簡易檢索 / 詳目顯示

研究生: SAPTO WIJANARKO RUSTAMADI
SAPTO WIJANARKO RUSTAMADI
論文名稱: 金-氧化鋅奈米粒子於水污物光降解及表面增強拉曼(SERS)檢測 之應用
Gold Nanoparticles Immobilized on Zinc Oxide Nanoparticles for Photodegradation and SERS Detection of Water Pollutants
指導教授: 楊銘乾
MING-CHIEN YANG
口試委員: 施劭儒
SHAO-JU SHIH
劉定宇
TING-YU LIU
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 59
中文關鍵詞: 氧化鋅奈米粒子金奈米粒子二巰基丁二酸 (DMSA)光降解表面增強拉曼散射
外文關鍵詞: Zinc oxide nanoparticles, gold nanoparticles, dimecaptosuccinic acid (DMSA), photodegradation, surface enhanced Raman scattering (SERS) detection
相關次數: 點閱:330下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅奈米粒子(ZnO NPs)藉著使用水熱法,然後再經過不同溫度下的退火 (200,
    300, 400, 500, 600 and 700oC)被成功的合成出來。 並且使用金奈米粒子(Au NPs)透過二巰基
    丁二酸(DMSA) 固定於氧化鋅奈米粒子合成出金-氧化鋅奈米粒子(Au-ZnO NPs)後,應用於
    光降解(photodegradation)和表面增強拉曼散射(SERS)檢測水汙染物(如:亞甲藍)。另外,
    也探討氧化鋅奈米粒子在不同退火溫度下的粒徑效應。透過掃描電子顯微鏡(SEM)以及
    穿透電子顯微鏡(TEM)驗證氧化鋅奈米粒子和金奈米粒子的形態。結果顯示兩種粒子
    皆為球型,氧化鋅奈米粒子直徑約為50 nm,金奈米粒子直徑約為10 nm。通過紫外 - 可見
    光譜驗證氧化鋅奈米粒子的光學性質。XRD 結果顯示氧化鋅奈米粒子具有高度的結晶性,
    為六方纖鋅礦晶體結構。金-氧化鋅奈米粒子在光降解和 SERS 檢測中表現出很好的特性,
    這可以應用於生物醫學、水處理以及快速檢測領域。


    Zinc oxide nanoparticles (ZnO NPs) were successfully synthesized by hydro thermal
    methods and then annealing at varied temperature (200, 300, 400, 500, 600 and 700oC).
    Furthermore, gold nanoparticles (Au NPs) were immobilized on the dimercaptosuccinic acid
    (DMSA) modified ZnO NPs (Au-ZnO NPs) for the photodegradation and surface enhanced Raman
    scattering (SERS) detection of the water pollutants, such as methylene blue. The effects of the
    particle size of ZnO NPs at varied annealing temperatures were investigated. The morphology of
    ZnO NPs and Au NPs were evaluated by scanning electron microscopy (SEM) and transmission
    electron microscopy (TEM). It showed that ZnO NPs were spherical in shape with the diameter
    about 50 nm and Au NPs were spherical in shape with diameter about 10 nm. The optical properties
    of the ZnO NPs were characterized by UV-visible spectroscopy. XRD results revealed that the
    ZnO NPs are highly crystalline, showing the hexagonal wurtzite crystal structure. Au-ZnO NPs
    displays great characterizations in the photodegradation and SERS detection, which is potential to
    apply in the field of biomedical and water treatments and rapid detection.

    Abstarct ........................................................................................................................................... i Acknowledgement ....................................................................................................................... iiii List of Figure…………………………………………………………………………………….vi List of Table…………………………………………………………………………………… viii Nomenclature…………………………………………………………………………………….ix CHAPTER 1 – INTRODUCTION .............................................................................................. 1 Research Aim and Scope of the Project ...................................................................................... 3 CHAPTER 2 LIRERATURE ....................................................................................................... 4 2.1 Photocatalysis ................................................................................................................... 4 2.2 Basic principle of Photocatalysis ...................................................................................... 4 2.3 Enhancing Photocatalytic Activity ................................................................................... 6 2.3.1 Use of redox species ................................................................................................. 6 2.3.2 Coupling two types of semiconductors .................................................................... 7 2.3.3 Doped semiconductors ............................................................................................. 7 2.4 Zinc Oxide (ZnO) ............................................................................................................. 9 2.5 Gold Nanoparticle (Au NP) ............................................................................................ 10 2.6 Dimercapto succinic acid (DMSA)…………………………………………………….11 2.7 Methylene blue ............................................................................................................... 11 2.8 Surface-enhanced Raman scattering (SERS) ................................................................. 12 2.8.1 SERS mechanisms ................................................................................................... 14 2.8.2 Nanoparticle-Based SERS....................................................................................... 15 2.9 Scanning Electron Microscopy ....................................................................................... 15 2.10 X-ray Diffraction (XRD) ................................................................................................ 16 v 2.11 X-ray Photoelectron Spectroscopy (XPS) ...................................................................... 18 2.12 UV visible spectroscopy ................................................................................................. 19 2.13 A transmission electron microscope (TEM) ................................................................... 19 CHAPTER 3 PROSEDURE AND EXPERIMENT ................................................................. 21 3.1 Experiment Materials ..................................................................................................... 21 3.1 Experiment Apparatus .................................................................................................... 21 3.3 Experimental methods .................................................................................................... 22 3.4 Experimental ................................................................................................................... 23 CHAPTER 4 RESULTS AND DISCUSSION ......................................................................... 24 5.1 Conclusion ...................................................................................................................... 41 5.2 Future Work .................................................................................................................... 42 REFERENCES ............................................................................................................................ 43

    [1] Gust, D.; Moore, T. a; Moore, A. L. Acc. Chem. Res. 2009, 42 (12), 1890–1898.
    [2] Srivastava V, Gusain D, Sharma YC. Synthesis, characterization and application of
    zinc oxide nanoparticles (n-ZnO). Ceramic International, vol. 39, 2013, pp. 9803-
    9808.
    [3] Cao GZ. Growth of zinc oxide nanorod arrays through sol electrophoretic deposition.
    The Journal of Physical Chemistry, vol. 108, 2004, pp.19921-19931.
    [4] Zhou WD, Wu X, Zhang YC. Solvothermal synthesis of hexagonal ZnO nanorods
    and their photoluminescence properties. Materials Letters, vol. 61, 2007, pp. 2054-
    2057.
    [5] Li, D.X., Li, C.F., Wang, A.H., He, Q. and Li, J.B. (2010) monodispersity and shape
    of gold nanoparticles formed by Hierarchical gold/copolymer nano-structures as the
    Turkevich method. New J. Chem., 34: 2906.
    [6] A. Takai, P.V. Kamat, Capture, store, and discharge, shuttling photogenerated
    electrons across TiO2-silver interface. ACS Nano 5 (2011) 7369–7376.
    [7] Chu, W., Environ. Sci. Technol. 1999, 33, 421-425.
    [8] Davis, A. P. and Green, D. L., Environ. Sci. Technol. 1999, 33, 609-617.
    [9] Calza, P. C.; Minero, C. and Pelizzeti, E., Environ. Sci. Technol. 1997, 31, 2198-
    2203.
    [10] Xie, Y. B. and Li, X. Z., J. Hazard. Mater. 2006, 138, 526-533.
    [11] M. Schiavello, Heterogeneous photocatalysis - Vol. 3. John Wiley & Sons, 1st
    Edition, 1997.
    44
    [12] M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev, 1995,
    95,69.
    [13] Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J. and Gong, J. R.,
    J. Am. Chem. Soc. 2011, 133, 10878-10884.
    [14] Wang, W. S.; Wang, D. H.; Qu, W. G.; Lu, L. Q. and Xu, A. W., J. Phys. Chem. C
    2012, 116, 19893-19901.
    [15] Bahadur, L.; Srivastava, P. Solar Energy Materials and Solar Cells 2003, 79, 235.
    [16] Huang, T.; Murray, R. W. Langmuir 2002, 18, 7077.
    [17] Armas, M. T.; Mederos, A.; Gili, P.; Dominguez, S.; Hernandez-Molina, R.;
    Lorenzo, P.; Baran, E. J.; Araujo, M. L.; Brito, F. Polyhedron 2001,20, 799.
    [18] Maeda, K.; Teramura, K.; Domen, K. Journal of Catalysis 2008,254,198.
    [19] Liu, G.; Zhang, X.; Xu, Y.; Niu, X.; Zheng, L.; Ding, X. Chemosphere 2005, 59,
    1367.
    [20] Akpan, U. G.; Hameed, B. H. Journal of Hazardous Materials 2009, 170, 520.
    [21] Buffat, P.; Borel, J. P. Physical Review A 1976,13, 2287.
    [22] Haruta, M. CATTECH 2002, 6,102.
    [23] Akita, T.; Lu, P.; Ichikawa, S.; Tanaka, K.; Haruta, M. Surface and Interface
    Analysis 2001,31,73.
    [24] Howard, A.; Mitchell, C. E. J.; Egdell, R. G. Surface Science 2002,515, L504.
    [25] Bishop, P.T., Ashfield, L.J., Berzins, A., Boardman, A., Bioelectron., 23: 980-986.
    Buche, V., Cookson, J., Gordon, R.J., Salcianu, C. and 19. Li, D.X., He, Q., Yang,
    Y., Möhwald, H. and Li, J.B. (2008)
    45
    [26] Wallace, W.T. and Whetten, R.L. (2002) Coadsorption of CO 20. Xia, H. and
    Wang, D. (2008) Fabrication of Macroscopic and O2 on selected gold clusters:
    Evidence for efficient room- Freestanding Films of Metallic Nano-particle
    Monolayers temperature CO generation. J. Am. Chem. Soc., 124: 7499. by
    Interfacial Self-Assembly. Adv. Mater.,20: 4253-4256. 2.
    [27] Zhou, X.C., Xu, W.L., Liu, G.K., Panda, D. and Chen, P. 21. Frens, G. (1973)
    Controlled nucleation for the regulation of N (2010) Size-Dependent Catalytic Activity
    and Dynamics of the particle size in monodisperse gold suspensions. Nat. Gold
    Nanoparticles at the Single-Molecule Level. J. Am. Phys. Sci., 241: 20-22. Chem.
    Soc., 132: 138.
    [28] Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., (2002). Photocatalytic degradation
    of various types of dyes in water by UV-irradiated titania. Applied Catalysis B:
    Environmental. 39: 75-90.
    [29] Wang, Y.S., Zeng, L., Ren, X.F., Song, H., Wang, A.Q., 2010. Removal of methyl
    violet from aqueous solutions using poly (acrylic acid-co-acrylamide)/attapulgite
    composite. J. Environ. Sci. 22 (1), 7–14.
    [30] McCreery RL. 2000. Raman spectroscopy for chemical analysis. Wiley-Interscience.
    [31] Haynes CL, McFarland AD, Van Duyne RP. 2005. Surface-enhanced Raman
    spectroscopy. Anal Chem 77(17): 338a-346a.
    [32] Haynes CL, Yonzon CR, Zhang XY, Van Duyne RP. 2005b. Surface-enhanced
    Raman sensors: early history and the development of sensors for quantitative
    biowarfare agent and glucose detection. J Raman Spectrosc 36(6-7): 471-84.
    46
    [33] Doering WE, Nie S. 2002. Single-molecule and single-nanoparticle SERS: examining
    the roles of surface active sites and chemical enhancement. J Phys Chem B 106(2):
    311-7.
    [34] Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS. 2002. Surface-enhanced Raman
    scat tering and biophysics . J Phys -Condens Mat ter 14(18) : R597-624.
    [35] Willets KA, Van Duyne RP. 2007. Localized surface plasmon resonance
    spectroscopy and sensing. Annu Rev Phy Chem 58: 267-97.
    [36] Bohren CF. Absorption and scattering of light by small particles. New York: Wiley;
    1983.
    [37] Kreibig U, Vollmer M. Optical properties of metal clusters. Springer; 1995.
    [38] Dinish US, Balasundaram G, Chang Y-T, Olivo M. Actively targeted in vivo
    multiplex detection of intrinsic cancer biomarkers using biocompatible SERS
    nanotags. Sci Rep 2014, 4.
    [39] Bindell, J. Scanning Electron Microscopy. Encyclopedia of Materials
    Characterization: Surfaces, Interfaces, Thin Films, ed. Brundle, R. and C. Evans.
    1992, Greenwich: Manning Publication Company
    [40] Y. Feldman, G. L. Frey, M. Homyonfer, V. Lyakhovitskaya, L. Margulis, H. Cohen,
    G. Hodes, J. L. Hutchison, and R. Tenne, “Bulk Synthesis of Inorganic Fullerenelike
    MS 2 (M) Mo, W) from the Respective Trioxides and the Reaction Mechanism,"
    Journal of the American Chemical Society, vol. 118, no. c, pp. 5362{5367, 1996.
    [41] D. Ugarte, “Curling and closure of graphitic networks under electron-beam
    irradiation," Nature, vol. 359, p. 707, 1992
    [42] A. Selloni, Nature, 2008, 7, 613.
    47
    [43] A. Fujishima, K. Hashimoto and T. Watanabe, Photocatalysis: fundamentals and
    applications; BKC, Tokyo, 1999.
    [44] U. Diebold, N. Ruzycki, G. S. Herman and A. Selloni, Catal. Today, 2003, 85, 93.
    [45] L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz and H. J. Scheel, J. Am. Chem.
    Soc., 1996, 118, 6716.
    [46] T. Ohno, K. Sarakawa and M. Matsumura, New J. Chem., 2002, 26, 1167.
    [47] I. M. Arabatzis, S. Antonaraki, T. Stergiopoulos, A. Hiskia, E. Papaconstantinou,
    M. C. Bernard and P. Falaras, J. Photochem. Photobiol. A: Chem, 2002, 149, 237.
    [48] Bunney, J.; Williamson, S.; Atkin, D.; Jeanneret, M.; Cozzolino, D.; Chapman, J.
    The use of biosensors in food analysis. Curr. Res. Nutr. Food Sci. J. 2017, 5, 183–
    195.
    [49] Swinehart, D.F. The Beer-Lambert law. J. Chem. Educ. 1962, 39, 333.
    [50] Ting-Yu Liu, Hung-Chou Liao, Chin-Ching Lin, Shang-Hsiu Hu, and San-Yuan
    Chen. 2006. Biofunctional ZnO Nanorod Arrays Grown on Flexible Substrates.
    Langmuir 2006, 22, 5804-5809.
    [51] N.B. Li, L.M. Niu, H.Q. Luo, Microchim. Acta 153 (2006) 37.

    QR CODE