簡易檢索 / 詳目顯示

研究生: 林宛儀
Wan-Yi Lin
論文名稱: 理論計算於單壁奈米管在分子氣體之感測應用
Theoretical Study on Single-Walled Nanotubes for Gas molecule sensing
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 林昇佃
Sheng-Dian Lin
郭哲來
Jer-Lai Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 152
中文關鍵詞: 奈米碳管鋁摻雜含氯物種感測器密度泛函理論
外文關鍵詞: Carbon nanotubes, Al-doped, chlorine containing species, sensor, DFT
相關次數: 點閱:156下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單壁奈米碳管(SWCNT)和氮化硼奈米管(BNNT)優異的物理性質與電子性質使他們在複合材料添加劑與氣體感測器等其他廣泛應用引起了極大的關注。在本研究中我們利用第一原理Vienna Ab-initio Simulation Package(VASP)研究不同氣體分子於奈米管上的吸附行為。我們首先研究了奈米碳管的潤濕性,此性質為決定兩種材料結合的重要特性。在此研究中,我們計算了水單體與水二聚體在(5,5)奈米碳管及硼摻雜(5,5)奈米碳管的相互作用。我們的結果表明在高濃度的硼摻雜下可以獲得較大的吸附能,而從電子性質分析指出水二聚體與硼摻雜(5,5)SWCNT的吸附作用形成B-O配位鍵,而電子再通過OH··π作用傳遞至水二聚體。此協同效應增強水二聚體與硼摻雜(5,5)SWCNT的吸附作用。這一部分我們發現,通過摻雜硼原子到奈米碳管的表面改質可以有效地改善奈米碳管固有的疏水性而增強它的的潤濕性質。
    其次,我們研究SWCNT與BNNT通過硼或鋁摻雜對三種含氯的化合物:氯苯(CB)、多氯聯苯(PCBs)和四氯雙苯環戴奧辛(TCDD)的偵測。CB是一種典型具有毒的芳香有機揮發物(VOCs),也被常作為生產戴奧辛的前驅物,而PCB和TCDD是兩種毒性最大的戴奧辛化合物,於此部分我們研究了戴奧辛化合物適用的感測系統。從我們的結果表明,CB只透過微弱的物理吸附與純SWCNT和BNNT及B-SWCNT作用,而藉由鋁摻雜於奈米管與CB作用我們發現強烈的化學作用與Al-Cl配位鍵生成。除了分子及管子之間的吸附能外,電導率的變化為感測機制最為關鍵的因素。於此,從我們的計算結果發現,鋁摻雜在BNNT上對於CB的偵測有著高靈敏度。從CB的結果我們進一步探討BNNT與PCB和TCDD的偵測機制。我們發現PCB和TCDD在與鋁摻雜的BNNT上分別生成Al-Cl與Al-O配位鍵而呈現較大的吸附能。再者,從電導率的變化可得知,摻雜鋁的BNNT對PCB有著極高度的靈敏性。而在TCDD的系統中儘管對鋁摻雜的BNNT電導率變化不大,但在鋁摻雜(5,5)BNNT顯示出TCDD感測器的特質而在鋁摻雜(8,0)BNNT則呈現對TCDD電阻式感測器的性質。從我們的研究中指出透過鋁摻雜的BNNT可以增強對含氯物質的靈敏度特別是對PCB分子。我們期望未來能藉由理論計算分析出更適合之材料,提供傳統實驗以外之方法,在此提出新的觀點,以供實驗學家參考。


    Single-walled carbon nanotubes and boron-nitride nanotubes have been attracted great researcher put effort into it because of their extraordinary physical properties, such as mechanical properties, high specific surface area, and chemical inertness. Both tubes have been attracted tremendous attention in a wide range of applications, such as chemical gas sensors. In this thesis, we investigated the adsorption behavior of different gas molecules via various nanotubes by using DFT calculations. First, we studied the wettability of SWCNTs which is an important property for the adherence of two materials. In this part, we calculated the adsorption of water monomer and water dimer on the (5,5) SWCNT as well as the boron doped (5,5) SWCNT. Our results show that the larger adsorption energy can be obtained in the higher boron doping concentration. In addition, the electronic property analysis show that the interaction of water dimer and B-(5,5) SWCNT form a B-O dative bond, and the electrons are transferred from the SWCNT to the water dimer through the OH··π interaction. These interactions between water dimer and SWCNTs are strongly cooperative. Thus, we can expect that through surface modification of doping boron atoms into SWCNT can efficiently improve the wettability of SWCNT to tune the inherent hydrophobic properties of SWCNT.
    Second, we studied the sensing behavior of both SWCNT and BNNT via boron or aluminum doping towards three chlorine containing species: chlorobenzene (CB), polychlorinated biphenyls (PCBs), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). CB is a typically harmful aromatic VOCs and has been evidenced to be the primary precursors of dioxin formation in industrial processes; while PCB and TCDD are two of the most toxic dioxin-like compounds. Our results reveal that CB can be physisorbed on pristine SWCNT and BNNT as well as B-SWCNT, whereas CB can strongly chemisorb on Al-doped nanotubes by forming Al-Cl dative bond. Moreover, the most important key factor of the sensing mechanism is not only by the adsorption energy but also by the conductivity change. Therefore, the calculations indicate that Al-doped BNNT revealed high sensitivity toward to the CB detection. Besides, we found that both PCB and TCDD also present the large adsorption energies on the Al-doped BNNTs by forming the Al-Cl as well as Al-O dative bonds, respectively. In the calculated conductivity change, we found that both aluminum modified BNNTs possess the extremely large conductivity change of about 105 to 106 after detecting PCB molecule, showing a very excellent sensitivity toward the PCB molecule. However, although the conductivity changes of TCDD on Al-BNNTs are small, the Al-(5,5) BNNT shows the characteristic of conductive TCDD sensor while the Al-(8,0) BNNT demonstrates a resistive sensor toward TCDD molecule. This work reveals that the Al-doped BNNTs can actually enhance the sensitivity of the chlorine containing species, especially for the PCB molecule.

    CONTENTS ABSTRACT I 摘要 III 致謝 IV CONTENTS V INDEX OF FIGURE VIII INDEX OF TABLE XII Chapter 1 Introduction 1 1.1 Carbon nanotubes (CNTs) 1 1.1.2 Electronic Properties of Single-Walled Carbon nanotubes (SWCNTs) 3 1.2 Boron-nitride nanotubes (BNNTs) 4 1.2.1 Electronic Properties of Single-Walled Boron-nitride nanotubes (BNNTs) 5 1.3 Application of CNT and BNNT 6 1.4 Present Study 9 Chapter 2 Wetting Behaviors of B-SWNT: Effects of Doping Concentration 11 2.1 Introduction 11 2.2 Computational details 13 2.3 Result and discussion 15 2.3.1 Water monomer adsorption on pristine and boron doped (5,5) SWCNT 15 2.3.2 Water dimer adsorption on pristine and boron doped (5,5) SWCNT 20 2.3.1 Electronic analysis of B-doped (5,5) SWNT 24 2.4 Wettability 29 2.5 Conclusion 32 Chapter 3 Chlorobenzene Sensing on Aluminum doped Boron Nitride Nanotubes 34 3.1 Introduction 34 3.2 Computational details 36 3.3 Geometry 38 3.3.1 Chlorobenzene (CB) 38 3.3.2 Different Nanotube 39 3.3.3 Band gap 42 3.3.4 Formation energy 45 3.4 CB detection 46 3.4.1 CB Adsorption on SWCNT 46 3.4.2 CB Adsorption on BNNT 53 3.4.3 Electronic analysis of CB Adsorption on Nanotube 57 3.4.3-1 Electronic analysis of SWCNT 57 3.4.3-2 Electronic analysis of BNNT 65 3.5 Conclusion 72 Chapter 4 Chlorobenzene Sensing on Aluminum doped Boron Nitride Nanotubes 74 4.1 Introduction 74 4.1.1 Polychlorinated biphenyls (PCBs) 74 4.1.2 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 75 4.2 Computational details 78 4.3 Geometry 80 4.3.1 Polychlorinated biphenyls (PCBs) 80 4.3.2 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 81 4.4 PCB/TCDD Detection 83 4.4.1 PCBs Adsorption on Pure and Aluminum doped BNNT 83 4.4.2 TCDD Adsorption on Pure and Aluminum doped BNNT 87 4.4.3 Electronic analysis of PCBs/TCDD Adsorption on Aluminum doped BNNT 92 4.4.3-1 Electronic analysis of PCB on Aluminum doped BNNT 92 4.4.3-2 Electronic analysis of TCDD on Aluminum doped BNNT 97 4.5 Conclusion 104 Chapter 5 Summary 107 References 110 Appendices 124

    1. Zaporotskova, I. V.; Boroznina, N. P.; Parkhomenko, Y. N.; Kozhitov, L. V., Carbon nanotubes: Sensor properties. A review. Modern Electronic Materials 2016, 2 (4), 95-105.
    2. Iijima, S., Helical microtubules of graphitic carbon. nature 1991, 354 (6348), 56.
    3. Dresselhaus, M. S.; Avouris, P., Introduction to carbon materials research. In Carbon nanotubes, Springer: 2001; pp 1-9.
    4. Dettlaff, A.; Sawczak, M.; Klugmann-Radziemska, E.; Czylkowski, D.; Miotk, R.; Wilamowska-Zawłocka, M., High-performance method of carbon nanotubes modification by microwave plasma for thin composite films preparation. RSC Advances 2017, 7 (51), 31940-31949.
    5. Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A., Carbon nanotubes--the route toward applications. science 2002, 297 (5582), 787-792.
    6. Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S., Electronic structure of chiral graphene tubules. Applied Physics Letters 1992, 60 (18), 2204-2206.
    7. Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C.; Zhi, C., Boron nitride nanotubes and nanosheets. ACS Nano 2010, 4 (6), 2979-93.
    8. Bandaru, P. R., Electrical Properties and Applications of Carbon Nanotube Structures. Journal of Nanoscience and Nanotechnology 2007, 7 (4), 1239-1267.
    9. Rubio, A.; Corkill, J. L.; Cohen, M. L., Theory of graphitic boron nitride nanotubes. Phys Rev B Condens Matter 1994, 49 (7), 5081-5084.
    10. Blase, X.; Rubio, A.; Louie, S.; Cohen, M., Stability and band gap constancy of boron nitride nanotubes. EPL (Europhysics Letters) 1994, 28 (5), 335.
    11. Chopra, N. G.; Luyken, R.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A., Boron nitride nanotubes. Science 1995, 269 (5226), 966-967.
    12. Wu, J.; Yin, L., Platinum nanoparticle modified polyaniline-functionalized boron nitride nanotubes for amperometric glucose enzyme biosensor. ACS Appl Mater Interfaces 2011, 3 (11), 4354-62.
    13. Golberg, D.; Bando, Y.; Tang, C. C.; Zhi, C. Y., Boron Nitride Nanotubes. Advanced Materials 2007, 19 (18), 2413-2432.
    14. Yu, S.; Wang, X.; Pang, H.; Zhang, R.; Song, W.; Fu, D.; Hayat, T.; Wang, X., Boron nitride-based materials for the removal of pollutants from aqueous solutions: A review. Chemical Engineering Journal 2018, 333, 343-360.
    15. Chopra, N. G.; Zettl, A., Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Communications 1998, 105 (5), 297-300.
    16. Golberg, D., Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scripta Materialia 2001, 44 (8), 1561-1565.
    17. Xiao, Y.; Yan, X. H.; Cao, J. X.; Ding, J. W.; Mao, Y. L.; Xiang, J., Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes. Physical Review B 2004, 69 (20).
    18. Wang, J.; Lee, C. H.; Yap, Y. K., Recent advancements in boron nitride nanotubes. Nanoscale 2010, 2 (10), 2028-34.
    19. Nakhmanson, S. M.; Calzolari, A.; Meunier, V.; Bernholc, J.; Buongiorno Nardelli, M., Spontaneous polarization and piezoelectricity in boron nitride nanotubes. Physical Review B 2003, 67 (23).
    20. Kalay, S.; Yilmaz, Z.; Sen, O.; Emanet, M.; Kazanc, E.; Culha, M., Synthesis of boron nitride nanotubes and their applications. Beilstein J Nanotechnol 2015, 6, 84-102.
    21. Darvish Ganji, M.; Alinezhad, H.; Soleymani, E.; Tajbakhsh, M., Adsorption of TCDD molecule onto CNTs and BNNTs: Ab initio van der Waals density-functional study. Physica E: Low-dimensional Systems and Nanostructures 2015, 67, 105-111.
    22. Zhi, C.; Bando, Y.; Tang, C.; Honda, S.; Sato, K.; Kuwahara, H.; Golberg, D., Covalent functionalization: towards soluble multiwalled boron nitride nanotubes. Angew Chem Int Ed Engl 2005, 44 (48), 7932-5.
    23. Soltani, A.; Baei, M. T.; Ghasemi, A. S.; Tazikeh Lemeski, E.; Amirabadi, K. H., Adsorption of cyanogen chloride over Al- and Ga-doped BN nanotubes. Superlattices and Microstructures 2014, 75, 564-575.
    24. Wei, X.; Wang, M. S.; Bando, Y.; Golberg, D., Post-synthesis carbon doping of individual multiwalled boron nitride nanotubes via electron-beam irradiation. J Am Chem Soc 2010, 132 (39), 13592-3.
    25. Khoo, K. H.; Mazzoni, M. S. C.; Louie, S. G., Tuning the electronic properties of boron nitride nanotubes with transverse electric fields: A giant dc Stark effect. Physical Review B 2004, 69 (20).
    26. Mohammed, M. H.; Ajeel, F. N.; Khudhair, A. M., Analysis the electronic properties of the zigzag and armchair single wall boron nitride nanotubes with single Li impurity in the various sites. Journal of Electron Spectroscopy and Related Phenomena 2018, 228, 20-24.
    27. Wu, J.; Yin, L.; Zhang, L., Tuning the electronic structure, bandgap energy and photoluminescence properties of hexagonal boron nitride nanosheets via a controllable Ce3+ ions doping. RSC Advances 2013, 3 (20).
    28. Zhou, Y. G.; Xiao-Dong, J.; Wang, Z. G.; Xiao, H. Y.; Gao, F.; Zu, X. T., Electronic and magnetic properties of metal-doped BN sheet: A first-principles study. Phys Chem Chem Phys 2010, 12 (27), 7588-92.
    29. Zhao, J. X.; Ding, Y. H., The effects of O2 and H2O adsorbates on field-emission properties of an (8, 0) boron nitride nanotube: a density functional theory study. Nanotechnology 2009, 20 (8), 085704.
    30. Chang, C. W.; Han, W.-Q.; Zettl, A., Thermal conductivity of B–C–N and BN nanotubes. Applied Physics Letters 2005, 86 (17).
    31. Samadizadeh, M.; Peyghan, A. A.; Rastegar, S. F., Sensing behavior of BN nanosheet toward nitrous oxide: A DFT study. Chinese Chemical Letters 2015, 26 (8), 1042-1045.
    32. Ju, S. P.; Wang, Y. C.; Lien, T. W., Tuning the electronic properties of boron nitride nanotube by mechanical uni-axial deformation: a DFT study. Nanoscale Res Lett 2011, 6 (1), 160.
    33. Yu, J.; Chen, Y.; Cheng, B. M., Dispersion of boron nitride nanotubes in aqueous solution with the help of ionic surfactants. Solid State Communications 2009, 149 (19-20), 763-766.
    34. Bonnet, P.; Sireude, D.; Garnier, B.; Chauvet, O., Thermal properties and percolation in carbon nanotube-polymer composites. Applied Physics Letters 2007, 91 (20).
    35. Choi, E. S.; Brooks, J. S.; Eaton, D. L.; Al-Haik, M. S.; Hussaini, M. Y.; Garmestani, H.; Li, D.; Dahmen, K., Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. Journal of Applied Physics 2003, 94 (9), 6034-6039.
    36. Cadek, M.; Coleman, J. N.; Barron, V.; Hedicke, K.; Blau, W. J., Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Applied Physics Letters 2002, 81 (27), 5123-5125.
    37. Bocharov, G. S.; Eletskii, A. V., Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters. Nanomaterials (Basel) 2013, 3 (3), 393-442.
    38. Franklin, A. D.; Luisier, M.; Han, S. J.; Tulevski, G.; Breslin, C. M.; Gignac, L.; Lundstrom, M. S.; Haensch, W., Sub-10 nm carbon nanotube transistor. Nano Lett 2012, 12 (2), 758-62.
    39. De Volder, M. F.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J., Carbon nanotubes: present and future commercial applications. science 2013, 339 (6119), 535-539.
    40. Rahimi, M.; Singh, J. K.; Müller-Plathe, F., CO2 Adsorption on Charged Carbon Nanotube Arrays: A Possible Functional Material for Electric Swing Adsorption. The Journal of Physical Chemistry C 2015, 119 (27), 15232-15239.
    41. Long, R. Q.; Yang, R. T., Carbon Nanotubes as a Superior Sorbent for Nitrogen Oxides. Industrial & Engineering Chemistry Research 2001, 40 (20), 4288-4291.
    42. Darkrim, F. L.; Malbrunot, P.; Tartaglia, G., Review of hydrogen storage by adsorption in carbon nanotubes. International Journal of Hydrogen Energy 2002, 27 (2), 193-202.
    43. Bina, B.; Amin, M.; Rashidi, A.; Pourzamani, H., Benzene and Toluene Removal by Carbon Nanotubes from Aqueous Solution. Archives of Environmental Protection 2012, 38 (1).
    44. Zheng, F.; Baldwin, D. L.; Fifield, L. S.; Anheier, N. C., Jr.; Aardahl, C. L.; Grate, J. W., Single-walled carbon nanotube paper as a sorbent for organic vapor preconcentration. Anal Chem 2006, 78 (7), 2442-6.
    45. Rajesh, C.; Majumder, C.; Mizuseki, H.; Kawazoe, Y., A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube. J Chem Phys 2009, 130 (12), 124911.
    46. Long, R. Q.; Yang, R. T., Carbon Nanotubes as Superior Sorbent for Dioxin Removal. Journal of the American Chemical Society 2001, 123 (9), 2058-2059.
    47. Ahmad, A. S.; Qureshi, M. I. A.; Anum, S.; Yaqub, G., Applications of carbon nanotubes (CNTs) for the treatment of drinking and waste water-a brief review. Int. J. Adv. Res. Dev. 2016, 1 (12), 11-16.
    48. Xue, L.; Lu, B.; Wu, Z.-S.; Ge, C.; Wang, P.; Zhang, R.; Zhang, X.-D., Synthesis of mesoporous hexagonal boron nitride fibers with high surface area for efficient removal of organic pollutants. Chemical Engineering Journal 2014, 243, 494-499.
    49. Zhi, C.; Bando, Y.; Tang, C.; Honda, S.; Sato, K.; Kuwahara, H.; Golberg, D., Characteristics of boron nitride nanotube-polyaniline composites. Angew Chem Int Ed Engl 2005, 44 (48), 7929-32.
    50. Wang, R.; Zhang, D.; Liu, C., DFT study of the adsorption of 2,3,7,8-tetrachlorodibenzo-p-dioxin on pristine and Ni-doped boron nitride nanotubes. Chemosphere 2017, 168, 18-24.
    51. Wang, R.; Zhang, D.; Sun, W.; Han, Z.; Liu, C., A novel aluminum-doped carbon nanotubes sensor for carbon monoxide. Journal of Molecular Structure: THEOCHEM 2007, 806 (1-3), 93-97.
    52. Peyghan, A. A.; Soltani, A.; Pahlevani, A. A.; Kanani, Y.; Khajeh, S., A first-principles study of the adsorption behavior of CO on Al- and Ga-doped single-walled BN nanotubes. Applied Surface Science 2013, 270, 25-32.
    53. Soltani, A.; Raz, S. G.; Rezaei, V. J.; Dehno Khalaji, A.; Savar, M., Ab initio investigation of Al- and Ga-doped single-walled boron nitride nanotubes as ammonia sensor. Applied Surface Science 2012, 263, 619-625.
    54. Shao, P.; Kuang, X.-Y.; Ding, L.-P.; Yang, J.; Zhong, M.-M., Can CO2 molecule adsorb effectively on Al-doped boron nitride single walled nanotube? Applied Surface Science 2013, 285, 350-356.
    55. Mirzaei, M.; Nouri, A., The Al-doped BN nanotubes: A DFT study. Journal of Molecular Structure: THEOCHEM 2010, 942 (1-3), 83-87.
    56. Ao, Z. M.; Yang, J.; Li, S.; Jiang, Q., Enhancement of CO detection in Al doped graphene. Chemical Physics Letters 2008, 461 (4-6), 276-279.
    57. Aria, A.; Gharib, M. In Carbon nanotube arrays with tunable wettability and their applications, Technical Proceedings of the 2011 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2011, 2011; pp 149-152.
    58. Guo, F.; Guo, Z., Inspired smart materials with external stimuli responsive wettability: a review. RSC Advances 2016, 6 (43), 36623-36641.
    59. Karumuri, A. K.; He, L.; Mukhopadhyay, S. M., Tuning the surface wettability of carbon nanotube carpets in multiscale hierarchical solids. Applied Surface Science 2015, 327, 122-130.
    60. Nagappan, S.; Park, S. S.; Ha, C.-S., Recent Advances in Superhydrophobic Nanomaterials and Nanoscale Systems. Journal of Nanoscience and Nanotechnology 2014, 14 (2), 1441-1462.
    61. Pavese, M.; Musso, S.; Bianco, S.; Giorcelli, M.; Pugno, N., An analysis of carbon nanotube structure wettability before and after oxidation treatment. Journal of Physics: Condensed Matter 2008, 20 (47).
    62. Paterlini, T. T.; Nogueira, L. F. B.; Tovani, C. B.; Cruz, M. A. E.; Derradi, R.; Ramos, A. P., The role played by modified bioinspired surfaces in interfacial properties of biomaterials. Biophys Rev 2017, 9 (5), 683-698.
    63. Kubiak, K. J.; Wilson, M. C. T.; Mathia, T. G.; Carval, P., Wettability versus roughness of engineering surfaces. Wear 2011, 271 (3-4), 523-528.
    64. Osterhold, M.; Armbruster, K. In Importance of surface tension for physical paint properties, Macromolecular Symposia, Wiley Online Library: 1998; pp 295-306.
    65. Quan, Y. Y.; Zhang, L. Z.; Qi, R. H.; Cai, R. R., Self-cleaning of Surfaces: the Role of Surface Wettability and Dust Types. Sci Rep 2016, 6, 38239.
    66. Balamurugan, K.; Subramanian, V., Adsorption of Chlorobenzene onto (5,5) Armchair Single-Walled Carbon Nanotube and Graphene Sheet: Toxicity versus Adsorption Strength. The Journal of Physical Chemistry C 2013, 117 (41), 21217-21227.
    67. Snow, E. S.; Perkins, F. K.; Houser, E. J.; Badescu, S. C.; Reinecke, T. L., Chemical detection with a single-walled carbon nanotube capacitor. Science 2005, 307 (5717), 1942-5.
    68. Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H., Nanotube molecular wires as chemical sensors. science 2000, 287 (5453), 622-625.
    69. Hopley, E. L.; Salmasi, S.; Kalaskar, D. M.; Seifalian, A. M., Carbon nanotubes leading the way forward in new generation 3D tissue engineering. Biotechnol Adv 2014, 32 (5), 1000-14.
    70. Yeh, C.-H.; Hsiao, Y.-J.; Jiang, J.-C., Dopamine sensing by boron and nitrogen co-doped single-walled carbon nanotubes: A first-principles study. Applied Surface Science 2019, 473, 59-64.
    71. Zhang, L.; Wang, J.; Fuentes, C. A.; Zhang, D.; Van Vuure, A. W.; Seo, J. W.; Seveno, D., Wettability of carbon nanotube fibers. Carbon 2017, 122, 128-140.
    72. Qiu, S.; Fuentes, C. A.; Zhang, D.; Van Vuure, A. W.; Seveno, D., Wettability of a Single Carbon Fiber. Langmuir 2016, 32 (38), 9697-705.
    73. Wang, J.; Fuentes, C. A.; Zhang, D.; Wang, X.; Van Vuure, A. W.; Seveno, D., Wettability of carbon fibres at micro- and mesoscales. Carbon 2017, 120, 438-446.
    74. Rajaura, R. S.; Srivastava, S.; Sharma, P. K.; Mathur, S.; Shrivastava, R.; Sharma, S. S.; Vijay, Y. K., Structural and surface modification of carbon nanotubes for enhanced hydrogen storage density. Nano-Structures & Nano-Objects 2018, 14, 57-65.
    75. Wang, X.; Zhou, Z.; Chen, F., Surface Modification of Carbon Nanotubes with an Enhanced Antifungal Activity for the Control of Plant Fungal Pathogen. Materials (Basel) 2017, 10 (12).
    76. Mittal, V., Carbon nanotubes surface modifications: an overview. In Surface modification of nanotube fillers, Wiley Online Library: 2011.
    77. He, L.; Karumuri, A.; Mukhopadhyay, S. M., Wettability tailoring of nanotube carpets: morphology-chemistry synergy for hydrophobic–hydrophilic cycling. RSC Adv. 2017, 7 (41), 25265-25275.
    78. Karthikeyan, A.; Coulombe, S.; Kietzig, A. M., Wetting behavior of multi-walled carbon nanotube nanofluids. Nanotechnology 2017, 28 (10), 105706.
    79. Vilchis-Gutierrez, P. G.; Pacheco, M.; Pacheco, J.; Valdivia-Barrientos, R.; Barrera-Diaz, C. E.; Balderas-Hernandez, P., Synthesis of Boron-Doped Carbon Nanotubes With DC Electric Arc Discharge. IEEE Transactions on Plasma Science 2018, 46 (8), 3139-3144.
    80. Stephan, O.; Ajayan, P.; Colliex, C.; Redlich, P.; Lambert, J.; Bernier, P.; Lefin, P., Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 1994, 266 (5191), 1683-1685.
    81. Gao, J.; Wang, X.; Zhang, Y.; Liu, J.; Lu, Q.; Liu, M., Boron-doped ordered mesoporous carbons for the application of supercapacitors. Electrochimica Acta 2016, 207, 266-274.
    82. Niu, L.; Li, Z.; Hong, W.; Sun, J.; Wang, Z.; Ma, L.; Wang, J.; Yang, S., Pyrolytic synthesis of boron-doped graphene and its application as electrode material for supercapacitors. Electrochimica Acta 2013, 108, 666-673.
    83. Kresse, G.; Hafner, J., Ab initiomolecular dynamics for liquid metals. Physical Review B 1993, 47 (1), 558-561.
    84. Kresse, G.; Hafner, J., Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B 1994, 49 (20), 14251-14269.
    85. Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science 1996, 6 (1), 15-50.
    86. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B 1996, 54 (16), 11169.
    87. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Physical review letters 1996, 77 (18), 3865.
    88. Blöchl, P. E., Projector augmented-wave method. Physical Review B 1994, 50 (24), 17953-17979.
    89. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999, 59 (3), 1758.
    90. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. Physical Review B 1976, 13 (12), 5188-5192.
    91. Klimes, J.; Bowler, D. R.; Michaelides, A., Chemical accuracy for the van der Waals density functional. J Phys Condens Matter 2010, 22 (2), 022201.
    92. Klimeš, J.; Bowler, D. R.; Michaelides, A., Van der Waals density functionals applied to solids. Physical Review B 2011, 83 (19).
    93. Li, T.-J.; Yeh, M.-H.; Chiang, W.-H.; Li, Y.-S.; Chen, G.-L.; Leu, Y.-A.; Tien, T.-C.; Lo, S.-C.; Lin, L.-Y.; Lin, J.-J.; Ho, K.-C., Boron-doped carbon nanotubes with uniform boron doping and tunable dopant functionalities as an efficient electrocatalyst for dopamine oxidation reaction. Sensors and Actuators B: Chemical 2017, 248, 288-297.
    94. Ren, B.; Li, W.; Wei, A.; Bai, X.; Zhang, L.; Liu, Z., Boron and nitrogen co-doped CNT/Li4Ti5O12 composite for the improved high-rate electrochemical performance of lithium-ion batteries. Journal of Alloys and Compounds 2018, 740, 784-789.
    95. Yeh, M.-H.; Leu, Y.-A.; Chiang, W.-H.; Li, Y.-S.; Chen, G.-L.; Li, T.-J.; Chang, L.-Y.; Lin, L.-Y.; Lin, J.-J.; Ho, K.-C., Boron-doped carbon nanotubes as metal-free electrocatalyst for dye-sensitized solar cells: Heteroatom doping level effect on tri-iodide reduction reaction. Journal of Power Sources 2018, 375, 29-36.
    96. Osorio, F.; Valdés, G.; Skurtys, O.; Andrade, R.; Villalobos-Carvajal, R.; Silva-Weiss, A.; Silva-Vera, W.; Giménez, B.; Zamorano, M.; Lopez, J., Surface Free Energy Utilization to Evaluate Wettability of Hydrocolloid Suspension on Different Vegetable Epicarps. Coatings 2017, 8 (1).
    97. Gaudoin, R.; Foulkes, W.; Rajagopal, G., Ab initio calculations of the cohesive energy and the bulk modulus of aluminium. Journal of Physics: Condensed Matter 2002, 14 (38), 8787.
    98. Aqel, A.; El-Nour, K. M. M. A.; Ammar, R. A. A.; Al-Warthan, A., Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian Journal of Chemistry 2012, 5 (1), 1-23.
    99. Budyka, M. F.; Zyubina, T. S.; Ryabenko, A. G.; Lin, S. H.; Mebel, A. M., Bond lengths and diameters of armchair single wall carbon nanotubes. Chemical Physics Letters 2005, 407 (4-6), 266-271.
    100. Byron Pipes, R.; Frankland, S. J. V.; Hubert, P.; Saether, E., Self-consistent properties of carbon nanotubes and hexagonal arrays as composite reinforcements. Composites Science and Technology 2003, 63 (10), 1349-1358.
    101. Pati, R.; Zhang, Y.; Nayak, S. K.; Ajayan, P. M., Effect of H2O adsorption on electron transport in a carbon nanotube. Applied Physics Letters 2002, 81 (14), 2638-2640.
    102. Saito, R.; Dresselhaus, G.; Dresselhaus, M., Trigonal warping effect of carbon nanotubes. Physical Review B 2000, 61 (4), 2981.
    103. Zhang, X.; Gao, B.; Creamer, A. E.; Cao, C.; Li, Y., Adsorption of VOCs onto engineered carbon materials: A review. J Hazard Mater 2017, 338, 102-123.
    104. Guo, Y.; Li, Y.; Wang, J.; Zhu, T.; Ye, M., Effects of activated carbon properties on chlorobenzene adsorption and adsorption product analysis. Chemical Engineering Journal 2014, 236, 506-512.
    105. Weon, S.; Choi, J.; Park, T.; Choi, W., Freestanding doubly open-ended TiO2 nanotubes for efficient photocatalytic degradation of volatile organic compounds. Applied Catalysis B: Environmental 2017, 205, 386-392.
    106. Jing, Z.; Zhan, J., Fabrication and Gas-Sensing Properties of Porous ZnO Nanoplates. Advanced Materials 2008, 20 (23), 4547-4551.
    107. Zhang, G.; Liu, Y.; Zheng, S.; Hashisho, Z., Adsorption of volatile organic compounds onto natural porous minerals. J Hazard Mater 2019, 364, 317-324.
    108. Zhao, X.; Zeng, X.; Qin, Y.; Li, X.; Zhu, T.; Tang, X., An experimental and theoretical study of the adsorption removal of toluene and chlorobenzene on coconut shell derived carbon. Chemosphere 2018, 206, 285-292.
    109. Scirè, S., Pt catalysts supported on H-type zeolites for the catalytic combustion of chlorobenzene. Applied Catalysis B: Environmental 2003, 45 (2), 117-125.
    110. Vu, V. H.; Belkouch, J.; Ould-Dris, A.; Taouk, B., Removal of hazardous chlorinated VOCs over Mn-Cu mixed oxide based catalyst. J Hazard Mater 2009, 169 (1-3), 758-65.
    111. Huang, B.; Lei, C.; Wei, C.; Zeng, G., Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies. Environ Int 2014, 71, 118-38.
    112. Gu, C.; Huang, H.; Huang, J.; Jin, Z.; Zheng, H.; Liu, N.; Li, M.; Liu, J.; Meng, F., Chlorobenzene sensor based on Pt-decorated porous single-crystalline ZnO nanosheets. Sensors and Actuators A: Physical 2016, 252, 96-103.
    113. Sennour, R.; Mimane, G.; Benghalem, A.; Taleb, S., Removal of the persistent pollutant chlorobenzene by adsorption onto activated montmorillonite. Applied Clay Science 2009, 43 (3-4), 503-506.
    114. Altarawneh, M.; Dlugogorski, B. Z.; Kennedy, E. M.; Mackie, J. C., Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Progress in Energy and Combustion Science 2009, 35 (3), 245-274.
    115. Liu, G.; Wang, J.; Zhu, Y.; Zhang, X., Application of Multiwalled Carbon Nanotubes as a Solid‐Phase Extraction Sorbent for Chlorobenzenes. Analytical Letters 2004, 37 (14), 3085-3104.
    116. Fanxiu, L., Study on Sono-photocatalytic Degradation of Chlorobenzene in Wastewater. In 2010 International Conference on Digital Manufacturing & Automation, 2010; pp 530-534.
    117. El-Shahawi, M. S.; Hamza, A.; Bashammakh, A. S.; Al-Saggaf, W. T., An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta 2010, 80 (5), 1587-97.
    118. Shih, Y. H.; Li, M. S., Adsorption of selected volatile organic vapors on multiwall carbon nanotubes. J Hazard Mater 2008, 154 (1-3), 21-8.
    119. Li, L.; Liu, S.; Liu, J., Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal. J Hazard Mater 2011, 192 (2), 683-90.
    120. Perdew, J. P.; Yue, W., Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys Rev B Condens Matter 1986, 33 (12), 8800-8802.
    121. Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G., Improved grid-based algorithm for Bader charge allocation. J Comput Chem 2007, 28 (5), 899-908.
    122. Santucci, S.; Picozzi, S.; Di Gregorio, F.; Lozzi, L.; Cantalini, C.; Valentini, L.; Kenny, J. M.; Delley, B., NO2 and CO gas adsorption on carbon nanotubes: Experiment and theory. The Journal of Chemical Physics 2003, 119 (20), 10904-10910.
    123. Izakmehri, Z.; Ganji, M. D.; Ardjmand, M., Adsorption of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) on pristine, defected and Al-doped carbon nanotube: A dispersion corrected DFT study. Vacuum 2017, 136, 51-59.
    124. Yamaguchi, M.; Meng, F.; Firestein, K.; Tsuchiya, K.; Golberg, D., Powder metallurgy routes toward aluminum boron nitride nanotube composites, their morphologies, structures and mechanical properties. Materials Science and Engineering: A 2014, 604, 9-17.
    125. Kang, D.; Yu, X.; Ge, M.; Xiao, F.; Xu, H., Novel Al-doped carbon nanotubes with adsorption and coagulation promotion for organic pollutant removal. J Environ Sci (China) 2017, 54, 1-12.
    126. Azizi, K.; Karimpanah, M., Computational study of Al- or P-doped single-walled carbon nanotubes as NH3 and NO2 sensors. Applied Surface Science 2013, 285, 102-109.
    127. Hoseininezhad-Namin, M. S.; Pargolghasemi, P.; Alimohammadi, S.; Rad, A. S.; Taqavi, L., Quantum Chemical Study on the adsorption of metformin drug on the surface of pristine, Si- and Al-doped (5, 5) SWCNTs. Physica E: Low-dimensional Systems and Nanostructures 2017, 90, 204-213.
    128. Rahmanifar, E.; Yoosefian, M.; Karimi-Maleh, H., Electronic properties and reactivity trend for defect functionalization of single-walled carbon nanotube with B, Al, Ga atoms. Synthetic Metals 2016, 221, 242-246.
    129. Zhao, Y.; Wu, X.; Yang, J.; Zeng, X. C., Ab initio theoretical study of non-covalent adsorption of aromatic molecules on boron nitride nanotubes. Phys Chem Chem Phys 2011, 13 (24), 11766-72.
    130. Chen, X.; Jia, S.; Ding, N.; Shi, J.; Wang, Z., Capture of aromatic organic pollutants by hexagonal boron nitride nanosheets: density functional theoretical and molecular dynamic investigation. Environmental Science: Nano 2016, 3 (6), 1493-1503.
    131. Kim, K. S.; Lee, S. C.; Kim, K. H.; Shim, W. J.; Hong, S. H.; Choi, K. H.; Yoon, J. H.; Kim, J. G., Survey on organochlorine pesticides, PCDD/Fs, dioxin-like PCBs and HCB in sediments from the Han river, Korea. Chemosphere 2009, 75 (5), 580-587.
    132. Zha, S.; Shi, W.; Su, W.; Guan, X.; Liu, G., Exposure to 2,3,7,8-tetrachlorodibenzo-paradioxin (TCDD) hampers the host defense capability of a bivalve species, Tegillarca granosa. Fish Shellfish Immunol 2019, 86, 368-373.
    133. Suzuki, A.; Selvam, P.; Kusagaya, T.; Takami, S.; Kubo, M.; Imamura, A.; Miyamoto, A., Chemical reaction dynamics of PeCB and TCDD decomposition: A tight-binding quantum chemical molecular dynamics study with first-principles parameterization. International Journal of Quantum Chemistry 2005, 102 (3), 318-327.
    134. Gu, C.; Liu, C.; Johnston, C. T.; Teppen, B. J.; Li, H.; Boyd, S. A., Pentachlorophenol radical cations generated on Fe(III)-montmorillonite initiate octachlorodibenzo-p-dioxin formation in clays: density functional theory and fourier transform infrared studies. Environ Sci Technol 2011, 45 (4), 1399-406.
    135. Xiong, K. M.; Peterson, R. E.; Heideman, W., Aryl hydrocarbon receptor-mediated down-regulation of sox9b causes jaw malformation in zebrafish embryos. Mol Pharmacol 2008, 74 (6), 1544-53.
    136. Bursian, S. J.; Kern, J.; Remington, R. E.; Link, J. E.; Fitzgerald, S. D., Dietary exposure of mink (Mustela vison) to fish from the upper Hudson River, New York, USA: effects on organ mass and pathology. Environ Toxicol Chem 2013, 32 (4), 794-801.
    137. King Heiden, T. C.; Spitsbergen, J.; Heideman, W.; Peterson, R. E., Persistent adverse effects on health and reproduction caused by exposure of zebrafish to 2,3,7,8-tetrachlorodibenzo-p-dioxin during early development and gonad differentiation. Toxicol Sci 2009, 109 (1), 75-87.
    138. Yoshizawa, K.; Brix, A. E.; Sells, D. M.; Jokinen, M. P.; Wyde, M.; Orzech, D. P.; Kissling, G. E.; Walker, N. J.; Nyska, A., Reproductive lesions in female Harlan Sprague-Dawley rats following two-year oral treatment with dioxin and dioxin-like compounds. Toxicol Pathol 2009, 37 (7), 921-37.
    139. Zhai, Z.-C.; Wang, Z.-Y.; Chen, X.-H.; Wang, L.-S., DFT calculation on 204 polychlorinated biphenyls: their thermodynamic function and implication of Cl substitute position. Journal of Molecular Structure: THEOCHEM 2005, 714 (2-3), 123-131.
    140. Patrizi, B.; Siciliani de Cumis, M.; Viciani, S.; D'Amato, F., Dioxin and Related Compound Detection: Perspectives for Optical Monitoring. Int J Mol Sci 2019, 20 (11).
    141. Carpenter, D. O., Polychlorinated biphenyls (PCBs): routes of exposure and effects on human health. Reviews on environmental health 2006, 21 (1), 1-24.
    142. Machala, M.; Bláha, L.; Lehmler, H.-J.; Plíšková, M.; Májková, Z.; Kapplová, P.; Sovadinová, I.; Vondráček, J.; Malmberg, T.; Robertson, L. W., Toxicity of hydroxylated and quinoid PCB metabolites: inhibition of gap junctional intercellular communication and activation of aryl hydrocarbon and estrogen receptors in hepatic and mammary cells. Chemical research in toxicology 2004, 17 (3), 340-347.
    143. Wei, Y.; Kong, L. T.; Yang, R.; Wang, L.; Liu, J. H.; Huang, X. J., Electrochemical impedance determination of polychlorinated biphenyl using a pyrenecyclodextrin-decorated single-walled carbon nanotube hybrid. Chem Commun (Camb) 2011, 47 (18), 5340-2.
    144. Cheng, R.; Liu, S.; Shi, H.; Zhao, G., A highly sensitive and selective aptamer-based colorimetric sensor for the rapid detection of PCB 77. J Hazard Mater 2018, 341, 373-380.
    145. Katarzynska, D.; Hrabia, A.; Kowalik, K.; Sechman, A., Comparison of the in vitro effects of TCDD, PCB 126 and PCB 153 on thyroid-restricted gene expression and thyroid hormone secretion by the chicken thyroid gland. Environ Toxicol Pharmacol 2015, 39 (2), 496-503.
    146. Zhang, W.; Sargis, R. M.; Volden, P. A.; Carmean, C. M.; Sun, X. J.; Brady, M. J., PCB 126 and other dioxin-like PCBs specifically suppress hepatic PEPCK expression via the aryl hydrocarbon receptor. PLoS One 2012, 7 (5), e37103.
    147. Dang, J.; Shi, X.; Zhang, Q.; Wang, W., Theoretical perspectives on the mechanism and kinetics of the OH radical-initiated gas-phase oxidation of PCB126 in the atmosphere. Sci Total Environ 2015, 517, 1-9.
    148. Mahdavian, L., A study of B12N12 nanocage as potential sensor for detection and reduction of 2,3,7,8-tetrachlorodibenzodioxin. Russian Journal of Applied Chemistry 2017, 89 (9), 1528-1535.
    149. Smith, A. H.; Patterson Jr, D. G.; Warner, M. L.; Mackenzie, R.; Needham, L. L., Serum 2, 3, 7, 8-tetrachloro-dibenzo-p-dioxin levels of New Zealand pesticide applicators and their implication for cancer hypotheses. JNCI: Journal of the National Cancer Institute 1992, 84 (2), 104-108.
    150. Novelli, M.; Piaggi, S.; De Tata, V., 2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced impairment of glucose-stimulated insulin secretion in isolated rat pancreatic islets. Toxicol Lett 2005, 156 (2), 307-14.
    151. Momeniha, F.; Nabizadeh, R.; Hassanvand, M. S.; Mahvi, A. H.; Naddafi, K.; Mesdaghinia, A.; Nasseri, S., Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDFs) in Iran. Bull Environ Contam Toxicol 2011, 87 (6), 708-12.
    152. Zhou, X.; Li, X.; Xu, S.; Zhao, X.; Ni, M.; Cen, K., Comparison of adsorption behavior of PCDD/Fs on carbon nanotubes and activated carbons in a bench-scale dioxin generating system. Environ Sci Pollut Res Int 2015, 22 (14), 10463-70.
    153. Nakamoto, M.; Arisawa, K.; Uemura, H.; Katsuura, S.; Takami, H.; Sawachika, F.; Yamaguchi, M.; Juta, T.; Sakai, T.; Toda, E.; Mori, K.; Hasegawa, M.; Tanto, M.; Shima, M.; Sumiyoshi, Y.; Morinaga, K.; Kodama, K.; Suzuki, T.; Nagai, M.; Satoh, H., Association between blood levels of PCDDs/PCDFs/dioxin-like PCBs and history of allergic and other diseases in the Japanese population. Int Arch Occup Environ Health 2013, 86 (8), 849-59.
    154. Bruner-Tran, K. L.; Gnecco, J.; Ding, T.; Glore, D. R.; Pensabene, V.; Osteen, K. G., Exposure to the environmental endocrine disruptor TCDD and human reproductive dysfunction: Translating lessons from murine models. Reprod Toxicol 2017, 68, 59-71.
    155. Hassoun, E. A.; Al-Ghafri, M.; Abushaban, A., The role of antioxidant enzymes in TCDD-induced oxidative stress in various brain regions of rats after subchronic exposure. Free Radical Biology and Medicine 2003, 35 (9), 1028-1036.
    156. Halperin, W.; Vogt, R.; Sweeney, M. H.; Shopp, G.; Fingerhut, M.; Petersen, M., Immunological markers among workers exposed to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Occupational and environmental medicine 1998, 55 (11), 742-749.
    157. Porpora, M. G.; Medda, E.; Abballe, A.; Bolli, S.; De Angelis, I.; di Domenico, A.; Ferro, A.; Ingelido, A. M.; Maggi, A.; Panici, P. B.; De Felip, E., Endometriosis and organochlorinated environmental pollutants: a case-control study on Italian women of reproductive age. Environ Health Perspect 2009, 117 (7), 1070-5.
    158. Lee, D. H.; Lee, I. K.; Song, K.; Steffes, M.; Toscano, W.; Baker, B. A.; Jacobs, D. R., Jr., A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999-2002. Diabetes Care 2006, 29 (7), 1638-44.
    159. Arisawa, K.; Takeda, H.; Mikasa, H., Background exposure to PCDDs/PCDFs/PCBs and its potential health effects: a review of epidemiologic studies. The Journal of Medical Investigation 2005, 52 (1, 2), 10-21.
    160. Fu, M.; Xing, H.; Chen, X.; Zhao, R.; Zhi, C.; Wu, C. L., Boron nitride nanotubes as novel sorbent for solid-phase microextraction of polycyclic aromatic hydrocarbons in environmental water samples. Anal Bioanal Chem 2014, 406 (24), 5751-4.
    161. Andersson, P. L.; Haglund, P.; Tysklind, M., The internal barriers of rotation for the 209 polychlorinated biphenyls. Environmental Science and Pollution Research 1997, 4 (2), 75-81.
    162. Tunell, G.; Posnjak, Ε.; Ksanda, C., Geometrical and optical properties, and crystal structure of tenorite. Zeitschrift für Kristallographie-Crystalline Materials 1935, 90 (1-6), 120-142.

    無法下載圖示 全文公開日期 2024/08/16 (校內網路)
    全文公開日期 2024/08/16 (校外網路)
    全文公開日期 2024/08/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE