簡易檢索 / 詳目顯示

研究生: Nasim Kamely
Nasim kamely
論文名稱: 花弁納米金粒子應用於等離子誘導光催化
Plasmon-induced photocatalysis of confeito-like Au nanoparticles
指導教授: 氏原真樹
Masaki Ujihara
口試委員: Masaki Ujihara
Masaki Ujihara
Ruei-San Chen
Ruei-San Chen
wei-nien su
wei-nien su
台科大應科所
Ching-Hwa Ho
Din Ping Tsai
Din Ping Tsai
Kuang-Lieh Lu
Kuang-Lieh Lu
吳紀聖
Jeffrey Chi-Sheng Wu
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 128
中文關鍵詞: gold nanoparticle (CAuNP)titanium dioxide (TiO2)citrate–peroxo-complexplasmonsphotocatalystsnitrogen (N)sulfur (S)sulphatevanadium (V)iron (Fe)copper (Cu)UVvisibledarknessBandgap narrowinghot electronsplasmonic photocatalysis
外文關鍵詞: gold nanoparticle (CAuNP), titanium dioxide (TiO2), citrate–peroxo-complex, plasmons, photocatalysts, nitrogen (N), sulfur (S), sulphate, vanadium (V), iron (Fe), copper (Cu), UV, visible, darkness, Bandgap narrowing, hot electrons, plasmonic photocatalysis
相關次數: 點閱:351下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究了類花弁(confeito-like)納米粒子(CAuNPs), 以及其與二氧化鈦(TiO2)混合物(CAuNP/TiO2)的合成和等離子體光催化作用(plasmonic photocatalysis), CAuNP/TiO2的混合物主要利用Ti-檸檬酸鹽-過氧化物在不同的條件(黑暗, UV, 可見光), 以及比較不同時間(24,48小時)。其中在黑暗的條件下,TiO2緩慢的形成,而在可現光的條件下,有TiO2的膜狀結構形成,並且覆蓋在CAuNPs。此效應與CAuNPs分解Ti-檸檬酸鹽-過氧化物地等離子體行為有關。另外,此研究也做了對TiO2參雜不同的非金屬(N,S)和過度金屬(V,Fe,Cu)。CAuNPs以及其納米複合材料被應用於光降解亞甲基藍(MB)於不同的條件下(黑暗, UV, 可見光),並測試其光催化活性。從結果發現,裸CAuNPs只能夠在可見光的情況下分解MB,主要由於等離子體激元誘導的電荷分離。TiO2可以增強活性,主要因為通過將熱墊子從CAuNP轉移到TiO2,此現象可視為TiO2仰制了電子(e-)與電洞(h+)的重組速率。但過量的TiO2可以覆蓋CAuNPs的尖端,並降低活性。通過在TiO2中參雜氮(N)和硫(S)可以進一步改善光催化活性,參雜的作用被認為可以讓TiO2的能階變窄。其中S的參雜比N-的參雜更加有效,主要因為吸附在Au表面上的硫與硫酸根(SO42-)有電子轉移。另一方面,過度金屬釩(V),鐵(Fe),銅(Cu)的參雜並沒有明顯的改變光催化的活性,這種低效率可能因為不同的因素,可能與TiO2 的電子電洞的重組有關。


    In this work, the synthesis and plasmonic photocatalysis of confeito-like gold nanoparticles (CAuNPs) and their hybrids with TiO2 (CAuNP/TiO2) were studied. The TiO2 was prepared from the Ti-citrate-peroxo complex, and deposited on the CAuNPs under different conditions (darkness, UV and visible light) and time spans (24h and 48h). While the deposition of TiO2 under darkness was slow, the visible light irradiation resulted in the film formation to embed the CAuNPs as aggregates. These effects were associated with the plasmonic behavior of CAuNP to decompose the Ti-citrate-peroxo complex. To the TiO2, different non-metals (N, S) and transition metals (V, Fe, Cu) were also doped. Then, the CAuNPs and their nanocomposites were used as photocatalysts. The photocatalytic activity was measured by the degradation of methylene blue (MB) under different conditions (darkness, UV and visible light). The results demonstrated that the bare CAuNPs was able to decompose MB solely under visible light, which was explained by the plasmon-induced charge separation. The activity was further enhanced by the TiO2, and there was an optimum amount of TiO2. The role of TiO2 was considered to suppress the recombination rate of electron and hole (e- and h+) by transferring hot electrons from CAuNPs to TiO2. The excess TiO2 could cover the tips of CAuNPs, and then reduce the activity. A synergistic relation between the synthesized condition and the photocatalytic activity was also observed as a self-optimization to facilitate the electron transfer. The photocatalytic activity could be further improved by nitrogen (N) and sulfur (S) doping in TiO2. The roles of dopants were considered as attributed to the band gap narrowing of TiO2. The S-doping was more effective than N-doping because the sulfur and the sulfate ion (SO42-) adsorbed on Au surface mediated the electron transfer. On the other hand, the doping of transition metals, vanadium (V), iron (Fe) and copper (Cu) did not significantly change the photocatalytic activity. The reason behind this low efficiency could be attributed to different factors: The formation of interstates between VB and CB of TiO2 acted as a recombination center and contributed to the lower photocatalytic activity.

    Chinese Abstract…………………………………………………………………………………i Abstract…………………………………………………………………………………………..ii Keywords…………………………………………………………………………………………ii Acknowledgments…..……………………………………………………………………..……..iii Table of contents……………………………………………………………………………...…..iv Nomenclature…………………………………………………………………...…...……..……viii List of Abbreviations………………………………………………………………...…………....ix List of Figures……………………………………………………..………………………..……..x List of Tables………………………...…………………………………………...………......…xiii CHAPTER 1 GENERAL INTRODUCTION 1.1. Introduction to photocatalysis…………………………………….……………………….1 1.2. Gold nanoparticle, surface plasmon resonance and localized surface plasmon resonance (LSPR) .................................................................................................................................3 1.3. TiO2 as photocatalyst……………………………………………………..………………..5 1.4. Plasmonic for different shape of AuNP with TiO2…………………..…………………….7 1.5. Differently doped Au/TiO2 ……………………………………………..……………..…..8 1.6. Different methods for the synthesis of Au/TiO2……………………………..…………….9 1.7. Ratio between TiO2 and AuNP on plasmonic photocatalysis ……………………….……10 1.8. Mechanisms for Au/TiO2 plasmonic photocatalysis……………………………………..11 1.8.1. Local electric field enhancement…………………………………………………………11 1.8.2. Remote activity mechanism……………………………………………………………...11 1.8.3. Charge transfer mechanism………………………………………………………...…….12 1.8.4. Hot electron transfer mechanism……………………………………………………..…..13 1.8.5. Förster resonance energy transfer……………………...…………………………………14 1.8.6. Photo-electro-catalysis mechanism by application of an external potential……...…….…14 1.9. Applications of Au/TiO2 plasmonic photocatalysis ……………………………………..15 1.9.1. Reduction of CO2 with H2O to form hydrocarbon fuels…………………………………15 1.9.2. Degradation of organic molecules………………………………………………………..15 1.9.3. Water splitting for H2 energy………………………………………………….……….…16 1.9.4. Medicinal applications………………………………………………………………..….17 1.9.5. Sensor Applications…………………………………………………………………...…17 1.10. Future Scope……………………………………………..……………………………….22 1.11. Aim of this thesis………………………………………………………………..………..17 CHAPTER 2 CONFEITO-LIKE Au/TiO2 NANOCOMPOSITE: SYNTHESIS AND PLASMON INDUCED PHOTOCATALYTIC ACTIVITY 2.1. Abstract…………………………………………………………………………..………….19 2.2. Introduction…………………………………………………………………...……………..19 2.3. Experimental……………………………………………………………………...…………22 2.3.1. Materials………………………………………………..………………………………….22 2.3.2. Instruments……………………………………..………………………………………….22 2.4. Synthesis of CAuNP/TiO2 …………………………………..……………..………………..23 2.4.1. Synthesis of CAuNPs…………………………………………..………….………………23 2.4.2. Synthesis of Ti-citrate-peroxo complex……………..…………….……..………………...23 2.4.3. Synthesis of Au/TiO2 nanocomposite……………………………….……………………..24 2.5. Photocatalytic study…………………………………………………………………………26 2.6. Results and discussion……………………………………………….………………………27 2.6.1. Structures of nanocomposites……………………………………………………………...27 2.6.2. Photocatalytic activity……………………………………………………………………..32 2.7. Conclusion…………………………………………………………………...………………27 2.8. Acknowledgments…………………………………..……………………………………….27 CHAPTER 3 NITROGEN AND SULFUR DOPED CONFEITO-LIKE CAuNP/TiO2 FOR ENHANCED VISIBLE LIGHT INDUCED PLASMONIC PHOTOCATALYTIC ACTIVITY 3.1. Abstract………………………………………………………….……………….………….47 3.2. Introduction………………………………………………….….……………………….…..47 3.3. Experimental……………………………………………….……………………..…………50 3.3.1. Materials…………………..…………………………………………….…………………50 3.3.2. Instruments…………………………………………………………………………….......50 3.3.3. Synthesis of CAuNP…………………………………………………..…………………...51 3.3.4. Synthesis of Ti-citrate-peroxo complex………………………………..….…….…………51 3.3.5. Synthesis of CAuNP/N-TiO2……………………….……………….………….………….51 3.3.6. Synthesis of CAuNP/S-TiO2…………………………………..………….……………….51 3.4. Results & Discussion………………………………………………………………….……..52 3.4.1. Microscopy analysis………………………………………….…….……………………...52 3.4.2. XPS Analysis………………………………………….……….…………………………..54 3.4.3. Photocatalytic study……………………………………………..………………………...57 3.5. Conclusion…………………………………………………………...………………………63 3.6. Acknowledgments………………………………………………………………………..….63 Chapter 4 VANADIUM (V), COPPER (Cu) AND IRON (Fe) DEPOSITED CAuNP/TiO2 FOR ENHANCED VISIBLE LIGHT PHOTOCATALYTIC ACTIVITY 4.1. Abstract……………………………………………………………………..……………….69 4.2. Introduction………………………………………………………………...………………..69 4.3. Experimental…………………………………………………………...……………………71 4.3.1. Materials and Instruments………………...……………………………..………...………71 4.3.2. Synthesis of CAuNP/M-TiO2…………………………………….……..…………………72 4.3.2.1. Synthesis of CAuNPs………………………………………………....…………………72 4.3.2.2. Synthesis of CAuNP/M-TiO2 nanocomposite…………………………………………..72 4.4. Photocatalytic study…………………………………………………………………………72 4.5. Results & Discussion……………………………………………………….………………..73 4.5.1. Microscopy analysis……………………………………………….….…………………...73 4.5.2. Photocatalytic study…………………………………………….………………….……...75 4.6. Conclusion………………………………………………………………………...…………83 4.7. Acknowledgments……………………..…………………………………………………….83 CHAPTER 5 GENERAL CONCLUSIONS AND FUTURE PERSPECTIVES ……………………………………………………………………………………………………90 List of references…………………………………………………………………..……………..93 Conference attended………………………………….……………………………….………...110 List of publications…………………………………………………………………...…………110

    [1] Global-Europe-2050-report, European Commission, ISBN 978-92-79-23357-9 ISSN 1018-5593 DOI:10.2777/79992, Luxembourg: Publications Office of the European Union, 2012
    [2] Energy demand projections towards 2050 - Reference path A Position Paper prepared by FME CenSES, Centre for Technology, Innovation and culture, University of Oslo, ISBN 978-82-93198-04-8.
    [3] J. Edmonds, J. Reilly, Global energy production and use to the year 2050, Energy, 8 (1983) 419-432.
    [4] I. Arto, I. Capellán-Pérez, R. Lago, G. Bueno, R. Bermejo, The energy requirements of a developed world, Energy for Sustainable Development, 33 (2016) 1-13.
    [5] J.M. Coronado, A Historical Introduction to Photocatalysis, in: J.M. Coronado, F. Fresno, M.D. Hernández-Alonso, R. Portela (Eds.) Design of Advanced Photocatalytic Materials for Energy and Environmental Applications, Springer London, London, 2013, pp. 1-4.
    [6] M. Formenti, F. Juillet, S. Teichner, Controlled photooxidation of paraffins and olefins over anatase at room temperature, CR Seances Acad. Sci., Ser. C, 270 (1970) 138-141.
    [7] A.J. Nozik, Photochemical diodes, Applied Physics Letters, 30 (1977) 567-569.
    [8] Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids,>.
    [9] G.N. Tiwari, A. Tiwari, Shyam, Solar Radiation, in: G.N. Tiwari, A. Tiwari, Shyam (Eds.) Handbook of Solar Energy: Theory, Analysis and Applications, Springer Singapore, Singapore, 2016, pp. 1-49.
    [10] S. Pany, B. Naik, S. Martha, K. Parida, Plasmon Induced Nano Au Particle Decorated over S,N-Modified TiO2 for Exceptional Photocatalytic Hydrogen Evolution under Visible Light, ACS Applied Materials & Interfaces, 6 (2014) 839-846.
    [11] M. Ujihara, T. Imae, Versatile one-pot synthesis of confeito-like Au nanoparticles and their surface-enhanced Raman scattering effect, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436 (2013) 380-385.
    [12] M. Ujihara, N.M. Dang, T. Imae, Fluorescence Quenching of Uranine on Confeito-Like Au Nanoparticles, Journal of Nanoscience and Nanotechnology, 14 (2014) 4906-4910.
    [13] Y.-H. Wu, T. Imae, M. Ujihara, Surface enhanced plasmon effects by gold nanospheres and nanorods in Langmuir-Blodgett films, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 532 (2017) 213-221.
    [14] W. Doerffler, K. Hauffe, Heterogeneous photocatalysis I. The influence of oxidizing and reducing gases on the electrical conductivity of dark and illuminated zinc oxide surfaces, Journal of Catalysis, 3 (1964) 156-170.
    [15] A. Guerrero-Martínez, S. Barbosa, I. Pastoriza-Santos, L.M. Liz-Marzán, Nanostars shine bright for you: Colloidal synthesis, properties and applications of branched metallic nanoparticles, Current Opinion in Colloid & Interface Science, 16 (2011) 118-127.
    [16] H. Zhu, X. Chen, Z. Zheng, X. Ke, E. Jaatinen, J. Zhao, C. Guo, T. Xie, D. Wang, Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation, Chemical Communications, (2009) 7524-7526.
    [17] A. Serrano Rubio, Introduction: Surface Plasmons, in: A. Serrano Rubio (Ed.) Modified Au-Based Nanomaterials Studied by Surface Plasmon Resonance Spectroscopy, Springer International Publishing, Cham, 2015, pp. 1-27.
    [18] J. Li, S. K. Cushing, F. Meng, T. Senty, A. Bristow, N. Wu, Plasmon-induced resonance energy transfer for solar energy conversion, 2015.
    [19] C. Clavero, Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices, 2014.
    [20] M. Ujihara, M.N. Dang, T. Imae, Surface-Enhanced Resonance Raman Scattering of Rhodamine 6G in Dispersions and on Films of Confeito-Like Au Nanoparticles, Sensors, 17 (2017).
    [21] A. Ayati, A. Ahmadpour, F.F. Bamoharram, B. Tanhaei, M. Mänttäri, M. Sillanpää, A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant, Chemosphere, 107 (2014) 163-174.
    [22] S.S. Hassan, Sirajuddin, A.R. Solangi, M.H. Agheem, Y. Junejo, N.H. Kalwar, Z.A. Tagar, Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles, Journal of Hazardous Materials, 190 (2011) 1030-1036.
    [23] P. Kamat, Photoinduced transformations in semiconductor-metal nanocomposite assemblies, 2002.
    [24] P.V. Kamat, Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles, The Journal of Physical Chemistry B, 106 (2002) 7729-7744.
    [25] E. Kowalska, H. Remita, C. Colbeau-Justin, J. Hupka, J. Belloni, Modification of Titanium Dioxide with Platinum Ions and Clusters:  Application in Photocatalysis, The Journal of Physical Chemistry C, 112 (2008) 1124-1131.
    [26] M. El-Kemary, Y. Abdel-Moneam, M. Madkour, I. El-Mehasseb, Enhanced photocatalytic degradation of Safranin-O by heterogeneous nanoparticles for environmental applications, Journal of Luminescence, 131 (2011) 570-576.
    [27] T. Barakat, J.C. Rooke, E. Genty, R. Cousin, S. Siffert, B.-L. Su, Gold catalysts in environmental remediation and water-gas shift technologies, Energy & Environmental Science, 6 (2013) 371-391.
    [28] N. Kamely, M. Ujihara, Confeito-like Au/TiO2 nanocomposite: synthesis and plasmon-induced photocatalysis, Journal of Nanoparticle Research, 20 (2018) 172.
    [29] G. Zhang, H. Miao, X. Hu, J. Mu, X. Liu, T. Han, J. Fan, E. Liu, Y. Yin, J. Wan, A facile strategy to fabricate Au/TiO2 nanotubes photoelectrode with excellent photoelectrocatalytic properties, Applied Surface Science, 391 (2017) 345-352.
    [30] X. Li, T. Fan, H. Zhou, B. Zhu, J. Ding, D. Zhang, A facile way to synthesize biomorphic N-TiO2 incorporated with Au nanoparticles with narrow size distribution and high stability, Microporous and Mesoporous Materials, 116 (2008) 478-484.
    [31] L. Li, B. Wu, G. Li, Y. Li, C, N co-doping promoted mesoporous Au/TiO2 catalyst for low temperature CO oxidation, RSC Advances, 6 (2016) 28904-28911.
    [32] W. Xiaohong, H. Beibei, H. Zhiyu, Z. Zhigang, H. Sheng, Current advances in precious metal core–shell catalyst design, Science and Technology of Advanced Materials, 15 (2014) 043502.
    [33] I. Shown, M. Ujihara, T. Imae, Synthesis of Cyclodextrin-Modified Water-Dispersible Ag-TiO2 Core-Shell Nanoparticles and Their Photocatalytic Activity, Journal of Nanoscience and Nanotechnology, 11 (2011) 3284-3290.
    [34] Q. Chen, Y. Zhang, D. Zhang, Y. Yang, Ag and N co-doped TiO2 nanostructured photocatalyst for printing and dyeing wastewater, Journal of Water Process Engineering, 16 (2017) 14-20.
    [35] S.A. Ansari, M.M. Khan, M.O. Ansari, M.H. Cho, Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis, New Journal of Chemistry, 40 (2016) 3000-3009.
    [36] C. Di Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M.C. Paganini, E. Giamello, N-doped TiO2: Theory and experiment, Chemical Physics, 339 (2007) 44-56.
    [37] X. Chen, C. Burda, The Electronic Origin of the Visible-Light Absorption Properties of C-, N- and S-Doped TiO2 Nanomaterials, Journal of the American Chemical Society, 130 (2008) 5018-5019.
    [38] W. Fan, K.M. Leung, Recent Development of Plasmonic Resonance-Based Photocatalysis and Photovoltaics for Solar Utilization, Molecules, 21 (2016).
    [39] L. Gomathi Devi, R. Kavitha, A review on plasmonic metal TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system, Applied Surface Science, 360 (2016) 601-622.
    [40] Y. Wu, H. Liu, J. Zhang, F. Chen, Enhanced Photocatalytic Activity of Nitrogen-Doped Titania by Deposited with Gold, The Journal of Physical Chemistry C, 113 (2009) 14689-14695.
    [41] D. Tomova, V. Iliev, S. Rakovsky, M. Anachkov, A. Eliyas, G.L. Puma, Photocatalytic oxidation of 2,4,6-trinitrotoluene in the presence of ozone under irradiation with UV and visible light, Journal of Photochemistry and Photobiology A: Chemistry, 231 (2012) 1-8.
    [42] Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima, Au/TiO2 Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecedented Activity, Journal of the American Chemical Society, 136 (2014) 458-465.
    [43] H. Li, X. Zhang, Y. Huo, J. Zhu, Supercritical Preparation of a Highly Active S-Doped TiO2 Photocatalyst for Methylene Blue Mineralization, Environmental Science & Technology, 41 (2007) 4410-4414.
    [44] W. Zhao, Z. Ai, J. Dai, M. Zhang, Enhanced Photocatalytic Activity for H2 Evolution under Irradiation of UV–Vis Light by Au-Modified Nitrogen-Doped TiO2, PLOS ONE, 9 (2014) e103671.
    [45] GOLD NANOPARTICLES PHYSICS, CHEMISTRY AND BIOLOGY, Catherine Louis
    Olivier Pluchery, Université Pierre et Marie Curie, France ISBN 978-1-84816-806-0, Imperial College Press.
    [46] A. Primo, A. Corma, H. Garcia, Titania supported gold nanoparticles as photocatalyst, Physical Chemistry Chemical Physics, 13 (2011) 886-910.
    [47] The Mie Theory Basics and Applications, Wolfram Hergert, Thomas Wriedt Editors, Springer Series in Optical Sciences, volume 169, ISBN 978-3-642-28738-1.
    [48] M.I. Stockman, Nanoplasmonics: From Present into Future, in: T.V. Shahbazyan, M.I. Stockman (Eds.) Plasmonics: Theory and Applications, Springer Netherlands, Dordrecht, 2013, pp. 1-101.
    [49] D.A. Panayotov, J.R. Morris, Surface chemistry of Au/TiO2: Thermally and photolytically activated reactions, Surface Science Reports, 71 (2016) 77-271.
    [50] Reviews on plasmonics 2010, Chris D. Geddes, Springer, ISBN 978-1-4614-0884-0.
    [51] S.C. Warren, E. Thimsen, Plasmonic solar water splitting, Energy & Environmental Science, 5 (2012) 5133-5146.
    [52] B. König, Chemical Photocatalysis, 2013, Walter de Gruyter GmbH & Co. KG, ISBN 978-3-11-026924-6.
    [53] H. Gerischer, A. Heller, The role of oxygen in photooxidation of organic molecules on semiconductor particles, The Journal of Physical Chemistry, 95 (1991) 5261-5267.
    [54] T. Ioannides, X.E. Verykios, Charge Transfer in Metal Catalysts Supported on Doped TiO2: A Theoretical Approach Based on Metal–Semiconductor Contact Theory, Journal of Catalysis, 161 (1996) 560-569.
    [55] M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology, Nature Nanotechnology, 10 (2015) 25.
    [56] E. Hutter, J.H. Fendler, Exploitation of Localized Surface Plasmon Resonance, Advanced Materials, 16 (2004) 1685-1706.
    [57] M. Haruta, Catalysis of Gold Nanoparticles Deposited on Metal Oxides, CATTECH, 6 (2002) 102-115.
    [58] K. Okazaki, Y. Morikawa, S. Tanaka, K. Tanaka, M. Kohyama, Electronic structures of Au on TiO2 (110) by first-principles calculations, Physical Review B, 69 (2004) 235404.
    [59] F. Su, T. Wang, R. Lv, J. Zhang, P. Zhang, J. Lu, J. Gong, Dendritic Au/TiO2 nanorod arrays for visible-light driven photoelectrochemical water splitting, Nanoscale, 5 (2013) 9001-9009.
    [60] M. Haruta, Size- and support-dependency in the catalysis of gold, Catalysis Today, 36 (1997) 153-166.
    [61] N. Pugazhenthiran, P. Sathishkumar, S. Murugesan, S. Anandan, Effective degradation of acid orange 10 by catalytic ozonation in the presence of Au-Bi2O3 nanoparticles, Chemical Engineering Journal, 168 (2011) 1227-1233.
    [62] N. Chandrasekharan, P.V. Kamat, Improving the Photoelectrochemical Performance of Nanostructured TiO2 Films by Adsorption of Gold Nanoparticles, The Journal of Physical Chemistry B, 104 (2000) 10851-10857.
    [63] R.S. Sonawane, M.K. Dongare, Sol–gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight, Journal of Molecular Catalysis A: Chemical, 243 (2006) 68-76.
    [64] D. Li, J. Qu, The progress of catalytic technologies in water purification: A review, Journal of Environmental Sciences, 21 (2009) 713-719.
    [65] Z. Bian, J. Zhu, F. Cao, Y. Lu, H. Li, In situ encapsulation of Au nanoparticles in mesoporous core-shell TiO2 microspheres with enhanced activity and durability, Chemical Communications, (2009) 3789-3791.
    [66] J. Graciani, A. Nambu, J. Evans, J.A. Rodriguez, J.F. Sanz, Au ↔ N Synergy and N-Doping of Metal Oxide-Based Photocatalysts, Journal of the American Chemical Society, 130 (2008) 12056-12063.
    [67] Y. Wu, J. Zhang, L. Xiao, F. Chen, Preparation and characterization of TiO2 photocatalysts by Fe3+ doping together with Au deposition for the degradation of organic pollutants, Applied Catalysis B: Environmental, 88 (2009) 525-532.
    [68] S. Carrettin, Y. Hao, V. Aguilar‐Guerrero, C. Gates Bruce , S. Trasobares, J. Calvino Jose , A. Corma, Increasing the Number of Oxygen Vacancies on TiO2 by Doping with Iron Increases the Activity of Supported Gold for CO Oxidation, Chemistry – A European Journal, 13 (2007) 7771-7779.
    [69] J. Zhu, F. Chen, J. Zhang, H. Chen, M. Anpo, Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization, Journal of Photochemistry and Photobiology A: Chemistry, 180 (2006) 196-204.
    [70] Y. Wang, J. Yu, W. Xiao, Q. Li, Microwave-assisted hydrothermal synthesis of graphene based Au-TiO2 photocatalysts for efficient visible-light hydrogen production, Journal of Materials Chemistry A, 2 (2014) 3847-3855.
    [71] É. Karácsonyi, L. Baia, A. Dombi, V. Danciu, K. Mogyorósi, L.C. Pop, G. Kovács, V. Coşoveanu, A. Vulpoi, S. Simon, Z. Pap, The photocatalytic activity of TiO2/WO3/noble metal (Au or Pt) nanoarchitectures obtained by selective photodeposition, Catalysis Today, 208 (2013) 19-27.
    [72] Y. Xie, S. Heo, S. Yoo, G. Ali, S. Cho, Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes, Nanoscale Research Letters, 5 (2009) 603.
    [73] M.-Q. Yang, N. Zhang, Y.-J. Xu, Synthesis of Fullerene–, Carbon Nanotube–, and Graphene–TiO2 Nanocomposite Photocatalysts for Selective Oxidation: A Comparative Study, ACS Applied Materials & Interfaces, 5 (2013) 1156-1164.
    [74] T. Jagadale, M. Kulkarni, D. Pravarthana, W. Ramadan, P. Thakur, Photocatalytic Degradation of Azo Dyes Using Au:TiO2, gamma-Fe2O3:TiO2 Functional Nanosystems, Journal of Nanoscience and Nanotechnology, 12 (2012) 928-936.
    [75] V. Iliev, D. Tomova, S. Rakovsky, A. Eliyas, G.L. Puma, Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation, Journal of Molecular Catalysis A: Chemical, 327 (2010) 51-57.
    [76] A. Pearson, S.K. Bhargava, V. Bansal, UV-Switchable Polyoxometalate Sandwiched between TiO2 and Metal Nanoparticles for Enhanced Visible and Solar Light Photococatalysis, Langmuir, 27 (2011) 9245-9252.
    [77] F. Farrash Bamoharram, A. Moghadam Jafari, A. Ayati, B. Tanhaei, Sillanpää, M. , Cesium Salt of Sodium 30-Tungstopentaphosphate: An Effective and Green Polyoxometalate for Synthesis of Gold Nanoparticles along with Decoration of Titanium Dioxide with Gold Nanoparticles for Bleaching of Malachite Green, International Journal of Photoenergy, 2013 (2013) 8.
    [78] X.Z. Li, C. He, N. Graham, Y. Xiong, Photoelectrocatalytic degradation of bisphenol A in aqueous solution using a Au–TiO2/ITO film, Journal of Applied Electrochemistry, 35 (2005) 741-750.
    [79] C. Quiñones, J. Ayala, W. Vallejo, Methylene blue photoelectrodegradation under UV irradiation on Au/Pd-modified TiO2 films, Applied Surface Science, 257 (2010) 367-371.
    [80] J. Li, Suyoulema, W. Wang, S. Sarina, A study of photodegradation of sulforhodamine B on Au–TiO2/bentonite under UV and visible light irradiation, 2009.
    [81] S.A. Elfeky, A.-S.A. Al-Sherbini, Photocatalytic decomposition of Trypan Blue over nanocomposite thin films, Kinetics and Catalysis, 52 (2011) 391-396.
    [82] H. Wang, S. Dong, Y. Chang, J.L. Faria, Enhancing the photocatalytic properties of TiO2 by coupling with carbon nanotubes and supporting gold, Journal of Hazardous Materials, 235-236 (2012) 230-236.
    [83] R. Zanella, L. Delannoy, C. Louis, Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition–precipitation with NaOH and urea, Applied Catalysis A: General, 291 (2005) 62-72.
    [84] A.S.K. Hashmi, J. Hutchings Graham, Gold Catalysis, Angewandte Chemie International Edition, 45 (2006) 7896-7936.
    [85] M.C. Hidalgo, M. Maicu, J.A. Navío, G. Colón, Effect of Sulfate Pretreatment on Gold-Modified TiO2 for Photocatalytic Applications, The Journal of Physical Chemistry C, 113 (2009) 12840-12847.
    [86] T. Kanda, K. Komata, K. Torigoe, T. Endo, K. Sakai, M. Abe, H. Sakai, Preparation of Gold/Titania Core-Shell Nanocomposites with a Tunable Shell Thickness, Journal of Oleo Science, 63 (2014) 507-513.
    [87] M. Okumura, K. Tanaka, A. Ueda, M. Haruta, The reactivities of dimethyl gold (III) β-diketone on the surface of TiO2: A novel preparation method for Au catalysts, Solid State Ionics, 95 (1997) 143-149.
    [88] L. Du, A. Furube, K. Yamamoto, K. Hara, R. Katoh, M. Tachiya, Plasmon-Induced Charge Separation and Recombination Dynamics in Gold−TiO2 Nanoparticle Systems: Dependence on TiO2 Particle Size, The Journal of Physical Chemistry C, 113 (2009) 6454-6462.
    [89] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4, Journal of Catalysis, 144 (1993) 175-192.
    [90] J. Li, H.C. Zeng, Preparation of Monodisperse Au/TiO2 Nanocatalysts via Self-Assembly, Chemistry of Materials, 18 (2006) 4270-4277.
    [91] B. Tian, J. Zhang, T. Tong, F. Chen, Preparation of Au/TiO2 catalysts from Au(I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange, Applied Catalysis B: Environmental, 79 (2008) 394-401.
    [92] N. Naseri, P. Sangpour, A.Z. Moshfegh, Visible light active Au:TiO2 nanocomposite photoanodes for water splitting: Sol–gel vs. sputtering, Electrochimica Acta, 56 (2011) 1150-1158.
    [93] M.C. Hidalgo, J.J. Murcia, J.A. Navío, G. Colón, Photodeposition of gold on titanium dioxide for photocatalytic phenol oxidation, Applied Catalysis A: General, 397 (2011) 112-120.
    [94] F. Moreau, G.C. Bond, A.O. Taylor, Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents, Journal of Catalysis, 231 (2005) 105-114.
    [95] M.M. Khan, S. Kalathil, J. Lee, M.H. Cho, Enhancement in the Photocatalytic Activity of Au@TiO2 Nanocomposites by Pretreatment of TiO2 with UV Light, 2012.
    [96] A.B. Haugen, I. Kumakiri, C. Simon, M.-A. Einarsrud, TiO2, TiO2/Ag and TiO2/Au photocatalysts prepared by spray pyrolysis, Journal of the European Ceramic Society, 31 (2011) 291-298.
    [97] E. Kowalska, R. Abe, B. Ohtani, Visible light-induced photocatalytic reaction of gold-modified titanium (iv) oxide particles: action spectrum analysis, Chemical Communications, (2009) 241-243.
    [98] A. Orlov, D.A. Jefferson, N. Macleod, R.M. Lambert, Photocatalytic Properties of TiO2 Modified with Gold Nanoparticles in the Degradation of 4-Chlorophenol in Aqueous Solution, Catalysis Letters, 92 (2004) 41-47.
    [99] S. Oros-Ruiz, J.A. Pedraza-Avella, C. Guzmán, M. Quintana, E. Moctezuma, G. del Angel, R. Gómez, E. Pérez, Effect of Gold Particle Size and Deposition Method on the Photodegradation of 4-Chlorophenol by Au/TiO2, Topics in Catalysis, 54 (2011) 519-526.
    [100] P. Wongwisate, S. Chavadej, E. Gulari, T. Sreethawong, P. Rangsunvigit, Effects of monometallic and bimetallic Au–Ag supported on sol–gel TiO2 on photocatalytic degradation of 4-chlorophenol and its intermediates, Desalination, 272 (2011) 154-163.
    [101] X. Chen, H.Y. Zhu, J.C. Zhao, Z.F. Zheng, X.P. Gao, Visible‐Light‐Driven Oxidation of Organic Contaminants in Air with Gold Nanoparticle Catalysts on Oxide Supports, Angewandte Chemie, 120 (2008) 5433-5436.
    [102] X. Wang, R.A. Caruso, Enhancing photocatalytic activity of titania materials by using porous structures and the addition of gold nanoparticles, Journal of Materials Chemistry, 21 (2011) 20-28.
    [103] M.V. Dozzi, A. Saccomanni, E. Selli, Cr (VI) photocatalytic reduction: Effects of simultaneous organics oxidation and of gold nanoparticles photodeposition on TiO2, Journal of Hazardous Materials, 211-212 (2012) 188-195.
    [104] B.K. Min, J.E. Heo, N.K. Youn, O.S. Joo, H. Lee, J.H. Kim, H.S. Kim, Tuning of the photocatalytic 1,4-dioxane degradation with surface plasmon resonance of gold nanoparticles on titania, Catalysis Communications, 10 (2009) 712-715.
    [105] C. Yogi, K. Kojima, T. Takai, N. Wada, Photocatalytic degradation of methylene blue by Au-deposited TiO2 film under UV irradiation, Journal of Materials Science, 44 (2008) 821.
    [106] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chemical Reviews, 95 (1995) 69-96.
    [107] B. Tian, C. Li, F. Gu, H. Jiang, Synergetic effects of nitrogen doping and Au loading on enhancing the visible-light photocatalytic activity of nano-TiO2, Catalysis Communications, 10 (2009) 925-929.
    [108] W. Hou, S.B. Cronin, A Review of Surface Plasmon Resonance-Enhanced Photocatalysis, Advanced Functional Materials, 23 (2013) 1612-1619.
    [109] R. Jiang, B. Li, C. Fang, J. Wang, Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications, Advanced Materials, 26 (2014) 5274-5309.
    [110] J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nature Materials, 9 (2010) 368.
    [111] S.K. Cushing, J. Li, F. Meng, T.R. Senty, S. Suri, M. Zhi, M. Li, A.D. Bristow, N. Wu, Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor, Journal of the American Chemical Society, 134 (2012) 15033-15041.
    [112] S.K. Cushing, A.D. Bristow, N. Wu, Theoretical maximum efficiency of solar energy conversion in plasmonic metal-semiconductor heterojunctions, Physical Chemistry Chemical Physics, 17 (2015) 30013-30022.
    [113] W. Kubo, T. Tatsuma, Photocatalytic remote oxidation with various photocatalysts and enhancement of its activity, Journal of Materials Chemistry, 15 (2005) 3104-3108.
    [114] V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration, Journal of the American Chemical Society, 126 (2004) 4943-4950.
    [115] X.-Q. Deng, B. Zhu, X.-S. Li, J.-L. Liu, X. Zhu, A.-M. Zhu, Visible-light photocatalytic oxidation of CO over plasmonic Au/TiO2: Unusual features of oxygen plasma activation, Applied Catalysis B: Environmental, 188 (2016) 48-55.
    [116] L.S. Al-Mazroai, M. Bowker, P. Davies, A. Dickinson, J. Greaves, D. James, L. Millard, The photocatalytic reforming of methanol, Catalysis Today, 122 (2007) 46-50.
    [117] J. Greaves, L. Al-Mazroai, A. Nuhu, P. Davies, M. Bowker, Photocatalytic methanol reforming on Au/TiO2 for hydrogen production, Gold Bulletin, 39 (2006) 216-219.
    [118] J.B. Priebe, J. Radnik, A.J.J. Lennox, M.-M. Pohl, M. Karnahl, D. Hollmann, K. Grabow, U. Bentrup, H. Junge, M. Beller, A. Brückner, Solar Hydrogen Production by Plasmonic Au–TiO2 Catalysts: Impact of Synthesis Protocol and TiO2 Phase on Charge Transfer Efficiency and H2 Evolution Rates, ACS Catalysis, 5 (2015) 2137-2148.
    [119] U. Diebold, The surface science of titanium dioxide, Surface Science Reports, 48 (2003) 53-229.
    [120] S.H.D.P. Lacerda, J.J. Park, C. Meuse, D. Pristinski, M.L. Becker, A. Karim, J.F. Douglas, Interaction of Gold Nanoparticles with Common Human Blood Proteins, ACS Nano, 4 (2010) 365-379.
    [121] C. Villiers, Gold Nanoparticles for Sensors and Drug Delivery, 2017.
    [122] R. Quidant, Optical and Thermal Properties of Gold Nanoparticles for Biology and Medicine, 2017.
    [123] E.E. Connor, J. Mwamuka, A. Gole, C.J. Murphy, M.D. Wyatt, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity, Small, 1 (2005) 325-327.
    [124] C.L. Villiers, H. Freitas, R. Couderc, M.-B. Villiers, P.N. Marche, Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions, Journal of Nanoparticle Research, 12 (2010) 55-60.
    [125] L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proceedings of the National Academy of Sciences, 100 (2003) 13549.
    [126] S.E. Lee, G.L. Liu, F. Kim, L.P. Lee, Remote Optical Switch for Localized and Selective Control of Gene Interference, Nano Letters, 9 (2009) 562-570.
    [127] S. Kuriyama, A. Mitoro, H. Tsujinoue, T. Nakatani, H. Yoshiji, T. Tsujimoto, M. Yamazaki, H. Fukui, Particle-mediated gene transfer into murine livers using a newly developed gene gun, Gene Therapy, 7 (2000) 1132.
    [128] A. Erdreich-Epstein, H. Shimada, S. Groshen, M. Liu, L.S. Metelitsa, K.S. Kim, M.F. Stins, R.C. Seeger, D.L. Durden, Integrins and αvβ3 and αvβ5 Are Expressed by Endothelium of High-Risk Neuroblastoma and Their Inhibition Is Associated with Increased Endogenous Ceramide, Cancer Research, 60 (2000) 712.
    [129] C.R. Patra, R. Bhattacharya, D. Mukhopadhyay, P. Mukherjee, Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer, Advanced Drug Delivery Reviews, 62 (2010) 346-361.
    [130] J. Stehr, C. Hrelescu, R.A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kürzinger, W.J. Parak, T.A. Klar, J. Feldmann, Gold NanoStoves for Microsecond DNA Melting Analysis, Nano Letters, 8 (2008) 619-623.
    [131] M. Svedendahl, S. Chen, A. Dmitriev, M. Käll, Refractometric Sensing Using Propagating versus Localized Surface Plasmons: A Direct Comparison, Nano Letters, 9 (2009) 4428-4433.
    [132] H. Wang, D.W. Brandl, F. Le, P. Nordlander, N.J. Halas, Nanorice:  A Hybrid Plasmonic Nanostructure, Nano Letters, 6 (2006) 827-832.
    [133] C.L. Nehl, H. Liao, J.H. Hafner, Optical Properties of Star-Shaped Gold Nanoparticles, Nano Letters, 6 (2006) 683-688.
    [134] M.M. Kathryn, H. Feng, L. Seunghyun, N. Peter, H.H. Jason, A single molecule immunoassay by localized surface plasmon resonance, Nanotechnology, 21 (2010) 255503.
    [135] J. Wang, A. Munir, Z. Li, H.S. Zhou, Aptamer–Au NPs conjugates-enhanced SPR sensing for the ultrasensitive sandwich immunoassay, Biosensors and Bioelectronics, 25 (2009) 124-129.
    [136] P.C. Ray, A. Fortner, G.K. Darbha, Gold Nanoparticle Based FRET Asssay for the Detection of DNA Cleavage, The Journal of Physical Chemistry B, 110 (2006) 20745-20748.
    [137] G.P. Zhang, X.N. Wang, J.F. Yang, Y.Y. Yang, G.X. Xing, Q.M. Li, D. Zhao, S.J. Chai, J.Q. Guo, Development of an immunochromatographic lateral flow test strip for detection of β-adrenergic agonist Clenbuterol residues, Journal of Immunological Methods, 312 (2006) 27-33.
    [138] M. Trévisan, M. Schawaller, G. Quapil, E. Souteyrand, Y. Mérieux, J.-P. Cloarec, Evanescent wave fluorescence biosensor combined with DNA bio-barcode assay for platelet genotyping, Biosensors and Bioelectronics, 26 (2010) 1631-1637.
    [139] M. Zhang, H.H. Girault, SECM for imaging and detection of latent fingerprints, Analyst, 134 (2009) 25-30.
    [140] S.-J. Park, T.A. Taton, C.A. Mirkin, Array-Based Electrical Detection of DNA with Nanoparticle Probes, Science, 295 (2002) 1503.
    [141] S. Klein, S. Petersen, U. Taylor, D. Rath, S. Barcikowski, Quantitative visualization of colloidal and intracellular gold nanoparticles by confocal microscopy, in, SPIE, 2010, pp. 11.
    [142] Y. Tian, T. Tatsuma, Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles, Journal of the American Chemical Society, 127 (2005) 7632-7637.
    [143] M. Ujihara, T. Imae, Versatile one-pot synthesis of confeito-like Au nanoparticles and their surface-enhanced Raman scattering effect, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436 (2013) 380-385.
    [144] Z. Xuming, C. Yu Lim, L. Ru-Shi, T. Din Ping, Plasmonic photocatalysis, Reports on Progress in Physics, 76 (2013) 046401.
    [145] T. Butburee, Y. Bai, J. Pan, X. Zong, C. Sun, G. Liu, L. Wang, Step-wise controlled growth of metal@TiO2 core-shells with plasmonic hot spots and their photocatalytic properties, Journal of Materials Chemistry A, 2 (2014) 12776-12784.
    [146] I. Shown, M. Ujihara, T. Imae, Synthesis of β -Cyclodextrin-Modified Water-Dispersible Ag-TiO2 Core–Shell Nanoparticles and Their Photocatalytic Activity, 2011.
    [147] E. Liu, J. Fan, X. Hu, Y. Hu, H. Li, C. Tang, L. Sun, J. Wan, A facile strategy to fabricate plasmonic Au/TiO2 nano-grass films with overlapping visible light-harvesting structures for H2 production from water, Journal of Materials Science, 50 (2015) 2298-2305.
    [148] R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D. Tryk, A. Fujishima, Facile Fabrication and Photocatalytic Application of Ag Nanoparticles-TiO2 Nanofiber Composites, 2011.
    [149] A. Manna, T. Imae, T. Yogo, K. Aoi, M. Okazaki, Synthesis of Gold Nanoparticles in a Winsor II Type Microemulsion and Their Characterization, Journal of Colloid and Interface Science, 256 (2002) 297-303.
    [150] M. Suzuki, Y. Niidome, Y. Kuwahara, N. Terasaki, K. Inoue, S. Yamada, Surface-Enhanced Nonresonance Raman Scattering from Size- and Morphology-Controlled Gold Nanoparticle Films, The Journal of Physical Chemistry B, 108 (2004) 11660-11665.
    [151] J. Sharma, Y. Tai, T. Imae, Synthesis of Confeito-Like Gold Nanostructures by a Solution Phase Galvanic Reaction, The Journal of Physical Chemistry C, 112 (2008) 17033-17037.
    [152] G. Duan, W. Cai, Y. Luo, Z. Li, Y. Li, Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect, Applied Physics Letters, 89 (2006) 211905.
    [153] L. Xuzhong, I. Toyoko, Shape-Controlled Synthesis of Gold Nanoparticles Under UV Irradiation in the Presence of Poly (Ethylene Glycol), Current Nanoscience, 3 (2007) 195-198.
    [154] G.H. Jeong, Y.W. Lee, M. Kim, S.W. Han, High-yield synthesis of multi-branched gold nanoparticles and their surface-enhanced Raman scattering properties, Journal of Colloid and Interface Science, 329 (2009) 97-102.
    [155] L. Wang, C.-H. Liu, Y. Nemoto, N. Fukata, K.C.W. Wu, Y. Yamauchi, Rapid synthesis of biocompatible gold nanoflowers with tailored surface textures with the assistance of amino acid molecules, RSC Advances, 2 (2012) 4608-4611.
    [156] L. Wang, M. Imura, Y. Yamauchi, Tailored synthesis of various Au nanoarchitectures with branched shapes, Cryst Eng Comm, 14 (2012) 7594-7599.
    [157] K.R. Reddy, B.C. Sin, C.H. Yoo, W. Park, K.S. Ryu, J.-S. Lee, D. Sohn, Y. Lee, A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles, Scripta Materialia, 58 (2008) 1010-1013.
    [158] Y.-P. Zhang, S.-H. Lee, K.R. Reddy, A.I. Gopalan, K.-P. Lee, Synthesis and characterization of core-shell SiO2 nanoparticles/poly (3-aminophenylboronic acid) composites, Journal of Applied Polymer Science, 104 (2007) 2743-2750.
    [159] R. Reddy, K.-S. Lee, A. Iyenger Gopalan, Self-Assembly Directed Synthesis of Poly (ortho-toluidine)-Metal (Gold and Palladium) Composite Nanospheres, 2007.
    [160] K.R. Reddy, K.-P. Lee, A.I. Gopalan, M.S. Kim, A.M. Showkat, Y.C. Nho, Synthesis of metal (Fe or Pd)/alloy (Fe–Pd)-nanoparticles-embedded multiwall carbon nanotube/sulfonated polyaniline composites by γ irradiation, Journal of Polymer Science Part A: Polymer Chemistry, 44 (2006) 3355-3364.
    [161] M.W. Knight, H. Sobhani, P. Nordlander, N.J. Halas, Photodetection with Active Optical Antennas, Science, 332 (2011) 702.
    [162] S.G. Kumar, K.S.R.K. Rao, Polymorphic phase transition among the titania crystal structures using a solution-based approach: from precursor chemistry to nucleation process, Nanoscale, 6 (2014) 11574-11632.
    [163] B. Ohtani, Y. Ogawa, S.-i. Nishimoto, Photocatalytic Activity of Amorphous−Anatase Mixture of Titanium (IV) Oxide Particles Suspended in Aqueous Solutions, The Journal of Physical Chemistry B, 101 (1997) 3746-3752.
    [164] D. Nagamatsu, T. Nemoto, H. Kurata, J. Jiu, M. Adachi, S. Isoda, Interface Structure of Gold Particles on TiO2 Anatase, MATERIALS TRANSACTIONS, 52 (2011) 280-284.
    [165] M.A. Rauf, M.A. Meetani, A. Khaleel, A. Ahmed, Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS, Chemical Engineering Journal, 157 (2010) 373-378.
    [166] C. Yogi, K. Kojima, N. Wada, H. Tokumoto, T. Takai, T. Mizoguchi, H. Tamiaki, Photocatalytic degradation of methylene blue by TiO2 film and Au particles-TiO2 composite film, Thin Solid Films, 516 (2008) 5881-5884.
    [167] A. Molla, M. Sahu, S. Hussain, Under dark and visible light: fast degradation of methylene blue in the presence of Ag-In-Ni-S nanocomposites, Journal of Materials Chemistry A, 3 (2015) 15616-15625.
    [168] I. Paramasivam, J.M. Macak, P. Schmuki, Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles, Electrochemistry Communications, 10 (2008) 71-75.
    [169] Q.H. Zhang, W.W. Yu, H.Z. Wang, One-Pot Synthesis of Au Supported Titania Composite Photocatalyst and its Photocatalytic Activities for Dye Degradation, Advanced Materials Research, 512-515 (2012) 2080-2083.
    [170] M. Alvaro, B. Cojocaru, A.A. Ismail, N. Petrea, B. Ferrer, F.A. Harraz, V.I. Parvulescu, H. Garcia, Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman, Applied Catalysis B: Environmental, 99 (2010) 191-197.
    [171] S. Luo, Y. Xiao, L. Yang, C. Liu, F. Su, Y. Li, Q. Cai, G. Zeng, Simultaneous detoxification of hexavalent chromium and acid orange 7 by a novel Au/TiO2 heterojunction composite nanotube arrays, Separation and Purification Technology, 79 (2011) 85-91.
    [172] M.-C. Wang, H.-J. Lin, C.-H. Wang, H.-C. Wu, Effects of annealing temperature on the photocatalytic activity of N-doped TiO2 thin films, Ceramics International, 38 (2012) 195-200.
    [173] X.Z. Li, F.B. Li, Study of Au/Au3+-TiO2 Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment, Environmental Science & Technology, 35 (2001) 2381-2387.
    [174] K.M. Parida, N. Sahu, A.K. Tripathi, V.S. Kamble, Gold Promoted S,N−Doped TiO2: An Efficient Catalyst for CO Adsorption and Oxidation, Environmental Science & Technology, 44 (2010) 4155-4160.
    [175] D. Gao, Z. Lu, C. Wang, W. Li, P. Dong, Enhanced Photocatalytic Properties of Ag-Loaded N-Doped TiO2 Nanotube Arrays, in: Autex Research Journal, 2017.
    [176] T. Umebayashi, T. Yamaki, S. Yamamoto, A. Miyashita, S. Tanaka, T. Sumita, K. Asai, Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies, Journal of Applied Physics, 93 (2003) 5156-5160.
    [177] A. Zaleska, P. Górska, J.W. Sobczak, J. Hupka, Thioacetamide and thiourea impact on visible light activity of TiO2, Applied Catalysis B: Environmental, 76 (2007) 1-8.
    [178] M. Chen, D.W. Goodman, Catalytically Active Gold:  From Nanoparticles to Ultrathin Films, Accounts of Chemical Research, 39 (2006) 739-746.
    [179] S.P. Lim, A. Pandikumar, H.N. Lim, R. Ramaraj, N.M. Huang, Boosting Photovoltaic Performance of Dye-Sensitized Solar Cells Using Silver Nanoparticle-Decorated N,S-Co-Doped-TiO2 Photoanode, Scientific Reports, 5 (2015) 11922.
    [180] E. Kowalska, R. Abe, B. Ohtani, Visible light-induced photocatalytic reaction of gold-modified titanium (IV) oxide particles: action spectrum analysis, Chemical Communications, (2009) 241-243.
    [181] T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light, Applied Catalysis A: General, 265 (2004) 115-121.
    [182] C.K. Song, J. Baek, T.Y. Kim, S. Yu, J.W. Han, J. Yi, Exploring crystal phase and morphology in the TiO2 supporting materials used for visible-light driven plasmonic photocatalyst, Applied Catalysis B: Environmental, 198 (2016) 91-99.
    [183] A. Gołąbiewska, A. Malankowska, M. Jarek, W. Lisowski, G. Nowaczyk, S. Jurga, A. Zaleska-Medynska, The effect of gold shape and size on the properties and visible light-induced photoactivity of Au-TiO2, 2016.
    [184] L. Liu, C. Ge, W. Zou, X. Gu, F. Gao, L. Dong, Crystal-plane-dependent metal-support interaction in Au/TiO2, Physical Chemistry Chemical Physics, 17 (2015) 5133-5140.
    [185] B. Liu, X. Wang, G. Cai, L. Wen, Y. Song, X. Zhao, Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies, Journal of Hazardous Materials, 169 (2009) 1112-1118.
    [186] H. Liu, M. Zou, B. Viliam Hakala, R. Sefiu Abolaji, M. Yang, Synthesis, characterization of Cu, N co-doped TiO2 microspheres with enhanced photocatalytic activities, Advanced Material Science, 2 (2017).
    [187] Y. Wang, D.J. Doren, Electronic structures of V-doped anatase TiO2, Solid State Communications, 136 (2005) 142-146.
    [188] S.T. Martin, C.L. Morrison, M.R. Hoffmann, Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles, The Journal of Physical Chemistry, 98 (1994) 13695-13704.

    QR CODE