簡易檢索 / 詳目顯示

研究生: 謝昕容
Hsin-Rong Hsieh
論文名稱: 氧化鋅與寬能隙材料複合結構之氫氣感測研究
The Studies of ZnO-based Wide Bandgap Materials Composite Structures for H2 Sensing Applications
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
Shyan-Kay Jou
許正良
Cheng-Liang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 173
中文關鍵詞: 氧化鋅超奈米鑽石氧化鎵
外文關鍵詞: ZnO, N-UNCD, Ga2O3
相關次數: 點閱:229下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以簡單與低成本的製程技術製備高效能的氫氣感測元件,內文將分為三個部分。第一部分探討超奈米鑽石之氫氣感測及物性分析。接著在不同退火溫度之超奈米鑽石成長氧化鋅奈米柱之氫氣感測及物性分析。第二部分則是探討氧化鎵之氫氣感測及物性分析。接著在不同退火溫度之氧化鎵成長氧化鋅奈米柱之氫氣感測及物性分析。第三部分則是將氧化鋅奈米柱複合於超奈米鑽石與氧化鎵,再做氫氣感測及物性分析。此外,針對氫氣感測最好的試片,將其進行穩定性、重複性及選擇性量測。


    In this study, a structure of Ultra-nanocrystalline diamond)(UNCD) combined with zinc oxide nanorods (ZNR) was synthesized using a simple and cost-effective method. V arious analyses were used to confirm the successful formation of the ZNR/N-UNCD structure. The hydrogen sensing properties of ZNR/N-UNCD were investigated, which shows that remarkably improved H2 sensing performances for ZNR since the N-UNCD layer releases a large amount of carbon, which increases the adsorption capacity for the ZNR/N-UNCD structure.
    Then the ZnO grown on Ga2O3 films(ZnO/ Ga2O3) and ZnO/Ga2O3-N2annealed were studied. It was found that the nanorods and nanosheets structure effectively increased the surface area that provides more active sites, which leads to the rapid gas adsorption/desorption, thereby exhibit a higher response for both of the ZnO/Ga2O3 and ZnO/Ga2O3-N2annealed samples.
    This studies shows promising hybrid nanostructures of UNCD with Ga2O3 as substrtates for future hydrogen sensor applications.

    目錄 摘要 I 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XVII 第一章 緒論 1 第二章 文獻探討 9 第三章 實驗方法 27 第四章 氧化鋅奈米柱於超奈米鑽石(ZNR/N-UNCD)複合結構之氫氣感測研究 41 第五章 氧化鋅於氧化鎵(ZnO/ Ga2O3)複合結構之氫氣感測研究 89 第六章 氧化鋅於氧化鎵、超奈米鑽石(ZnO/Ga2O3/N-UNCD)複合結構之氫氣感測研究 154 第七章 結論與未來展望 182 參考文獻

    [1].Z. Zhang, T. Xue and X. Jin, "Effects of meteorological conditions and air pollution on COVID-19 transmission: Evidence from 219 Chinese cities", Sci. Total Environ., vol. 741, Nov. 2020.
    [2].D. R. Feikin et al., "Association of higher MERS-CoV virus load with severe disease and death Saudi Arabia 2014", Emerg. Infectious Diseases, vol. 21, no. 11, pp. 2029, Nov. 2015.
    [3].H. Nazemi, A. Joseph, J. Park and A. Emadi, "Advanced micro- and nano-gas sensor technology: A review", Sensors, vol. 19, no. 6, pp. 1285, Mar. 2019.
    [4].J. Wang et al., "Gas detection microsystem with MEMS gas sensor and integrated circuit", IEEE Sensors J., vol. 18, no. 16, pp. 6765-6773, Aug. 2018.
    [5].C.-Y. Lu et al., "ZnO nanowire-based oxygen gas sensor", IEEE Sensors J., vol. 9, no. 4, pp. 485-489, Apr. 2009.
    [6].N. Alizadeh, H. Jamalabadi and F. Tavoli, "Breath acetone sensors as non-invasive health monitoring systems: A review", IEEE Sensors J., vol. 20, no. 1, pp. 5-31, Jan. 2020.
    [7].Hua-Yao Li et al., " Flexible room-temperature NH 3 sensor for ultrasensitive selective and humidity-independent gas detection ", ACS Appl. Mater. Interfaces, vol. 10, no. 33, pp. 27858-27867, 2018.
    [8].W.-D. Huang, S. Deb, Y.-S. Seo, S. Rao, M. Chiao and J. C. Chiao, "A passive radio-frequency pH-sensing tag for wireless food-quality monitoring", IEEE Sensors J., vol. 12, no. 3, pp. 487-495, Mar. 2012.
    [9].L.-Y. Chen et al., "Development of an electronic-nose system for fruit maturity and quality monitoring", Proc. IEEE Int. Conf. Appl. Syst. Invention (ICASI), pp. 1129-1130, Apr. 2018.
    [10].F. Wang, W. Lin, Z. Liu, S. Wu and X. Qiu, "Pipeline leak detection by using time-domain statistical features", IEEE Sensors J., vol. 17, no. 19, pp. 6431-6442, Oct. 2017.
    [11].S. C. Mukhopadhyay and C. P. Gooneratne, "A novel planar-type biosensor for noninvasive meat inspection", IEEE Sensors J., vol. 7, no. 9, pp. 1340-1346, Sep. 2007.
    [12].M. I. A. Asri et al., “MEMS Gas Sensors: A Review” , IEEE Sensor J. , vol. 21, no. 17, pp. 18381-18397, 2021.
    [13].Yole (2018). "氣體傳感器市場2022年挑戰10美元" fromhttps://kknews.cc/science/o3zln5o.html
    [14].Najjar, Y. S.. "Hydrogen safety: The road toward green technology." International Journal of Hydrogen Energy 38(25): 10716-10728,2013.
    [15].Kou, X., et al. . "Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping." Sensors and Actuators B: Chemical 256: 861-869,2018.
    [16].Navaneethan, M., et al."Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature." Sensors and Actuators B: Chemical 255: 672-683,2018
    [17].Zou, C., et al. "Synthesis and enhanced NO2 gas sensing properties of ZnO nanorods/TiO2 nanoparticles heterojunction composites." Journal of colloid and interface science 478: 22-28,2016
    [18].K. Ihokura, J. Watson, “The Stannic Oxide Gas Sensor: Principles and Applications” ,1994.
    [19].Q. Yuan, Y.-P. Zhao, L. Li, T. Wang “Ab initio study of ZnO-based gas-sensing mechanisms: surface reconstruction and charge transfer”, J. Phys. Chem. C, 113, pp. 6107-6113,2009.
    [20].Michelle J.S Spencer ”Gas sensing applications of 1D-nanostructured zinc oxide: insights from density functional theory calculations” Prog. Mater. Sci., 57 pp. 437-486,2012.
    [21].Zhong Lin Wang “Zinc oxide nanostructures: growth, properties and applications” J. Phys.: Condens. Matter, vol. 16, no. 25, 2004
    [22].Birrell, J., et al. (2002). "Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond." Applied physics letters 81(12): 2235-2237.
    [23].Cheng, Y. W., et al. (2014). "Electrically conductive ultrananocrystalline diamond‐coated natural graphite‐copper anode for new long life lithium‐ion battery." Advanced Materials 26(22): 3724-3729.
    [24].Panda, K., et al. (2014). "Direct observation and mechanism for enhanced electron emission in hydrogen plasma-treated diamond nanowire films." ACS applied materials & interfaces 6(11): 8531-8541.
    [25].Bhattacharyya, S., et al. (2001). "Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films." Applied physics letters 79(10): 1441-1443.
    [26].Williams, O. A., et al. (2004). "n-Type conductivity in ultrananocrystalline diamond films." Applied physics letters 85(10): 1680-1682.
    [27].Arenal, R., et al. (2007). "Diamond nanowires and the insulator-metal transition in ultrananocrystalline diamond films." Physical Review B 75(19): 195431.
    [28].Sankaran, K., et al. (2012). "Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma." Journal of Physics D: Applied Physics 45(36): 365303.
    [29].Saravanan, A., et al. (2015). "Highly conductive diamond–graphite nanohybrid films with enhanced electron field emission and microplasma illumination properties." ACS applied materials & interfaces 7(25): 14035-14042.
    [30].Ogita, M., et al. (2001). "Ga2O3 thin film for oxygen sensor at high temperature." Applied Surface Science 175: 721-725.
    [31].Víllora, E. G., et al. (2004). "Large-size β-Ga2O3 single crystals and wafers." Journal of Crystal Growth 270(3-4): 420-426.
    [32].Víllora, E. G., et al. (2006). "Rf-plasma-assisted molecular-beam epitaxy of β-Ga2 O3." Applied physics letters 88(3): 031105.
    [33].Ohira, S., et al. (2006). "Fabrication of hexagonal GaN on the surface of β-Ga2O3 single crystal by nitridation with NH3." Thin Solid Films 496(1): 53-57.
    [34].Oshima, T., et al. (2007). "Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors." Japanese Journal of Applied Physics 46(11R): 7217.
    [35].Suzuki, R., et al. (2009). "Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing." Applied physics letters 94(22): 222102.
    [36].Nakagomi, S., et al. (2011). "Hydrogen sensitive Schottky diode based on β-Ga2O3 single crystal." Sensor Letters 9(1): 31-35.
    [37].Nakagomi, S., et al. (2011). "Comparison of hydrogen sensing properties of Schottky diodes based on SiC and β-Ga2O3 single crystal." Sensor Letters 9(2): 616-620.
    [38].Higashiwaki, M., et al. (2012). "Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates." Applied physics letters 100(1): 013504.
    [39].Gao, F., et al. (2016). "Ultraviolet electroluminescence from Au-ZnO nanowire Schottky type light-emitting diodes." Applied physics letters 108(26): 261103.
    [40].He, J., et al. (2018). "Enhanced field emission of ZnO nanowire arrays by the control of their structures." Materials Letters 216: 182-184.
    [41].Hsu, C.-L., et al. (2016). "A dual-band photodetector based on ZnO nanowires decorated with Au nanoparticles synthesized on a glass substrate." RSC advances 6(78): 74201-74208.
    [42].Burgos, A., et al. (2018). "Electrodeposition of ZnO nanorods as electron transport layer in a mixed halide perovskite solar cell." Int. J. Electrochem. Sci 13: 6577-6583.
    [43].Deng, X., et al. (2017). "ZnO enhanced NiO-based gas sensors towards ethanol." Materials Research Bulletin 90: 170-174.
    [44].Liu, J., et al. (2017). "Highly sensitive and low detection limit of ethanol gas sensor based on hollow ZnO/SnO2 spheres composite material." Sensors and Actuators B: Chemical 245: 551-559.
    [45].Shi, Z.-F., et al. (2015). "Photoluminescence performance enhancement of ZnO/MgO heterostructured nanowires and their applications in ultraviolet laser diodes." Physical Chemistry Chemical Physics 17(21): 13813-13820.
    [46].Han, Z., et al. (2012). "Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance." Applied Catalysis B: Environmental 126: 298-305.
    [47].Kim, K.-H., et al. (2013). "Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation." Scientific reports 3(1): 1-6.
    [48].Ashrafi, A. and C. Jagadish (2007). "Review of zincblende ZnO: Stability of metastable ZnO phases." Journal of applied physics 102(7): 4.
    [49].[44].Solozhenko, V. L., et al. (2011). "Kinetics of the wurtzite-to-rock-salt phase transformation in ZnO at high pressure." The Journal of Physical Chemistry A 115(17): 4354-4358.
    [50].Morkoç, H. and Ü. Özgür (2008). Zinc oxide: fundamentals, materials and device technology, John Wiley & Sons.
    [51].Shaikh, S. K., et al. (2016). "Chemical bath deposited ZnO thin film based UV photoconductive detector." Journal of Alloys and Compounds 664: 242-249.
    [52].Polsongkram, D., et al. (2008). "Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method." Physica B: Condensed Matter 403(19-20): 3713-3717.
    [53].Hejazi, S., et al. (2008). "The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor–liquid–solid (VLS) mechanism." Journal of Alloys and Compounds 455(1-2): 353-357.
    [54].Vergés, M. A., et al. (1990). "Formation of rod-like zinc oxide microcrystals in homogeneous solutions." Journal of the Chemical Society, Faraday Transactions 86(6): 959-963.
    [55].Vayssieres, L., et al. (2001). "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO." The Journal of Physical Chemistry B 105(17): 3350-3352.
    [56].Yang, Y., et al. (2005). "ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement." Chemical physics letters 403(4-6): 248-251.
    [57].Mensah, S. L., et al. (2007). "Formation of single crystalline ZnO nanotubes without catalysts and templates." Applied physics letters 90(11): 113108.
    [58].Wagner, a. R. and s. W. Ellis (1964). "Vapor‐liquid‐solid mechanism of single crystal growth." Applied physics letters 4(5): 89-90.
    [59].Wang, N., et al. (2008). "Growth of nanowires." Materials Science and Engineering: R: Reports 60(1-6): 1-51.
    [60].Huang, M. H., et al. (2001). "Room-temperature ultraviolet nanowire nanolasers." science 292(5523): 1897-1899.
    [61].Dong, F., et al. (2011). "Efficient synthesis of polymeric gC3N4 layered materials as novel efficient visible light driven photocatalysts." Journal of Materials Chemistry 21(39): 15171-15174.
    [62].Matsumoto, S., et al. (1982). "Vapor deposition of diamond particles from methane." Japanese Journal of Applied Physics 21(4A): L183.
    [63].Lin, C., et al. (2014). "Development of high-performance UV detector using nanocrystalline diamond thin film." International Journal of Photoenergy 2014.
    [64].Arora, S. and V. Vankar (2006). "Field emission characteristics of microcrystalline diamond films: Effect of surface coverage and thickness." Thin Solid Films 515(4): 1963-1969.
    [65].S.J. Kim, B.K Jul, Y.H. Lee, B.S. Park IEEE (1996) 526.
    [66]. 曾永華、陳柏穎、鄭宇明、游銘永 (2014). "人造鑽石的合成及應用." 497.
    [67]. Ong, W.-J., et al. (2016). "Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?" Chemical reviews 116(12): 7159-7329.
    [68]. Roy, R., et al. (1952). "Polymorphism of Ga2O3 and the system Ga2O3—H2O." Journal of the American Chemical Society 74(3): 719-722.
    [69]. Stepanov, S., et al. (2016). "Gallium OXIDE: Properties and applica 498 a review." Rev. Adv. Mater. Sci 44: 63-86.
    [70]. Åhman, J., et al. (1996). "A reinvestigation of β-gallium oxide." Acta Crystallographica Section C: Crystal Structure Communications 52(6): 1336-1338.
    [71]. Pearton, S., et al. (2018). "A review of Ga2O3 materials, processing, and devices." Applied Physics Reviews 5(1): 011301.
    [72]. Higashiwaki, M., et al. (2016). "Recent progress in Ga2O3 power devices." Semiconductor Science and Technology 31(3): 034001.
    [73]. Miyata, T., et al. (2000). "Gallium oxide as host material for multicolor emitting phosphors." Journal of Luminescence 87: 1183-1185.
    [74].Fleischer, M., et al. (1990). "Stability of semiconducting gallium oxide thin films." Thin Solid Films 190(1): 93-102.
    [75].Ho, C.-H., et al. (2010). "Thermoreflectance characterization of β-Ga2O3 thin-film nanostrips." Optics express 18(16): 16360-16369.
    [76].Ma, X., et al. (2017). "First-principles calculations of electronic and optical properties of aluminum-doped β-Ga2O3 with intrinsic defects." Results in physics 7: 1582-1589.
    [77].Irmscher, K., et al. (2011). "Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method." Journal of applied physics 110(6): 063720.
    [78].T. Seiyama, A. Kato, K. Fujiishi and M. Nagatani, "A new detector for gaseous components using semiconductive thin films", Anal. Chem., vol. 34, no. 11, pp. 1502-1503, Oct. 1962.
    [79].Muhammad, I, A, A., et al. "MEMS Gas Sensors: A Revie." IEEE Sensors Journal, 21, 17, 2021.
    [80].N. Hassanzadeh, H. Omidvar and S. H. Tabaian, "Chemical synthesis of high density and long polypyrrole nanowire arrays using alumina membrane and their hydrogen sensing properties", Superlattices Microstructures, vol. 51, no. 3, pp. 314-323, Mar. 2012.
    [81].C. Wang, L. Yin, L. Zhang, D. Xiang and R. Gao, "Metal oxide gas sensors: Sensitivity and influencing factors", Sensors, vol. 10, no. 3, pp. 2088-2106, Mar. 2010.
    [82].D'amico, A., et al. (1982). "Surface acoustic wave hydrogen sensor." Sensors and Actuators 3: 31-39.
    [83].Kathiravan, D., et al. (2017). "Self-assembled hierarchical interfaces of ZnO nanotubes/graphene heterostructures for efficient room temperature hydrogen sensors." ACS applied materials & interfaces 9(13): 12064-12072.
    [84].Gu, H., et al. (2012). "Hydrogen gas sensors based on semiconductor oxide nanostructures." Sensors 12(5): 5517-5550.
    [85].Wagner, C. (1950). "The mechanism of the decomposition of nitrous oxide on zinc oxide as catalyst." The Journal of Chemical Physics 18(1): 69-71.
    [86].Comini, E., et al. (2002). "Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts." Applied physics letters 81(10): 1869-1871.

    無法下載圖示 全文公開日期 2024/09/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE