簡易檢索 / 詳目顯示

研究生: 張姿婷
TZU-TING CHANG
論文名稱: 電流變操控聚苯乙烯@四氧化三鐵@奈米金核殼結構微米粒子於致病原檢測
Electrorheological Operation of Polystyrene@Fe3O4@Nanogold Core-Shell Microparticles for Pathogen Detection
指導教授: 陳建光
Jem-Kun Chen
口試委員: 邱顯堂
Hsien-Tang Chiu
張棋榕
Chi-Jung Chang
黃啟賢
Chi-Hsien Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 142
中文關鍵詞: 聚苯乙烯鐵奈米粒子金奈米粒子電流變粒子串抗體抗原偵測細菌偵測
外文關鍵詞: Polystyrene, Fe3O4 nanoparticle, Au nanoparticle, Electrorheological, Particle chain, Antibody, Antigenic detection, Bacterial detection
相關次數: 點閱:237下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗分為兩個部份,第一部分以無乳化劑乳化聚合法合成出粒徑約為2.3μm之聚苯乙烯微米粒子(Polystyrene microparticles,PSMPs) ,接著以化學共沉澱法製備出平均粒徑約為12nm之四氧化三鐵奈米粒子(Fe3O4 nanoparticles,FeNPs)。以高介電性質之PSMPs作為基材,透過靜電吸附力將固定濃度的FeNPs包覆於PSMPs表面,形成PSMPs@FeNPs,以包覆之次數將其命名為PF3、PF6、PF9、PF12。使用熱重量分析儀(TGA)做定量分析,PF12中FeNPs的含量最高可達8.3wt%。接著以Turkevich method合成出平均粒徑約為14nm之金奈米粒子(Au nanoparticles,AuNPs) ,再利用具有硫醇官能基結構之交聯劑,將不同濃度的AuNPs包覆於PF9表面,形成PSMPs@FeNPs@AuNPs,以包覆之濃度不同將其命名為PF9A1、PF9A2、PF9A3。最後將PF9A2複合材料粒子以APTES改質後,加入EDC/NHS作為基材與捕獲抗體(Capture antibody)的連接,此反應能使抗體上任一位置的一級胺(Primary amine)形成穩定的醯胺鍵結(Amide bond),使抗體能與抗原反應,續與帶有螢光標籤的二抗反應後,以雷射共軛焦顯微鏡觀察確認反應之成功性。
    第二部分探討施加不同頻率的交流電場,對於FeNPs與AuNPs在複合材料粒子系統中所占比例改變,使其成串時的交流特徵頻率有所變化。再以Clausius−Mossotti理論公式之實部值(Real part,ε')與虛部值(Imaginary part,ε'')進行有效介電常數(Permittivity)的計算與預測,進而探討其複合材料粒子系統的電流變性質(Electroheological),並以光學顯微鏡(Optical microscopy,OM)觀察複合材料粒子系統受電場響應所表現之穿透率,呈現出不同的顯示效果。藉由施加不同頻率的交流電場,測量各別複合材料粒子極化成串之穿透率分布,根據不同的響應頻率所對應的穿透率差異,來達到抗原、細菌偵測的目的。複合材料粒子表面抓取抗原、細菌後,其最大穿透度所對應的響應頻率分別為350 kHz、550kHz,與未添加抗原及細菌時的響應頻率100kHz有所差異,而細菌偵測靈敏度達 2×〖10〗^3 cfu/ml。


    My thesis consists of three parts, including the synthesis of substrate, measurement of transmittance and observation of antigenic detection. First, using emulsifier-free emulsion polymerization to prepare 2.3μm polystyrene microspheres (PSMPs) as a substrate. Sequentially, iron oxide nanoparticles (FeNPs) which mean diameter was about 12nm prepared by co-precipitation method, then immobilized FeNPs on the substrate surface to synthesize PSMPs@FeNPs core/shell composited particles fully by the electrostatic adsorption. Samples were named as PF3, PF6, PF9 and PF12, respectively as the concentration of FeNPs increased multiply. With reaching the maximum, 8.3wt%, of the FeNPs content of PF12. And then synthesize Au nanoparticles (AuNPs) with mean diameter about 14nm by Turkevich method. Using thiol functional group as cross-linking agent, connecting different concentration of AuNPs on the PF9 surface to synthesize PSMPs@FeNPs@AuNPs fully. With the increasing concentration of AuNPs, samples were named as PF9A1, PF9A2, and PF9A3, respectively.
    Second, the composited particles were prepared by PSMPs@FeNPs@AuNPs, so the contents of FeNPs had significant effects on its electrorheological properties. The stringing of the particles was caused by AC frequency. Then, predicting the effective permittivities of these composites from the real (ε') and imaginary parts (ε'') that were based on the Clausius−Mossotti formalism to discuss eletrorheological properties. Furthermore, encapsulated aqueous dispersion of PSMPs@FeNPs@AuNPs microparticles were put into display device, optical microscopy, observing the various electroresponsive behaviors.
    Third, we discuss the Biological applications of composited particles. We use APTES to modified composited particles. Sequentially, using EDC/NHS to combine Antibody and PF9A2 particle. Then, using antigen and bacterium to react with particle surface, respectively. What’s more, secondary antibody with fluorescent label were applied to confirm whether antigen was immobilized on the surface or not. Finally, applying different frequencies of AC electric field to measure the transmittance of each was formed into stringing pattern after electric polarization. It depended on the response frequency corresponding to the transmission to achieve the purpose of bacterial detection. The composited particles captured bacterium or not, will change the maximum transmittance.

    摘要 I Abstract III 致謝 VI 目錄 VIII 表目錄 XXI 第1章 前言 1 1.1 研究背景 1 1.2 研究動機與目的 3 第2章 理論與文獻回顧 4 2.1 電子紙 4 2.1.1 電子紙簡介 4 2.1.2 電子紙顯示技術及原理 5 2.2 電場極化理論 7 2.3 聚苯乙烯微球 17 2.3.1 乳化聚合法 17 2.3.2 無乳化劑乳化聚合法 20 2.3.3 分散聚合法 23 2.3.4 懸浮聚合法 23 2.4 超順磁性四氧化三鐵奈米粒子 24 2.4.1 磁性材料特性 24 2.4.2 共沉澱法(Co-precipitation)[53] 30 2.4.3 微乳化法(Micro-emulsions)[54] 30 2.4.4 水熱法(Solvothermal reaction)[55] 30 2.5 金奈米粒子 31 2.5.1 Turkevich method 31 2.5.2 Brust method 32 2.6 表面分子固定法 32 2.7 抗體(Antibody) 34 第3章 儀器原理 37 3.1 高解析度場發射掃描式電子顯微鏡(Field-emission scanning electron microscope,FE-SEM) 37 3.2 場發射穿透式電子顯微鏡(Field-emission transmission electron microscope,FE-TEM) 38 3.3 X光繞射分析儀(X-ray diffractometer,XRD) 42 3.4 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectrometer,FT-IR) 45 3.5 熱重量分析儀(Thermogravimetric analysis,TGA) 49 3.6 動態光散射粒徑分析儀(Dynamic light scattering,DLS) 52 3.7 表面電位分析儀(Zeta-potential) 53 3.8 超導量子干涉磁量儀(Superconducting quantum interference device magnetometer,SQUID) 54 3.9 雷射掃描式共軛焦顯微鏡 (Laser scanning confocal microscope,LSCM) 58 第4章 實驗流程與方法 60 4.1 實驗流程圖 60 60 4.2 實驗藥品 61 4.3 實驗儀器 64 4.4 實驗步驟 67 4.4.1 聚苯乙烯微球(PSMPs)之合成 67 4.4.2 四氧化三鐵奈米粒子(FeNPs)的製備 68 4.4.3 金奈米粒子(AuNPs)製備 69 4.4.4 PSMPs@FeNPs複合材料粒子之製備 70 4.4.5 PSMPs@FeNPs複合材料粒子的硫醇官能基修飾 71 4.4.6 PSMPs@FeNPs@AuNPs複合材料粒子之製備 72 4.4.7 交流電場極化成串顯示元件之製備 73 4.4.8 複合材料粒子電場極化成串實驗 74 4.4.9 PSMPs@FeNPs@AuNPs複合材料粒子的胺基修飾 75 4.4.10 胺基修飾PSMPs@FeNPs@AuNPs複合材料粒子製備 75 4.4.11 PF9A2N複合材料粒子電場極化成串 76 4.4.12 PF9A2N複合材料粒子之螢光抗體修飾 76 4.4.13 PF9A2N複合材料粒子之抗體修飾 78 4.4.14 PF9A2N-Ig複合材料粒子之抗原結合 79 4.4.15 PF9A2N-Ig複合材料粒子之細菌結合 81 第5章 結果與討論 84 5.1 PSMPs@FeNPs@AuNPs核-殼微米粒子影像型態分析 84 5.1.1 SEM表面型態分析 84 5.1.2 TEM穿透型態分析 91 5.2 PSMPs@FeNPs@AuNPs核-殼微米粒子光譜定性分析 97 5.2.1 XRD結晶分析 97 5.2.2 FT-IR光譜分析 100 5.2.3 TGA熱重分析 104 5.2.4 DLS粒徑分析 107 5.2.5 Zeta-potential 表面電位分析 109 5.2.6 SQUID磁性分析 112 5.3 PF9A2N-Ig-Antigen核-殼微米粒子影像型態分析 113 5.3.1 雷射共軛焦螢光顯微鏡型態分析 113 5.4 核-殼微米粒子交流電場極化成串觀察分析 115 5.4.1 介電粒子溶液之驅動電壓測試 115 5.4.2 PSMPs@FeNPs@AuNPs粒子交流極化成串 117 5.4.3 PF9A2N-Ig-Antigen粒子交流極化成串 125 5.4.4 PF9A2N-Ig-Bacterium粒子交流極化成串 129 第6章 135 參考文獻 137

    [1] Lauhon LJ, Gudiksen MS, Wang D, Lieber CM. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002;420:57-61.
    [2] Serpell CJ, Cookson J, Ozkaya D, Beer PD. Core@shell bimetallic nanoparticle synthesis via anion coordination. Nat Chem 2011;3:478-83.
    [3] Veedu VP, Cao A, Li X, Ma K, Soldano C, Kar S, et al. Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat Mater 2006;5:457-62.
    [4] Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical reviews 2012;112:2373-433
    [5] Cheong S-W, Mostovoy M. Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 2007;6:13-20.
    [6] Kim JH, Bryan WW, Chung HW, Park CY, Jacobson AJ, Lee TR. Gold, palladium, and gold-palladium alloy nanoshells on silica nanoparticle cores. ACS applied materials & interfaces 2009;1:1063-9.
    [7] Van Roosbroeck R, Van Roy W, Stakenborg T, Trekker J, D'Hollander A, Dresselaers T, et al. Synthetic antiferromagnetic nanoparticles as potential contrast agents in MRI. ACS nano 2014;8:2269-78.
    [8] Tucek J, Kemp KC, Kim KS, Zboril R. Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS nano 2014;8:7571-612.
    [9] Lei Y, Lodge TP. Effects of component molecular weight on the viscoelastic properties of thermoreversible supramolecular ion gels via hydrogen bonding. Soft Matter 2012;8:2110.
    [10] Correa-Duarte, M.A., Giersig, M., Kotov, N.A., Liz-Marzán, L.M. Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation. Langmuir, 1998, 14.22: 6430-6435.
    [11] Joseph M.Crowley NKS, Linda Romano. Dipole moments of gyricon balls. Journal of Electrostatics 2002;55:247-59.
    [12] M.Trau SS,D. A. Saville I.A. Aksay. Eletric-field-induced pattern formation in colloidal dispersions. Nature 1995;374:437-9
    [13] Wen W, Huang X, Yang S, Lu K, Sheng P. The giant electrorheological effect in suspensions of nanoparticles. Nat Mater 2003;2:727-30.
    [14] Velev, Orlin D.; LENHOFF, Abraham M.; KALER, Eric W. A class of microstructured particles through colloidal crystallization. Science, 2000, 287.5461: 2240-2243.
    [15] HALSEY, Thomas C.; MARTIN, James E. Electrorheological fluids. Scientific American, 1993, 269.4.
    [16] T. Schneider, F. Nicholson, A. Khan, J.W. Doane, L.C. Chien, Flexible Encapsulated Cholesteric LCDs by Polymerization Induced Phase Separation, in: SID Symposium Digest of Technical Papers, Wiley Online Library, 2005, pp. 1568-1571.
    [17] A. Masutani, T. Roberts, B. Schüller, N. Hollfelder, P. Kilickiran, G. Nelles, A. Yasuda, A. Sakaigawa, Nanoparticle Embedded Polymer Dispersed Liquid Crystal for Wide Viewing Angle and Specular Glare Suppression, in: SID Symposium Digest of Technical Papers, Wiley Online Library, 2007, pp. 1355-1357.
    [18] Y. Itoh, K. Minoura, Y. Asaoka, I. Ihara, E. Satoh, S. Fujiwara, Super Reflective Color LCD with PDLC Technology, in: SID Symposium Digest of Technical Papers, Wiley Online Library, 2007, pp. 1362-1365.
    [19] Howard ME, Richley EA, Sprague R, Sheridon NK. Gyricon electric paper. Journal of the Society for Information Display 1998;6:215-7.
    [20] R. Sakurai, S. Ohno, S.i. Kita, Y. Masuda, R. Hattori, Color and Flexible Electronic Paper Display using QR‐LPD® Technology, in: SID Symposium Digest of Technical Papers, Wiley Online Library, 2006, pp. 1922-1925.
    [21] Fan S-K, Chiu C-P, Lin J-W. Electrowetting on polymer dispersed liquid crystal. Applied Physics Letters 2009;94:164109.
    [22] Wang A-H, Hwang S-L, Kuo H-T. Effects of bending curvature and ambient illuminance on the visual performance of young and elderly participants using simulated electronic paper displays. Displays 2012;33:36-41.
    [23] Hattori R, Yamada S, Masuda Y, Nihei N. A novel bistable reflective display using quick-response liquid powder. Journal of the Society for Information Display 2004;12:75-80.
    [24] R. Tao, J. Sun, Three-dimensional structure of induced electrorheological solid, Physical review letters, 67 (1991) 398.
    [25] K. Lu, W. Wen, C. Li, S. Xie, Frequency dependence of electrorheological fluids in an ac electric field, Physical Review E, 52 (1995) 6329.
    [26] Fan SK, Chiu CP, Huang PW. Transmittance tuning by particle chain polarization in electrowetting-driven droplets. Biomicrofluidics 2010;4:43011.
    [27] Fan SK, Chiu CP, Hsu CH, Chen SC, Huang LL, Lin YH, et al. Particle chain display--an optofluidic electronic paper. Lab on a chip 2012;12:4870-6.
    [28] H. Morgan, N.G. Green, AC electrokinetics: colloids and nanoparticles, Research Studies Press, 2003.
    [29] C.A. Harper, Handbook of materials for product design, McGraw-Hill New York, NY, 2001.
    [30] P. Maheshwari, Electronic Components and Processes, New Age International, 2006.
    [31] Brown, E., Forman, N. A., Orellana, C. S., Zhang, H., Maynor, B. W., Betts, D. E., Jaeger, H. M., Generality of shear thickening in dense suspensions. Nature materials, 2010, 9.3: 220-224.
    [32] U. Böttger, Dielectric properties of polar oxides, Polar oxides: properties, characterization and imaging, (2005).
    [33] H. Pohl, Dielectrophoresis. 1978, Cambridge: Cambridge.
    [34] J.M. Sung, Dielectrophoresis and Optoelectronic Tweezers for Nanomanipulation. 2007
    [35] O.F. Mossotti, Discussione analitica sull'influenza che l'azione di un mezzo dielettrico ha sulla distribuzione dell'elettricita alla superficie di più corpi elettrici disseminati in esso, 1846.
    [36] R. Clausius, Abhandlungen über die mechanische Wärmetheorie, F. Vieweg, 1864.
    [37] C.-P. Chiu, T.-J. Chiang, J.-K. Chen, F.-C. Chang, F.-H. Ko, C.-W. Chu, S.-W. Kuo, S.-K. Fan, Liquid lenses and driving mechanisms: A review, Journal of Adhesion Science and Technology, 26 (2012) 1773-1788.
    [38] Valero A, Braschler T Fau - Renaud P, Renaud P. A unified approach to dielectric single cell analysis: impedance and dielectrophoretic force spectroscopy. Lab on a Chip, 2010, 10.17: 2216-2225.
    [39] Mürau P, Singer B. The understanding and elimination of some suspension instabilities in an electrophoretic display. Journal of Applied Physics 1978;49:4820-9.
    [40] Jones TB. Electromechanics of Particles. UK: Cambridge University Press; 2005.
    [41] Hayes RA, Feenstra BJ. Video-speed electronic paper based on electrowetting. Nature 2003;425:383-5.
    [42] R.M. Fitch, M.B. Prenosil, K.J. Sprick, The mechanism of particle formation in polymer hydrosols. I. kinetics of aqueous polymerization of methyl methacrylate, in: Journal of Polymer Science Part C: Polymer Symposia, Wiley Online Library, 1969, pp. 95-118.
    [43] W.D. Harkins, A General Theory of the Mechanism of Emulsion Polymerization1, Journal of the American Chemical Society, 69 (1947) 1428-1444.
    [44] J.W. Goodwin, R.H. Ottewill, Properties of concentrated colloidal dispersions, J. Chem. Soc., Faraday Trans., 87 (1991) 357-369.
    [45] R. Cox, M. Wilkinson, J. Creasey, A. Goodall, J. Hearn, Study of the anomalous particles formed during the surfactant‐free emulsion polymerization of styrene, Journal of Polymer Science: Polymer Chemistry Edition, 15 (1977) 2311-2319.
    [46] H. Qi, W. Hao, H. Xu, J. Zhang, T. Wang, Synthesis of large-sized monodisperse polystyrene microspheres by dispersion polymerization with dropwise monomer feeding procedure, Colloid and Polymer Science, 287 (2009) 243-248.
    [47] N. Van Landschoot, E. Kelder, J. Schoonman, Synthesis and characterization of LiCo1−xFexVO4 prepared by a citric acid complex method, Journal of Solid State Electrochemistry, 8 (2003) 28-33.
    [48] W. Meissner, R. Ochsenfeld, Ein neuer effekt bei eintritt der supraleitfähigkeit, Naturwissenschaften, 21 (1933) 787-788.
    [49] C. Kittel, Introduction to Solid State Physics, 6th edn., 1986, in, Wiley.
    [50] D.K. Cheng, Field and wave electromagnetics, Addison-Wesley New York, 1989.
    [51] Y. Lai, W. Yin, J. Liu, R. Xi, J. Zhan, One-pot green synthesis and bioapplication of L-arginine-capped superparamagnetic Fe3O4 nanoparticles, Nanoscale research letters, 5 (2010) 302-307.
    [52] A. Dias, A. Hussain, A. Marcos, A. Roque, A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides, Biotechnology advances, 29 (2011) 142-155.
    [53] X. Wang, C. Zhao, P. Zhao, P. Dou, Y. Ding, P. Xu, Gellan gel beads containing magnetic nanoparticles: an effective biosorbent for the removal of heavy metals from aqueous system, Bioresource technology, 100 (2009) 2301-2304.
    [54] Y. Wang, X. Wang, G. Luo, Y. Dai, Adsorption of bovin serum albumin (BSA) onto the magnetic chitosan nanoparticles prepared by a microemulsion system, Bioresource technology, 99 (2008) 3881-3884.
    [55] S. Xuan, Y.-X.J. Wang, J.C. Yu, K.C.-F. Leung, Preparation, characterization, and catalytic activity of core/shell Fe3O4@ polyaniline@ Au nanocomposites, Langmuir, 25 (2009) 11835-11843.
    [56] H. Li, Z. Li, T. Liu, X. Xiao, Z. Peng, L. Deng, A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads, Bioresource technology, 99 (2008) 6271-6279.
    [57] E. Hee Kim, H. Sook Lee, B. Kook Kwak, B.-K. Kim, Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent, Journal of Magnetism and Magnetic Materials, 289 (2005) 328-330.
    [58] O. Olsvik, T. Popovic, E. Skjerve, K.S. Cudjoe, E. Hornes, J. Ugelstad, M. Uhlen, Magnetic separation techniques in diagnostic microbiology, Clinical microbiology reviews, 7 (1994) 43-54.
    [59] P. Gupta, C. Hung, F. Lam, D. Perrier, Synthesis and characterization of microspheres containing adriamycin and magnetite, International journal of pharmaceutics, 43 (1988) 167-177.
    [60] T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, Journal of Magnetism and Magnetic Materials, 293 (2005) 483-496.
    [61] A. Jordan, P. Wust, H. Fähling, W. John, A. Hinz, R. Felix, Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia, International Journal of Hyperthermia, 25 (2009) 499-511.
    [62] U. Häfeli, Scientific and clinical applications of magnetic carriers, Springer, 1997.
    [63] M.N. Widjojoatmodjo, A.C. Fluit, R. Torensma, J. Verhoef, Comparison of immunomagnetic beads coated with protein A, protein G, or goat anti-mouse immunoglobulins Applications in enzyme immunoassays and immunomagnetic separations, Journal of immunological methods, 165 (1993) 11-19.
    [64] Dominguez-Garcia P, Rubio MA. Three-dimensional morphology of field-induced chain-like aggregates of superparamagnetic microparticles. Colloids and Surfaces A: Physicochemicaland Enginrreing Aspects 2010;358:21-7.
    [65] Sang-Yun L, Yun-Seog L,In-Hyuk C, Dong-Il L, Sang-Beom K. Effective Combination of Soft Magnetic Materials for Magnetic Shielding.Magnetics, IEEE Transactions on 2012;48:4550-3.
    [66] Leung SL, Li M, Li WJ, Mai JD. Gold nano-particle-based thermal sensors fabricated using microspotting and DEP techniques. Sensors and Actuators A: Physical 2012;27:9160-4.
    [67] Sasada I, Inoue I, Harada K. An improved mesh shaking coil and its application to amagnetic shielding panel. Magnetics, IEEE Transactions on 1991;27:5435-7
    [68] Hasselgren L, Luoim J. Geometrical aspects of magnetic shielding at extremely low frequencies. Electromagnetic Compatibility, IEEE Transactions on 1995;37:409-20.
    [69] Snedaker ML, Zhang Y, Birlel CS,Wang H, Dsy T, Shi Y, et al. Silicon-basedThermoelectrics Made from a Boron-Doped Silicon Dioxide Nanocomosite. Chemisty of Materials 2013;25:4867-73.
    [70] Masood MN, Chen S, Carlen ET, van den Berg A. All-(111) surface silicon nanowires:selective functuinalization for biosensing applications. ACS applied materials &interfaces 2010;2:3422-8.
    [71] Rusmini F., Zhong Z., Feijen J., Protein immobilization strategies for protein biochips. Biomacromolecules 2007;8:1775-89.
    [72] Hermanson GT. Bioconjugate techniques: Academic press; 2013.
    [73] Sehgal D, Vijay IK. A method for the high efficiency of ater-soluble carbodiimide-mediated amidation. Analytical biochemistry 1994;218:87-91.
    [74] ThermoScientific. NHS and Sulfo-NHS 2011.
    [75] D. L. Nelson, A. L. L., M. M. Cox, Lehninger principles of biochemistry. WH Freeman: 2008; p 869-870.

    無法下載圖示 全文公開日期 2021/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE