Shim, J.-J., Facile synthesis of cobalt oxide/reduced graphene oxide composites for electrochemical capacitor and sensor applications. Solid State Sci. 2016, 53, 71-77.
    [151] Sato, H.; Minami, T.; Takata, S.; Yamada, T., Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin solid films 1993, 236 (1-2), 27-31.
    [152] Drasoven, R.; Condurache-Bota, S.;Tigau, N., Structural and electrical characterization of cobalt oxide semiconductors. J. Sci. Arts. 2010, 13, 379-384.
    [153] Kaneti, Y. V.; Zhang, J.; He, Y.-B.; Wang, Z.; Tanaka, S.; Hossain, M. S. A.; Pan, Z.-Z.; Xiang, B.; Yang, Q.-H.; Yamauchi, Y., Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries. J. Mater. Chem. A 2017, 5 (29), 15356-15366.
    [154] Nie, H.; Li, M.; Li, Q.; Liang, S.; Tan, Y.; Sheng, L.; Shi, W.; Zhang, S. X.-A., Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem. Mater. 2014, 26 (10), 3104-3112.
    [155] Bhattacharya, K.; Deb, P., Hybrid nanostructured C-dot decorated Fe3O4 electrode materials for superior electrochemical energy storage performance. Dalton Trans. 2015, 44 (19), 9221-9229.
    [156] Wu, T.-M.; Lin, Y.-W.; Liao, C.-S., Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon 2005, 43 (4), 734-740.
    [157] Allen, A.; Senoff, C., Infrared spectra of tris-ethylenediamine complexes of Ruthenium (II). Can. J. Chem. 1965, 43 (4), 888-895.
    [158] Bautista, M. C.; Bomati-Miguel, O.; del Puerto Morales, M.; Serna, C. J.; Veintemillas-Verdaguer, S., Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. J. Magn. Magn. Mater. 2005, 293 (1), 20-27.
    [159] de Lima Alves, T. M.; Amorim, B. F.; Torres, M. A. M.; Bezerra, C. G.; de Medeiros, S. N.; Gastelois, P. L.; Outon, L. E. F.; de Almeida Macedo, W. A., Wasp-waisted behavior in magnetic hysteresis curves of CoFe2O4 nanopowder at a low temperature: Experimental evidence and theoretical approach. RSC Adv. 2017, 7 (36), 22187-22196.
    [160] Lin, T.-C.; Seshadri, G.; Kelber, J. A., A consistent method for quantitative XPS peak analysis of thin oxide films on clean polycrystalline iron surfaces. Appl. Surf. Sci. 1997, 119 (1-2), 83-92.
    [161] Tantawy, H. R.; Kengne, B.-A. F.; McIlroy, D. N.; Nguyen, T.; Heo, D.; Qiang, Y.; Aston, D. E., X-ray photoelectron spectroscopy analysis for the chemical impact of solvent addition rate on electromagnetic shielding effectiveness of HCl-doped polyaniline nanopowders. J. Appl. Phys. 2015, 118 (17), 175501.
    [162] Efa, M. T.; Imae, T., Hybridization of carbon-dots with ZnO nanoparticles of different sizes. J Taiwan Inst Chem Eng 2018, 92, 112-117.
    [163] Wang, D.; Imae, T.; Miki, M., Fluorescence emission from PAMAM and PPI dendrimers. J. Colloid Interface Sci. 2007, 306 (2), 222-227.
    [164] Dang, Y.-Q.; Ren, S.-Z.; Liu, G.; Cai, J.; Zhang, Y.; Qiu, J., Electrochemical and capacitive properties of carbon dots/reduced graphene oxide supercapacitors. Nanomaterials 2016, 6 (11), 212.
    [165] Shahrokhian, S.; Mohammadi, R.; Asadian, E., One-step fabrication of electrochemically reduced graphene oxide/nickel oxide composite for binder-free supercapacitors. Int. J. Hydrog. Energy 2016, 41 (39), 17496-17505.
    [166] Wei, H.; Gu, H.; Guo, J.; Wei, S.; Liu, J.; Guo, Z., Silica doped nanopolyaniline with endured electrochemical energy storage and the magnetic field effects. J. Phys. Chem. C 2013, 117 (25), 13000-13010.
    [167] Devadas, B.; Imae, T., Effect of carbon dots on conducting polymers for energy storage applications. ACS Sustain. Chem. Eng. 2018, 6 (1), 127-134.
    [168] Xiong, P.; Huang, H.; Wang, X., Design and synthesis of ternary cobalt ferrite/graphene/polyaniline hierarchical nanocomposites for high-performance supercapacitors. J. Power Sources 2014, 245, 937-946.
    [169] Di Fabio, A.; Giorgi, A.; Mastragostino, M.; Soavi, F., Carbon-poly (3-methylthiophene) hybrid supercapacitors. J. Electrochem. Soc. 2001, 148 (8), A845-A850.
    [170] Zhao, X.; Johnston, C.; Grant, P. S., A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode. J. Mater. Chem. 2009, 19 (46), 8755-8760.
    [171] Zhang, K.; Zhang, L. L.; Zhao, X.; Wu, J., Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 2010, 22 (4), 1392-1401.
    [172] Yu, P.; Li, Y.; Zhao, X.; Wu, L.; Zhang, Q., Graphene-wrapped polyaniline nanowire arrays on nitrogen-doped carbon fabric as novel flexible hybrid electrode materials for high-performance supercapacitor. Langmuir 2014, 30 (18), 5306-5313.
    [173] Zhang, Q.; Wu, X.; Zhang, Q.; Yang, F.; Dong, H.; Sui, J.; Dong, L., One-step hydrothermal synthesis of MnO2/graphene composite for electrochemical energy storage. J. Electroanal. Chem. 2019, 837, 108-115.
    [174] Guan, C.; Liu, J.; Wang, Y.; Mao, L.; Fan, Z.; Shen, Z.; Zhang, H.; Wang, J., Iron Oxide-Decorated Carbon for Supercapacitor Anodes with Ultrahigh Energy Density and Outstanding Cycling Stability. ACS Nano 2015, (9), 5198–5207.
    [175] Xia, X.; Hao, Q.; Lei, W.; Wang, W.; Sun, D.; Wang, X., Nanostructured ternary composites of graphene/Fe2O3/polyaniline for high-performance supercapacitors. J. Mater. Chem. 2012, 22 (33), 16844-16850.
    [176] Xia, X.; Hao, Q.; Lei, W.; Wang, W.; Wang, H.; Wang, X., Reduced-graphene oxide/molybdenum oxide/polyaniline ternary composite for high energy density supercapacitors: synthesis and properties. J. Mater. Chem. 2012, 22 (17), 8314-8320.
    [177] Wei, H.; Gu, H.; Guo, J.; Cui, D.; Yan, X.; Liu, J.; Cao, D.; Wang, X.; Wei, S.; Guo, Z., Significantly enhanced energy density of magnetite/polypyrrole nanocomposite capacitors at high rates by low magnetic fields. Adv. Compos Hybrid Mater 2018, 1 (1), 127-134.
    [178] Yan, J.; Wei, T.; Fan, Z.; Qian, W.; Zhang, M.; Shen, X.; Wei, F., Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sources 2010, 195 (9), 3041-3045.
    [179] Wang, G.; Xu, H.; Lu, L.; Zhao, H., Magnetization-induced double-layer capacitance enhancement in active carbon/Fe3O4 nanocomposites. J. Energy Chem. 2014, 23 (6), 809-815.
    [180] Aaboubi, O.; Chopart, J.; Douglade, J.; Olivier, A.; Gabrielli, C.; Tribollet, B., Magnetic field effects on mass transport. J. Electrochem. Soc. 1990, 137 (6), 1796.
    [181] Aogaki, R.; Fueki, K.; Mukaibo, T., Application of Magnetohydrodynamic Effect to the Analysis of Electrochemical Reactions 2. Diffusion Process in MHD Forced Flow of Electrolyte Solutions. T. Denki Kagaku 1975, 43 (9), 509-514.
    [182] Devos, O.; Aaboubi, O.; Chopart, J.-P.; Olivier, A.; Gabrielli, C.; Tribollet, B., Is there a magnetic field effect on electrochemical kinetics? J. Phys. Chem. A 2000, 104 (7), 1544-1548.
    [183] Taberna, P.; Simon, P.; Fauvarque, J.-F., Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 2003, 150 (3), A292.
    [184] Gelderman, K.; Lee, L.; Donne, S., Flat-band potential of a semiconductor: using the Mott–Schottky equation. J. Chem. Educ. 2007, 84 (4), 685.
    [185] Itagaki, M.; Suzuki, S.; Shitanda, I.; Watanabe, K., Electrochemical impedance and complex capacitance to interpret electrochemical capacitor. Electrochemistry 2007, 75 (8), 649-655.
    [186] Raghavendra, K. V. G.; Vinoth, R.; Zeb, K.; Gopi, C. V. M.; Sambasivam, S.; Kummara, M. R.; Obaidat, I. M.; Kim, H. J., An intuitive review of supercapacitors with recent progress and novel device applications. J Energy Storage 2020, 31, 101652.
    [187] Wang, J.-G.; Yang, Y.; Huang, Z.-H.; Kang, F., A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes. Carbon 2013, 61, 190-199.
    [188] Sheng, S.; Liu, W.; Zhu, K.; Cheng, K.; Ye, K.; Wang, G.; Cao, D.; Yan, J., Fe3O4 nanospheres in situ decorated graphene as high-performance anode for asymmetric supercapacitor with impressive energy density. J. Colloid Interface Sci. 2019, 536, 235-244.
    [189] Chang, C. C.; Geleta, T. A.; Imae, T., Effect of Carbon Dots on Supercapacitor Performance of Carbon Nanohorn/Conducting Polymer Composites. Bull. Chem. Soc. Jpn. 2020.
    [190] Zhao, C.; Shao, X.; Zhang, Y.; Qian, X., Fe2O3/reduced graphene oxide/Fe3O4 composite in situ grown on Fe foil for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2016, 8 (44), 30133-30142.
    [191] Lin, T.-W.; Dai, C.-S.; Hung, K.-C., High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes. Sci. Rep. 2014, 4, 7274.
    [192] Masikhwa, T. M.; Barzegar, F.; Dangbegnon, J. K.; Bello, A.; Madito, M. J.; Momodu, D.; Manyala, N., Asymmetric supercapacitor based on VS2 nanosheets and activated carbon materials. RSC Adv. 2016, 6 (45), 38990-39000.
    [193] Yuan, J.; Tang, S.; Zhu, Z.; Qin, X.; Qu, R.; Deng, Y.; Wu, L.; Li, J.; Haarberg, G. M., Facile synthesis of high-performance Ni(OH)2/expanded graphite electrodes for asymmetric supercapacitors. J. Mater. Sci. Mater. Electron. 2017, 28 (23), 18022-18030.
    [194] Fite, M. C.; Imae, T., Capacitance Enhancement of Nitrogen-doped Graphene Oxide/Magnetite with Polyaniline or Carbon dots Under External Magnetic Field: Supported by Theoretical Estimation. J. Colloid Interface Sci. 2021, 594, 228-244.
    [195] Jin, Y.; Meng, Y.; Fan, W.; Lu, H.; Liu, T.; Wu, S., Free-standing macro-porous nitrogen doped graphene film for high energy density supercapacitor. Electrochim. Acta 2019, 318, 865-874.
    [196] Sui, L.; Tang, S.; Dai, Z.; Zhu, Z.; Huangfu, H.; Qin, X.; Deng, Y.; Haarberg, G. M., Supercapacitive behavior of an asymmetric supercapacitor based on a Ni(OH)2/XC-72 composite. New J. Chem. 2015, 39 (12), 9363-9371.
    [197] Guan, C.; Liu, J.; Wang, Y.; Mao, L.; Fan, Z.; Shen, Z.; Zhang, H.; Wang, J., ACS Nano, 2015, 9, 5198–5207. 3.
    [198] Yang, S.; Cheng, K.; Ye, K.; Li, Y.; Qu, J.; Yin, J.; Wang, G.; Cao, D., A novel asymmetric supercapacitor with buds-like Co(OH)2 used as cathode materials and activated carbon as anode materials. J. Electroanal. Chem. 2015, 741, 93-99.
    [199] Dai, C.-S.; Chien, P.-Y.; Lin, J.-Y.; Chou, S.-W.; Wu, W.-K.; Li, P.-H.; Wu, K.-Y.; Lin, T.-W., Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2013, 5 (22), 12168-12174.
    [200] Mei, B.-A.; Munteshari, O.; Lau, J.; Dunn, B.; Pilon, L., Physical interpretations of Nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C 2018, 122 (1), 194-206.
    [201] Arulepp, M.; Permann, L.; Leis, J.; Perkson, A.; Rumma, K.; Jänes, A.; Lust, E., Influence of the solvent properties on the characteristics of a double layer capacitor. J. Power Sources 2004, 133 (2), 320-328.
    [202] Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P., High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332 (6028), 443-447.
    [203] Liu, R.; Jin, Y.; Xu, P.; Xing, X.; Yang, Y.; Wu, D., A hybrid-assembly approach towards nitrogen-doped graphene aerogel supported cobalt nanoparticles as high performance oxygen reduction electrocatalysts. J. Colloid Interface Sci. 2016, 464, 83-88.
    [204] Wu, G.; Li, D.; Dai, C.; Wang, D.; Li, N., Well-dispersed high-loading Pt nanoparticles supported by shell-core nanostructured carbon for methanol electrooxidation. Langmuir 2008, 24 (7), 3566-3575.
    [205] Strelko, V.; Kartel, N.; Dukhno, I.; Kuts, V.; Clarkson, R.; Odintsov, B., Mechanism of reductive oxygen adsorption on active carbons with various surface chemistry. Surf Sci 2004, 548 (1-3), 281-290.
    [206] Yao, J.; Huang, W.; Fang, W.; Kuang, M.; Jia, N.; Ren, H.; Liu, D.; Lv, C.; Liu, C.; Xu, J., Promoting Electrocatalytic Hydrogen Evolution Reaction and Oxygen Evolution Reaction by Fields: Effects of Electric Field, Magnetic Field, Strain, and Light. Small Methods 2020, 4 (10), 2000494.
    [207] Okada, T.; Wakayama, N. I.; Wang, L.; Shingu, H.; Okano, J.-i.; Ozawa, T., The effect of magnetic field on the oxygen reduction reaction and its application in polymer electrolyte fuel cells. Electrochim. Acta 2003, 48 (5), 531-539.
    [208] Hayashi, H.; Nagakura, S., The theoretical study of external magnetic field effect on chemical reactions in solution. Bull. Chem. Soc. Jpn. 1978, 51 (10), 2862-2866.
    [209] Kalinowski, J.; Szmytkowski, J.; Stampor, W., Magnetic hyperfine modulation of charge photogeneration in solid films of Alq3. Chem. Phys. Lett. 2003, 378 (3-4), 380-387.
    [210] Merrifield, R., Magnetic effects on triplet exciton interactions. In Organic Solid-State Chemistry–2, Elsevier: 1971; pp 481-498.

    無法下載圖示 全文公開日期 2030/04/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE