簡易檢索 / 詳目顯示

研究生: 蔡語珮
Yu-Pei Tsai
論文名稱: 赤鐵礦(104)表面氧配位對於甲烷直接轉化為甲醇和甲醛的影響:密度泛函理論研究
Understanding the role of oxygen coordination on the direct conversion of methane to methanol and formaldehyde over hematite (104) surface-A Density Functional Theory study
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 林昇佃
Shawn D. Lin
郭哲來
Jer-Lai Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 112
中文關鍵詞: 赤鐵礦甲烷轉化過渡金屬氧化物部份氧化密度泛函理論
外文關鍵詞: Hematite, Methane conversion, Transition metal oxide, Partial oxidation, Density functional theory
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於全球暖化在近幾十年內日益嚴重,所以一直以來對於將溫室氣體,如:甲烷、二氧化碳、氮氧化物...等物質轉化為低毒性、高附加值的經濟產物的議題不論在學界還是工業界皆備受關注,其中金屬合金、金屬氧化物和有機金屬骨架(MOF)對甲烷轉化展現良好的催化性能。然而,這樣的甲烷活化過程普遍需要在高溫(400–800°C)的環境下才得以進行。使得催化劑在應用於工業上時會因製造成本、有限的催化性能、選擇性、轉化率、可回收性等方面受到限制。因此,開發具有無毒、低溫下可轉化甲烷等特性的催化劑是必須的。在本研究中,我們考慮赤鐵礦(α-Fe2O3) (104)表面作為我們的催化劑,因為赤鐵礦具有載氧量高、結構穩定、對環境影響低、成本低、原料豐富並自然存在於自然界中等特點,並且已被廣泛應用於實驗當中,但是對於甲烷轉化反應機制在赤鐵礦(104)表面的理論研究尚缺乏,所以本文使用密度泛函理論(DFT)來計算赤鐵礦(104)表面氧配位對於甲烷直接轉化為甲醇和甲醛反應機制的理論研究。
    從計算結果中顯示,甲醇的合成過程中,氧二配位表面(two-fold oxygen terminated)速率決定步驟為甲醇的脫附,而氧三配位表面(three-fold oxygen terminated)的速率決定步驟為C-O耦合反應。而在甲醛的合成過程中,氧二配位表面(two-fold oxygen terminated)速率決定步驟為甲醛的脫附,而氧三配位表面(three-fold oxygen terminated)的速率決定步驟為CH3*脫氫形成甲醛。氧二配位表面不管是在甲醇還是甲醛的合成上皆具有較低的反應勢壘,我們進一步考慮了溫度效應在系統中,以接近甲醇及甲醛真實的合成反應環境,並成功驗證了溫度在400℃以上將有利於產物脫附。
    此外,我們考慮通過化學循環燃燒(CLC)技術生產二氧化碳和一氧化碳。在我們的計算結果中顯示,生成二氧化碳和一氧化碳的活化勢壘皆遠大於生成甲醇和甲醛的活化勢壘。並且在考慮溫度效應以後對於活化勢壘的改善並不顯著,顯示在動力學上CO/CO2在赤鐵礦氧二配位表面上的形成是不利的。這使得赤鐵礦成為一種合適且具有競爭力的催化劑並且能夠生產高附加價值的產物。另外,本研究考慮到甲烷轉化為C1產物以後,表面會留下氧空缺,所以我們進一步計算赤鐵礦(104)表面活性位點的再生,本研究利用氧氣吸附到已被還原的赤鐵礦表面來填補氧空缺,使催化劑可以完成循環利用,並且避免赤鐵礦在循環反應過程中越來越還原。最後,本研究透過原子級的理論研究來闡釋甲烷轉化的反應機制,並提供證據表明赤鐵礦(α-Fe2O3) (104)表面是一種具有潛力的催化劑並應用於甲烷轉化成高值化產物。


    The ever-increasing global warming and methane dispersion require a novel catalyst to transform it into easily condensable energy carriers integrated into valuable chemical products. In this context, various metals and metal alloys, metal oxides, and some metal–organic-frameworks showing some specific catalytic performance for methane conversion. However, implementing these proposed catalysts often needs high temperatures (400–800 °C) to activate methane. Moreover, they are incompetent at the industrial level regarding their manufactured cost, limited catalytic properties, selectivity, turnover frequency (TOF), conversion, recyclability, etc. Therefore, it is necessary to develop nontoxic and low-temperature catalysts to activate and convert methane efficiently. Hence, in this study, one of the iron oxide surfaces, hematite (α-Fe2O3) (104) surface, is considered and explored its reactivity towards methane activation and conversion to methanol, formaldehyde using the density functional theory calculation in coupled with the correction of the on-site coulomb interaction (DFT + U). The reaction pathways of methane conversion on both two- and three-fold oxygen terminated hematite surfaces are considered. Besides, the CO/CO2 formation on these surfaces is also examined. The results indicate that the rate determined steps in methanol formation over two- and three-fold oxygen terminated surfaces are methanol desorption and C-O coupling, respectively. The thermodynamic analysis indicates that methane conversion is possible at a relatively higher temperature over two-fold oxygen terminated hematite surface than the three-fold oxygen terminated surface. It has been observed that the rate-determining step in formaldehyde formation over those two surfaces are formaldehyde desorption and CH3* dehydrogenation, respectively. The thermodynamic analysis showed that methane conversion into formaldehyde is possible higher than 400℃ over two-fold oxygen. For the methane conversion to value-added products, comparing the calculated energy profiles for all the reaction pathways considered in this study, it is seen that the rate-determining steps of both CO and CO2 formation steps' activation barriers are too high, suggesting that the CO/CO2 formation over two-fold oxygen terminated hematite surface is kinetically unfavorable evet at a higher temperature. The regeneration of the oxygen vacancy in both two-and three-fold oxygen terminated hematite surfaces using O2 is also considered. Finally, this theoretical study helps to understand the methane conversion mechanism over the hematite (α-Fe2O3) (104) surface at the atomic level and serves as guidance for developing cost-effective catalysts.

    Abstract 摘要 致謝 Contents Index of figures Index of tables Chapter 1. Introduction 1.1 Motivation 1.2 Greenhouse gases (GHG) 1.3 Methane conversion 1.4 Hematite (α-Fe2O3) 1.5 Chemical looping combustion (CLC) 1.6 Present study Chapter 2. Theoretical Methodology 2.1 Computational details 2.2 Hematite (α-Fe2O3) model 2.2.1 Bulk 2.2.2 Surface Chapter 3. Results and discussion 3.1 Methanol formation on hematite (104) surface 3.1.1 Methane adsorption 3.1.2 Electrical properties of methane adsorption 3.1.3 Methanol formation 3.1.4 Thermodynamic effects of Temperature on the methanol formation 3.2 Formaldehyde formation on hematite (104) surface 3.2.1 Thermodynamic effects of Temperature on the formaldehyde formation 3.3 CO/CO2 formation on hematite (104) surface 3.3.1 Thermodynamic effects of Temperature on CO/CO2 formation 3.4 Water formation on hematite (104) vacant surface 3.5 Surface active site regeneration 3.5.1 2-fold oxygen terminated hematite (104) surface 3.5.2 3-fold oxygen terminated hematite (104) surface 3.5.3 Lattice oxygen diffusion Chapter 4. Conclusions Reference Appendix

    1. UN environment programme, U. D. P., Emissions Gap Report 2020. 2020.
    2. U.S. Environmental Protection Agency, Inventory of U.S. Greenhouse Gas Emissions and Sinks. 2021; Vol. EPA430-R-21-005.
    3. Kakaee, A.-H.; Paykani, A.; Ghajar, M., The Influence of Fuel Composition on the Combustion and Emission Characteristics of Natural Gas Fueled Engines. Renewable and Sustainable Energy Reviews 2014, 38, 64-78.
    4. Vosloo, A. C., Fischer–Tropsch: A Futuristic View. Fuel processing technology 2001, 71, 149-155.
    5. Yabe, T.; Sekine, Y., Methane Conversion Using Carbon Dioxide as an Oxidizing Agent: A Review. Fuel Processing Technology 2018, 181, 187-198.
    6. Rostrup-Nielsen, J. R., Activity of Nickel Catalysts for Steam Reforming of Hydrocarbons. Journal of Catalysis 1973, 31, 173-199.
    7. Ferreira-Aparicio, P.; Guerrero-Ruiz, A.; Rodrıguez-Ramos, I., Comparative Study at Low and Medium Reaction Temperatures of Syngas Production by Methane Reforming with Carbon Dioxide over Silica and Alumina Supported Catalysts. Applied Catalysis A: General 1998, 170, 177-187.
    8. Ashcroft, A.; Cheetham, A. K.; Green, M.; Vernon, P., Partial Oxidation of Methane to Synthesis Gas Using Carbon Dioxide. Nature 1991, 352, 225-226.
    9. Parmaliana, A.; Sanfilippo, D.; Frusteri, F.; Vaccari, A.; Arena, F., Natural Gas Conversion V: Proceedings of the 5th International Natural Gas Conversion Symposium, Giardini Naxos-Taormina, Italy, September 20-25, 1998. Studies in Surface Science and Catalysis; Elsevier Science & Technology, 1998.
    10. Froment, G. F.; Waugh, K., Reaction Kinetics and the Development of Catalytic Processes: Proceedings of the International Symposium, Brugge, Belgium, April 19-21, 1999; Elsevier, 1999.
    11. Otsuka, K.; Wang, Y., Direct Conversion of Methane into Oxygenates. Applied Catalysis A: General 2001, 222, 145-161.
    12. Berkowitz, J.; Ellison, G. B.; Gutman, D., Three Methods to Measure Rh Bond Energies. The Journal of Physical Chemistry 1994, 98, 2744-2765.
    13. Wright, J.; Ingold, K., Understanding Trends in Ch, Nh, and Oh Bond Dissociation Enthalpies. Journal of Chemical Education 2000, 77, 1062.
    14. Alvarez-Galvan, M.; Mota, N.; Ojeda, M.; Rojas, S.; Navarro, R.; Fierro, J., Direct Methane Conversion Routes to Chemicals and Fuels. Catalysis today 2011, 171, 15-23.
    15. Ling, L.; Wang, Q.; Zhang, R.; Li, D.; Wang, B., Formation of C 2 Oxygenates and Ethanol from Syngas on an Fe-Decorated Cu-Based Catalyst: Insight into the Role of Fe as a Promoter. Physical Chemistry Chemical Physics 2017, 19, 30883-30894.
    16. Laurent, S.; Boutry, S.; Muller, R., Metal Oxide Particles and Their Prospects for Applications. In Iron Oxide Nanoparticles for Biomedical Applications, Elsevier: 2018; pp 3-42.
    17. Dobereiner, G. E.; Crabtree, R. H., Dehydrogenation as a Substrate-Activating Strategy in Homogeneous Transition-Metal Catalysis. Chemical reviews 2010, 110, 681-703.
    18. Taylor, S., Abundance of Chemical Elements in the Continental Crust: A New Table. Geochimica et cosmochimica acta 1964, 28, 1273-1285.
    19. Peter, L. M., Energetics and Kinetics of Light-Driven Oxygen Evolution at Semiconductor Electrodes: The Example of Hematite. Journal of Solid State Electrochemistry 2013, 17, 315-326.
    20. Faivre, D., Iron Oxides: From Nature to Applications; John Wiley & Sons, 2016.
    21. Sakurai, S.; Namai, A.; Hashimoto, K.; Ohkoshi, S.-i., First Observation of Phase Transformation of All Four Fe2o3 Phases (Γ→ Ε→ Β→ Α-Phase). Journal of the American Chemical Society 2009, 131, 18299-18303.
    22. Korotcenkov, G., The Future of Semiconductor Oxides in Next-Generation Solar Cells; Elsevier, 2017.
    23. Adanez, J.; Abad, A.; Garcia-Labiano, F.; Gayan, P.; Luis, F., Progress in Chemical-Looping Combustion and Reforming Technologies. Progress in energy and combustion science 2012, 38, 215-282.
    24. Nandy, A.; Loha, C.; Gu, S.; Sarkar, P.; Karmakar, M. K.; Chatterjee, P. K., Present Status and Overview of Chemical Looping Combustion Technology. Renewable and Sustainable Energy Reviews 2016, 59, 597-619.
    25. Zhao, X.; Zhou, H.; Sikarwar, V. S.; Zhao, M.; Park, A.-H. A.; Fennell, P. S.; Shen, L.; Fan, L.-S., Biomass-Based Chemical Looping Technologies: The Good, the Bad and the Future. Energy & Environmental Science 2017, 10, 1885-1910.
    26. Monga, R. S.; Kale, G. R.; Guhe, S. Y., Chemical Looping Combustion of Rice Husk. International Journal of Engineering Research and Applications 2015, 5, 132-138.
    27. Sharma, R.; Delebarre, A.; Alappat, B., Chemical‐Looping Combustion—an Overview and Application of the Recirculating Fluidized Bed Reactor for Improvement. International journal of energy research 2014, 38, 1331-1350.
    28. Jin, H.; Okamoto, T.; Ishida, M., Development of a Novel Chemical-Looping Combustion: Synthesis of a Solid Looping Material of Nio/Nial2o4. Industrial & Engineering Chemistry Research 1999, 38, 126-132.
    29. Qin, L.; Cheng, Z.; Guo, M.; Fan, J. A.; Fan, L.-S., Morphology Evolution and Nanostructure of Chemical Looping Transition Metal Oxide Materials Upon Redox Processes. Acta Materialia 2017, 124, 568-578.
    30. Zhang, J.; Guo, Q.; Liu, Y.; Cheng, Y., Preparation and Characterization of Fe2o3/Al2o3 Using the Solution Combustion Approach for Chemical Looping Combustion. Industrial & engineering chemistry research 2012, 51, 12773-12781.
    31. Chen, Y.-Y.; Guo, M.; Kim, M.; Liu, Y.; Qin, L.; Hsieh, T.-L.; Fan, L.-S., Predictive Screening and Validation on Chemical Looping Oxygen Carrier Activation by Tuning Electronic Structures Via Transition Metal Dopants. Chemical Engineering Journal 2021, 406, 126729.
    32. Kresse, G.; Furthmüller, J., Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational materials science 1996, 6, 15-50.
    33. Kresse, G.; Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical review B 1996, 54, 11169.
    34. Kresse, G.; Hafner, J., Ab Initio Molecular Dynamics for Liquid Metals. Physical Review B 1993, 47, 558.
    35. Kresse, G.; Hafner, J., Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium. Physical Review B 1994, 49, 14251.
    36. Blöchl, P. E., Projector Augmented-Wave Method. Physical review B 1994, 50, 17953.
    37. Kresse, G.; Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical review b 1999, 59, 1758.
    38. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Physical review letters 1996, 77, 3865.
    39. Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I., Van Der Waals Density Functional for General Geometries. Physical review letters 2004, 92, 246401.
    40. Klimeš, J.; Bowler, D. R.; Michaelides, A., Van Der Waals Density Functionals Applied to Solids. Physical Review B 2011, 83, 195131.
    41. Zimmermann, R.; Steiner, P.; Claessen, R.; Reinert, F.; Hüfner, S.; Blaha, P.; Dufek, P., Electronic Structure of 3d-Transition-Metal Oxides: On-Site Coulomb Repulsion Versus Covalency. Journal of Physics: Condensed Matter 1999, 11, 1657.
    42. Anisimov, V. I.; Zaanen, J.; Andersen, O. K., Band Theory and Mott Insulators: Hubbard U Instead of Stoner I. Physical Review B 1991, 44, 943.
    43. Rollmann, G.; Rohrbach, A.; Entel, P.; Hafner, J., First-Principles Calculation of the Structure and Magnetic Phases of Hematite. Physical Review B 2004, 69, 165107.
    44. Monkhorst, H. J.; Pack, J. D., Special Points for Brillouin-Zone Integrations. Physical review B 1976, 13, 5188.
    45. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. The Journal of chemical physics 2000, 113, 9901-9904.
    46. Xu, S.; Habib, A.; Gee, S.; Hong, Y.; McHenry, M., Spin Orientation, Structure, Morphology, and Magnetic Properties of Hematite Nanoparticles. Journal of Applied Physics 2015, 117, 17A315.
    47. Teja, A. S.; Koh, P.-Y., Synthesis, Properties, and Applications of Magnetic Iron Oxide Nanoparticles. Progress in crystal growth and characterization of materials 2009, 55, 22-45.
    48. Pozun, Z. D.; Henkelman, G., Hybrid Density Functional Theory Band Structure Engineering in Hematite. The Journal of chemical physics 2011, 134, 224706.
    49. Xia, C.; Jia, Y.; Tao, M.; Zhang, Q., Tuning the Band Gap of Hematite Α-Fe2o3 by Sulfur Doping. Physics Letters A 2013, 377, 1943-1947.
    50. Tang, J.-J.; Liu, B., Reactivity of the Fe2o3 (0001) Surface for Methane Oxidation: A Gga+ U Study. The Journal of Physical Chemistry C 2016, 120, 6642-6650.
    51. Wahab, R.; Khan, F.; Al-Khedhairy, A. A., Hematite Iron Oxide Nanoparticles: Apoptosis of Myoblast Cancer Cells and Their Arithmetical Assessment. RSC advances 2018, 8, 24750-24759.
    52. Lassoued, A.; Dkhil, B.; Gadri, A.; Ammar, S., Control of the Shape and Size of Iron Oxide (Α-Fe2o3) Nanoparticles Synthesized through the Chemical Precipitation Method. Results in physics 2017, 7, 3007-3015.
    53. Khalil, M.; Yu, J.; Liu, N.; Lee, R. L., Hydrothermal Synthesis, Characterization, and Growth Mechanism of Hematite Nanoparticles. Journal of nanoparticle research 2014, 16, 1-10.
    54. Wu, H.; Yang, T.; Du, Y.; Shen, L.; Ho, G. W., Identification of Facet‐Governing Reactivity in Hematite for Oxygen Evolution. Advanced Materials 2018, 30, 1804341.
    55. He, Y.; Guo, F.; Yang, K. R.; Heinlein, J. A.; Bamonte, S. M.; Fee, J. J.; Hu, S.; Suib, S. L.; Haller, G. L.; Batista, V. S., In Situ Identification of Reaction Intermediates and Mechanistic Understandings of Methane Oxidation over Hematite: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society 2020, 142, 17119-17130.
    56. Yin, J.; Su, S.; Yu, X. X.; Weng, Y., Thermodynamic Characteristics of a Low Concentration Methane Catalytic Combustion Gas Turbine. Applied Energy 2010, 87, 2102-2108.
    57. Reddy, P. V. L.; Kim, K.-H.; Song, H., Emerging Green Chemical Technologies for the Conversion of Ch4 to Value Added Products. Renewable and Sustainable Energy Reviews 2013, 24, 578-585.
    58. Shamsul, N.; Kamarudin, S. K.; Rahman, N.; Kofli, N. T., An Overview on the Production of Bio-Methanol as Potential Renewable Energy. Renewable and Sustainable Energy Reviews 2014, 33, 578-588.
    59. Han, B.; Yang, Y.; Xu, Y.; Etim, U.; Qiao, K.; Xu, B.; Yan, Z., A Review of the Direct Oxidation of Methane to Methanol. Chinese Journal of Catalysis 2016, 37, 1206-1215.
    60. Arutyunov, V., Direct Methane to Methanol: Foundations and Prospects of the Process; Elsevier, 2014.
    61. Dalena, F.; Senatore, A.; Marino, A.; Gordano, A.; Basile, M.; Basile, A., Methanol Production and Applications: An Overview. Methanol 2018, 3-28.
    62. Zakaria, Z.; Kamarudin, S. K., Direct Conversion Technologies of Methane to Methanol: An Overview. Renewable and Sustainable Energy Reviews 2016, 65, 250-261.
    63. Foulds, G.; Gray, B., Homogeneous Gas-Phase Partial Oxidation of Methane to Methanol and Formaldehyde. Fuel Processing Technology 1995, 42, 129-150.
    64. Foulds, G. A.; Gray, B. F.; Miller, S. A.; Walker, G. S., Homogeneous Gas-Phase Oxidation of Methane Using Oxygen as Oxidant in an Annular Reactor. Industrial & engineering chemistry research 1993, 32, 780-787.
    65. Chun, J. W.; Anthony, R. G., Partial Oxidation of Methane, Methanol, and Mixtures of Methane and Methanol, Methane and Ethane, and Methane, Carbon Dioxide, and Carbon Monoxide. Industrial & engineering chemistry research 1993, 32, 788-795.
    66. Walsh, D. E.; Martenak, D. J.; Han, S.; Palermo, R. E., Direct Oxidative Methane Conversion at Elevated Pressure and Moderate Temperatures. Industrial & engineering chemistry research 1992, 31, 1259-1262.
    67. Thomas, D. J.; Willi, R.; Baiker, A., Partial Oxidation of Methane: The Role of Surface Reactions. Industrial & engineering chemistry research 1992, 31, 2272-2278.
    68. Rytz, D. W.; Baiker, A., Partial Oxidation of Methane to Methanol in a Flow Reactor at Elevated Pressure. Industrial & engineering chemistry research 1991, 30, 2287-2292.
    69. Hunter, N.; Gesser, H.; Morton, L.; Yarlagadda, P.; Fung, D., Methanol Formation at High Pressure by the Catalyzed Oxidation of Natural Gas and by the Sensitized Oxidation of Methane. Applied catalysis 1990, 57, 45-54.
    70. Baldwin, T.; Burch, R.; Squire, G.; Tsang, S., Influence of Homogeneous Gas Phase Reactions in the Partial Oxidation of Methane to Methanol and Formaldehyde in the Presence of Oxide Catalysts. Applied catalysis 1991, 74, 137-152.
    71. Fukuoka, N.; Omata, K.; Fujimoto, K. In Effect of Additives on Partial Oxidation of Methane, 1989 International Chemical Congress of Pacific Basin Societies Preprints of SB Symposium on Methane Activation, Conversion, and Utilization, 1989.
    72. Yarlagadda, P. S.; Morton, L. A.; Hunter, N. R.; Gesser, H. D., Direct Conversion of Methane to Methanol in a Flow Reactor. Industrial & engineering chemistry research 1988, 27, 252-256.
    73. Bader, R. F., Atoms in Molecules. Accounts of Chemical Research 1985, 18, 9-15.
    74. Bader, R. F.; Nguyen-Dang, T., Quantum Theory of Atoms in Molecules–Dalton Revisited. In Advances in Quantum Chemistry, Elsevier: 1981; Vol. 14, pp 63-124.
    75. Sundquist, W. I.; Bancroft, D. P.; Lippard, S. J., Synthesis, Characterization, and Biological Activity of Cis-Diammineplatinum (Ii) Complexes of the DNA Intercalators 9-Aminoacridine and Chloroquine. Journal of the American Chemical Society 1990, 112, 1590-1596.
    76. Braga, D.; Grepioni, F.; Tedesco, E.; Biradha, K.; Desiraju, G. R., Hydrogen Bonding in Organometallic Crystals. 6. X− H---M Hydrogen Bonds and M---(H− X) Pseudo-Agostic Bonds. Organometallics 1997, 16, 1846-1856.
    77. Brookhart, M.; Green, M. L.; Parkin, G., Agostic Interactions in Transition Metal Compounds. Proceedings of the National Academy of Sciences of the United States of America 2007, 104, 6908.
    78. Gray, H. B., Electrons and Chemical Bonding; WA Benjamin, Inc., 1965.
    79. Tang, L.; Zhang, Z.-g.; Qi, J.; Zhao, J.-r.; Feng, Y., The Preparation and Application of a New Formaldehyde-Free Adhesive for Plywood. International journal of adhesion and adhesives 2011, 31, 507-512.
    80. Zhang, Y.; Luo, X.; Wang, X.; Qian, K.; Zhao, R., Influence of Temperature on Formaldehyde Emission Parameters of Dry Building Materials. Atmospheric Environment 2007, 41, 3203-3216.
    81. Basso, M. C.; Li, X.; Fierro, V.; Pizzi, A.; Giovando, S.; Celzard, A., Green, Formaldehyde-Free, Foams for Thermal Insulation. Adv. Mater. Lett 2011, 2, 378-382.
    82. Corrêa, S. M.; Arbilla, G., Formaldehyde and Acetaldehyde Associated with the Use of Natural Gas as a Fuel for Light Vehicles. Atmospheric Environment 2005, 39, 4513-4518.
    83. Hall, T. J.; Hargreaves, J. S.; Hutchings, G. J.; Joyner, R. W.; Taylor, S. H., Catalytic Synthesis of Methanol and Formaldehyde by Partial Oxidation of Methane. Fuel Processing Technology 1995, 42, 151-178.
    84. Arena, F.; Gatti, G.; Martra, G.; Coluccia, S.; Stievano, L.; Spadaro, L.; Famulari, P.; Parmaliana, A., Structure and Reactivity in the Selective Oxidation of Methane to Formaldehyde of Low-Loaded Feox/Sio2 Catalysts. Journal of catalysis 2005, 231, 365-380.
    85. Song, T.; Shen, T.; Shen, L.; Xiao, J.; Gu, H.; Zhang, S., Evaluation of Hematite Oxygen Carrier in Chemical-Looping Combustion of Coal. Fuel 2013, 104, 244-252.
    86. Monazam, E. R.; Breault, R. W.; Siriwardane, R.; Richards, G.; Carpenter, S., Kinetics of the Reduction of Hematite (Fe2o3) by Methane (Ch4) During Chemical Looping Combustion: A Global Mechanism. Chemical Engineering Journal 2013, 232, 478-487.
    87. Su, M.; Ma, J.; Tian, X.; Zhao, H., Reduction Kinetics of Hematite as Oxygen Carrier in Chemical Looping Combustion. Fuel Processing Technology 2017, 155, 160-167.
    88. Miller, D. D.; Siriwardane, R., Mechanism of Methane Chemical Looping Combustion with Hematite Promoted with Ceo2. Energy & fuels 2013, 27, 4087-4096.

    無法下載圖示 全文公開日期 2026/08/25 (校內網路)
    全文公開日期 2026/08/25 (校外網路)
    全文公開日期 2026/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE