簡易檢索 / 詳目顯示

研究生: 李兆力
Chao-Li Lee
論文名稱: 鋅摻雜對噴霧乾燥生物活性玻璃的生物活性影響之研究
Correlation between Zinc-doping and bioactivity of spray dried bioactive glasses
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Chen-Hao Wang
周育任
Yu-Jen Chou
林子仁
Tzu-Jen Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 100
中文關鍵詞: 生物活性玻璃生物活性密度泛函理論
外文關鍵詞: Bioactive glass, Zn, Bioactivity, Density functional theory
相關次數: 點閱:240下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物活性玻璃(Bioactive glass, BG)具有優異的生物活性與骨傳導性,被廣泛應用於骨組織的再生與修復。其中,鋅離子的添加能夠增加生物活性玻璃的抗菌和抗發炎性,引起了許多的研究興趣。然而,有關鋅對生物活性玻璃生物活性的影響,相關文獻的看法仍不一致。本研究使用噴霧乾燥法(Spray drying, SD)分別合成58S、68S、76S以及鋅摻雜生物活性玻璃粉末,接著依序分析粉末的晶體結構、形貌、化學組成和比表面積,同時評估其體外生物活性與細胞毒性。此外,為了增加實驗結果的可靠性,使用密度泛函理論(Density function theory, DFT)分子動力學模擬,以液態淬火法(Liquid quench method)模擬未摻雜與不同濃度鋅摻雜的生物活性玻璃原子模型。
    結果顯示,鋅的摻雜會減少生物活性玻璃的比表面積,降低非架橋氧(Non-bridging oxygen, NBO)的數量,進而抑制氫氧基磷灰石(Hydroxyapatite, HA)的生成,因此會降低生物活性玻璃之生物活性。藉由綜合比較實驗與模擬數據的結果,本研究討論了鋅摻雜對於生物活性玻璃的生物活性之影響機制。


    Bioactive glass (BG) exhibits excellent bioactivity and osteoconductivity, widely used in regeneration and repair of bone tissue. The addition of zinc ions enhances potential antibacterial and anti-inflammatory properties of BG, capturing abundant interest in research. However, the effects of Zn on the bioactivity of BG are still controversial in the literature. In this study, 58S, 68S, 76S, and Zn-doped BG powders were each synthesized by using spray drying method, followed by analyzing the crystal structure, morphology, chemical composition, and specific surface area of the powders sequentially, at the same time, evaluating in vitro bioactivity and cytotoxicity. Besides, to increase the reliability of the experimental results, molecular dynamics simulations based on density functional theory (DFT) were conducted by using the liquid quench method to simulate both pure and different concentrations of Zn-doped BG atomic models.
    The results demonstrated that Zn-doped decreased the specific surface area of BG, reduced the quantity of non-bridging oxygen (NBO), and further inhibited the formation of hydroxyapatite (HA), thereby lowering the bioactivity of the BG. By comparing the results of the experimental and simulation data, this study discussed the mechanisms under the influence of Zn doping on the bioactivity of BG.

    摘要 i Abstract ii 致謝 iii 目錄 v 圖目錄 ix 表目錄 xii 第一章 緒論 1 第二章 文獻回顧 2 2.1 生物活性玻璃 2 2.1.1 生物活性玻璃的介紹 3 2.1.2 生物活性玻璃的性質 4 2.1.3 生物活性玻璃的應用 5 2.2 生物活性玻璃的種類 7 2.2.1 矽酸鹽玻璃 7 2.2.2 硼酸鹽玻璃 9 2.2.3 磷酸鹽玻璃 9 2.3 生物活性 11 2.3.1 生物活性的介紹 11 2.3.2 生物活性的機制 13 2.3.3 影響生物活性的因子 14 2.4 生物活性的量測 20 2.4.1 XRD 20 2.4.2 SEM 20 2.4.3 FTIR 21 2.4.4 DFT 21 第三章 實驗方法與目的 24 3.1 實驗設計 24 3.2 實驗藥品 28 3.3 實驗儀器設備 29 3.4 樣品製備 30 3.5 樣品性質與分析方法 32 3.5.1 X光繞射儀 32 3.5.2 場發射雙束型聚焦離子束顯微鏡 33 3.5.3 場發射穿透式電子顯微鏡 34 3.5.4 氮氣吸/脫附分析儀 35 3.5.5 傅立葉轉換紅外線光譜儀 36 3.5.6 體外生物活性評估 37 3.5.7 體外生物相容性評估 38 3.5.8 X射線光電子能譜儀 39 3.5.9 DFT模擬 40 第四章 實驗結果 42 4.1 58S、68S和76S BG粉末之合成與分析 42 4.1.1 晶相分析 42 4.1.2 表面形貌與粒徑分析 43 4.1.3 化學組成分析 45 4.1.4 比表面積分析 47 4.1.5 體外生物活性評估 48 4.1.6 體外生物相容性評估 52 4.2 Zn-doped BG粉末之合成與分析 53 4.2.1 晶相分析 53 4.2.2 表面形貌與粒徑分析 54 4.2.3 化學組成分析 56 4.2.4 比表面積分析 58 4.2.5 內部形貌分析 59 4.2.6 體外生物活性評估 60 4.2.7 化學態分析 63 4.2.8 抗菌性測試 65 4.2.9 體外生物相容性評估 67 4.3 DFT模擬 68 4.3.1 58S, 68S, 76S BG之DFT模擬 68 4.3.2 Zn-doped 58S BG之DFT模擬 70 第五章 結果討論 74 5.1 58S, 68S, 76S BG的生物活性比較 74 5.2 Zn-doped BG之非架橋氧數量與生物活性探討 76 5.3 Zn-doped BG之細胞存活率與抗菌活性的關係 78 第六章 結論 79 第七章 未來工作 80 參考文獻 81

    [1] L.L. Hench, An Introduction to Bioceramics, World Scientific, 1993.
    [2] L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed. Mater. Res. 5 (1971) 117–141.
    [3] L.L. Hench, Biomaterials: a forecast for the future, Biomaterials. 19 (1998) 1419–1423.
    [4] L.L. Hench, J.M. Polak, Third-Generation Biomedical Materials, Science. 295 (2002) 1014–1017.
    [5] A. Hoppe, N.S. Güldal, A.R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials. 32 (2011) 2757–2774.
    [6] E.M. Carlisle, Silicon: A requirement in bone formation independent of vitamin D1, Calcif. Tissue Int. 33 (1981) 27–34.
    [7] S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, Y. Toyama, T. Taguchi, J. Tanaka, The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture, Biomaterials. 26 (2005) 4847–4855.
    [8] M. Julien, S. Khoshniat, A. Lacreusette, M. Gatius, A. Bozec, E.F. Wagner, Y. Wittrant, M. Masson, P. Weiss, L. Beck, D. Magne, J. Guicheux, Phosphate-Dependent Regulation of MGP in Osteoblasts: Role of ERK1/2 and Fra-1, J. Bone Miner. Res. 24 (2009) 1856–1868.
    [9] M. Yamaguchi, Role of zinc in bone formation and bone resorption, J. Trace Elem. Exp. Med. 11 (1998) 119–135.
    [10] C. Lang, C. Murgia, M. Leong, L.-W. Tan, G. Perozzi, D. Knight, R. Ruffin, P. Zalewski, Anti-inflammatory effects of zinc and alterations in zinc transporter mRNA in mouse models of allergic inflammation, Am. J. Physiol.-Lung Cell. Mol. Physiol. 292 (2007) L577–L584.
    [11] J. Jones, A. Clare, Bio-Glasses: An Introduction, John Wiley & Sons, 2012.
    [12] L.L. Hench, The story of Bioglass®, J. Mater. Sci. Mater. Med. 17 (2006) 967–978.
    [13] M. Montazerian, E.D. Zanotto, A guided walk through Larry Hench’s monumental discoveries, J. Mater. Sci. 52 (2017) 8695–8732.
    [14] T. Mehrabi, A.S. Mesgar, Z. Mohammadi, Bioactive Glasses: A Promising Therapeutic Ion Release Strategy for Enhancing Wound Healing, ACS Biomater. Sci. Eng. 6 (2020) 5399–5430.
    [15] N.Y. Joo, J.C. Knowles, G.S. Lee, J.W. Kim, H.W. Kim, Y.J. Son, J.K. Hyun, Effects of phosphate glass fiber–collagen scaffolds on functional recovery of completely transected rat spinal cords, Acta Biomater. 8 (2012) 1802–1812.
    [16] E. Sharifi, A. Bigham, S. Yousefiasl, M. Trovato, M. Ghomi, Y. Esmaeili, P. Samadi, A. Zarrabi, M. Ashrafizadeh, S. Sharifi, R. Sartorius, F. Dabbagh Moghaddam, A. Maleki, H. Song, T. Agarwal, T.K. Maiti, N. Nikfarjam, C. Burvill, V. Mattoli, M.G. Raucci, K. Zheng, A.R. Boccaccini, L. Ambrosio, P. Makvandi, Mesoporous Bioactive Glasses in Cancer Diagnosis and Therapy: Stimuli-Responsive, Toxicity, Immunogenicity, and Clinical Translation, Adv. Sci. 9 (2022) 2102678.
    [17] A. Shearer, M. Montazerian, J.C. Mauro, Modern definition of bioactive glasses and glass-ceramics, J. Non-Cryst. Solids. 608 (2023) 122228.
    [18] L.L. Hench, Biomaterials, Science. 208 (1980) 826–831.
    [19] R. Li, A.E. Clark, L.L. Hench, An investigation of bioactive glass powders by sol-gel processing, J. Appl. Biomater. 2 (1991) 231–239.
    [20] V. FitzGerald, D.M. Pickup, D. Greenspan, G. Sarkar, J.J. Fitzgerald, K.M. Wetherall, R.M. Moss, J.R. Jones, R.J. Newport, A Neutron and X-Ray Diffraction Study of Bioglass® with Reverse Monte Carlo Modelling, Adv. Funct. Mater. 17 (2007) 3746–3753.
    [21] A. Tilocca, A.N. Cormack, N.H. de Leeuw, The Structure of Bioactive Silicate Glasses:  New Insight from Molecular Dynamics Simulations, Chem. Mater. 19 (2007) 95–103.
    [22] A. Yao, D. Wang, W. Huang, Q. Fu, M.N. Rahaman, D.E. Day, In Vitro Bioactive Characteristics of Borate-Based Glasses with Controllable Degradation Behavior, J. Am. Ceram. Soc. 90 (2007) 303–306.
    [23] N.W. Marion, W. Liang, W. Liang, G.C. Reilly, D.E. Day, M.N. Rahaman, J.J. Mao, Borate Glass Supports the In Vitro Osteogenic Differentiation of Human Mesenchymal Stem Cells, Mech. Adv. Mater. Struct. 12 (2005) 239–246.
    [24] W.C. Lepry, S.N. Nazhat, Highly Bioactive Sol-Gel-Derived Borate Glasses, Chem. Mater. 27 (2015) 4821–4831.
    [25] S. Sengupta, M. Michalek, L. Liverani, P. Švančárek, A.R. Boccaccini, D. Galusek, Preparation and characterization of sintered bioactive borate glass tape, Mater. Lett. 282 (2021) 128843.
    [26] X. Liu, M.N. Rahaman, D.E. Day, Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid, J. Mater. Sci. Mater. Med. 24 (2013) 583–595.
    [27] S. Naseri, W. C. Lepry, S. N. Nazhat, Bioactive glasses in wound healing: hope or hype?, J. Mater. Chem. B. 5 (2017) 6167–6174.
    [28] D. Ege, K. Zheng, A.R. Boccaccini, Borate Bioactive Glasses (BBG): Bone Regeneration, Wound Healing Applications, and Future Directions, ACS Appl. Bio Mater. 5 (2022) 3608–3622.
    [29] H. Gao, T. Tan, D. Wang, Dissolution mechanism and release kinetics of phosphate controlled release glasses in aqueous medium, J. Controlled Release. 96 (2004) 29–36.
    [30] J. C. Knowles, Phosphate based glasses for biomedical applications, J. Mater. Chem. 13 (2003) 2395–2401.
    [31] E.A. Abou Neel, T. Mizoguchi, M. Ito, M. Bitar, V. Salih, J.C. Knowles, In vitro bioactivity and gene expression by cells cultured on titanium dioxide doped phosphate-based glasses, Biomaterials. 28 (2007) 2967–2977.
    [32] E.A. Abou Neel, I. Ahmed, J. Pratten, S.N. Nazhat, J.C. Knowles, Characterisation of antibacterial copper releasing degradable phosphate glass fibres, Biomaterials. 26 (2005) 2247–2254.
    [33] I. Ahmed, C.A. Collins, M.P. Lewis, I. Olsen, J.C. Knowles, Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering, Biomaterials. 25 (2004) 3223–3232.
    [34] U. Patel, R.M. Moss, K.M.Z. Hossain, A.R. Kennedy, E.R. Barney, I. Ahmed, A.C. Hannon, Structural and physico-chemical analysis of calcium/strontium substituted, near-invert phosphate based glasses for biomedical applications, Acta Biomater. 60 (2017) 109–127.
    [35] L.L. Hench, Bioceramics: From Concept to Clinic, J. Am. Ceram. Soc. 74 (1991) 1487–1510.
    [36] A.E. Clark Jr., C.G. Pantano Jr., L.L. Hench, Auger Spectroscopic Analysis of Bioglass Corrosion Films, J. Am. Ceram. Soc. 59 (1976) 37–39.
    [37] D.M. Sanders, L.L. Hench, Mechanisms of Glass Corrosion, J. Am. Ceram. Soc. 56 (1973) 373–377.
    [38] W. Xia, J. Chang, Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58S bioactive glass, J. Non-Cryst. Solids. 354 (2008) 1338–1341.
    [39] S.J. Shih, Y.J. Chou, K. Borisenko, Preparation method: Structure–bioactivity correlation in mesoporous bioactive glass, J. Nanoparticle Res. 15 (2013).
    [40] X. Yan, C. Yu, X. Zhou, J. Tang, D. Zhao, Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone-Forming Bioactivities, Angew. Chem. Int. Ed. 43 (2004) 5980–5984.
    [41] B.J. Hong, S.J. Shih, Novel pore-forming agent to prepare of mesoporous bioactive glass using one-step spray pyrolysis, Ceram. Int. 43 (2017) S771–S775.
    [42] X. Kesse, C. Vichery, A. Jacobs, S. Descamps, J.M. Nedelec, Unravelling the Impact of Calcium Content on the Bioactivity of Sol–Gel-Derived Bioactive Glass Nanoparticles, ACS Appl. Bio Mater. 3 (2020) 1312–1320.
    [43] H.K. Ting, S.J. Page, G. Poologasundarampillai, S. Chen, B. Yu, J.V. Hanna, J.R. Jones, Phosphate content affects structure and bioactivity of sol-gel silicate bioactive glasses, Int. J. Appl. Glass Sci. 8 (2017) 372–382.
    [44] M. Navarro, S.D. Valle, S. Martı́nez, S. Zeppetelli, L. Ambrosio, J.A. Planell, M.P. Ginebra, New macroporous calcium phosphate glass ceramic for guided bone regeneration, Biomaterials. 25 (2004) 4233–4241.
    [45] J. Bejarano, P. Caviedes, H. Palza, Sol–gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics, Biomed. Mater. 10 (2015) 025001.
    [46] G. Kaur, P. Sharma, V. Kumar, K. Singh, Assessment of in vitro bioactivity of SiO2-BaO-ZnO-B2O3-Al2O3 glasses: An optico-analytical approach, Mater. Sci. Eng. C. 32 (2012) 1941–1947.
    [47] L. Courthéoux, J. Lao, J.M. Nedelec, E. Jallot, Controlled Bioactivity in Zinc-Doped Sol−Gel-Derived Binary Bioactive Glasses, J. Phys. Chem. C. 112 (2008) 13663–13667.
    [48] S. Haimi, G. Gorianc, L. Moimas, B. Lindroos, H. Huhtala, S. Räty, H. Kuokkanen, G.K. Sándor, C. Schmid, S. Miettinen, R. Suuronen, Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation, Acta Biomater. 5 (2009) 3122–3131.
    [49] A. Balamurugan, G. Balossier, S. Kannan, J. Michel, A.H.S. Rebelo, J.M.F. Ferreira, Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass, Acta Biomater. 3 (2007) 255–262.
    [50] A. Hoppe, R. Meszaros, C. Stähli, S. Romeis, J. Schmidt, W. Peukert, B. Marelli, S. N. Nazhat, L. Wondraczek, J. Lao, E. Jallot, A. R. Boccaccini, In vitro reactivity of Cu doped 45S5 Bioglass® derived scaffolds for bone tissue engineering, J. Mater. Chem. B. 1 (2013) 5659–5674.
    [51] Y.J. Chou, S.H. Lin, C.J. Shih, S.L.Y. Chang, S.J. Shih, The Effect of Ag Dopants on the Bioactivity and Antibacterial Properties of One-Step Synthesized Ag-Containing Mesoporous Bioactive Glasses, J. Nanosci. Nanotechnol. 16 (2016) 10001–10007.
    [52] E. Vernè, S.D. Nunzio, M. Bosetti, P. Appendino, C. Vitale Brovarone, G. Maina, M. Cannas, Surface characterization of silver-doped bioactive glass, Biomaterials. 26 (2005) 5111–5119.
    [53] A.M. El-Kady, A.F. Ali, R.A. Rizk, M.M. Ahmed, Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles, Ceram. Int. 38 (2012) 177–188.
    [54] G. Kaur, O. p. Pandey, K. Singh, D. Homa, B. Scott, G. Pickrell, A review of bioactive glasses: Their structure, properties, fabrication and apatite formation, J. Biomed. Mater. Res. A. 102 (2014) 254–274.
    [55] D.C. Greenspan, L.L. Hench, Chemical and mechanical behavior of bioglass-coated alumina, J. Biomed. Mater. Res. 10 (1976) 503–509.
    [56] P. Saravanapavan, J.R. Jones, R.S. Pryce, L.L. Hench, Bioactivity of gel–glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2P5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O), J. Biomed. Mater. Res. A. 66A (2003) 110–119.
    [57] M.M. Pereira, A.E. Clark, L.L. Hench, Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro, J. Biomed. Mater. Res. 28 (1994) 693–698.
    [58] C.J. Shih, H.T. Chen, L.F. Huang, P.S. Lu, H.F. Chang, I.L. Chang, Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds, Mater. Sci. Eng. C. 30 (2010) 657–663.
    [59] T.Y. Peng, P.Y. Tsai, M.S. Chen, Y. Mine, S.H. Wu, C.Y. Chen, D.J. Lin, C.K. Lin, Mesoporous Properties of Bioactive Glass Synthesized by Spray Pyrolysis with Various Polyethylene Glycol and Acid Additions, Polymers. 13 (2021) 618.
    [60] S.J. Shih, W.L. Tzeng, Y.J. Chou, C.Y. Chen, Y.J. Chen, The Influence of Phase Separation on Bioactivity of Spray Pyrolyzed Bioactive Glass, J. Nanosci. Nanotechnol. 15 (2015) 4688–4696.
    [61] Y.J. Chou, C.W. Hsiao, N.T. Tsou, M.H. Wu, S.J. Shih, Preparation and in Vitro Bioactivity of Micron-sized Bioactive Glass Particles Using Spray Drying Method, Appl. Sci. 9 (2019) 19.
    [62] H.S. Ningsih, Y.C. Liu, J.W. Chen, Y.J. Chou, Effects of strontium dopants on the in vitro bioactivity and cytotoxicity of strontium-doped spray-dried bioactive glass microspheres, J. Non-Cryst. Solids. 576 (2022) 121284.
    [63] L.H. Thomas, The calculation of atomic fields, Math. Proc. Camb. Philos. Soc. 23 (1927) 542–548.
    [64] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864–B871.
    [65] W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133–A1138.
    [66] N. Stone-Weiss, H. Bradtmüller, M. Fortino, M. Bertani, R.E. Youngman, A. Pedone, H. Eckert, A. Goel, Combined Experimental and Computational Approach toward the Structural Design of Borosilicate-Based Bioactive Glasses, J. Phys. Chem. C. 124 (2020) 17655–17674.
    [67] A. Pedone, T. Charpentier, M. Cristina Menziani, The structure of fluoride-containing bioactive glasses: new insights from first-principles calculations and solid state NMR spectroscopy, J. Mater. Chem. 22 (2012) 12599–12608.
    [68] E. Berardo, A. Pedone, P. Ugliengo, M. Corno, DFT Modeling of 45S5 and 77S Soda-Lime Phospho-Silicate Glass Surfaces: Clues on Different Bioactivity Mechanism, Langmuir. 29 (2013) 5749–5759.
    [69] Y. Chou, Structural studies of amorphous materials, University of Oxford, 2018.
    [70] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc. 60 (1938) 309–319.
    [71] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3, J. Biomed. Mater. Res. 24 (1990) 721–734.
    [72] L.L. Hench, Bioceramics, J. Am. Ceram. Soc. 81 (1998) 1705–1728.
    [73] P. Hudon, D.R. Baker, The nature of phase separation in binary oxide melts and glasses. I. Silicate systems, J. Non-Cryst. Solids. 303 (2002) 299–345.
    [74] S. Shahrabi, S. Hesaraki, S. Moemeni, M. Khorami, Structural discrepancies and in vitro nanoapatite formation ability of sol–gel derived glasses doped with different bone stimulator ions, Ceram. Int. 37 (2011) 2737–2746.
    [75] P. Naruphontjirakul, P. Kanchanadumkerng, P. Ruenraroengsak, Multifunctional Zn and Ag co-doped bioactive glass nanoparticles for bone therapeutic and regeneration, Sci. Rep. 13 (2023) 6775.

    QR CODE