簡易檢索 / 詳目顯示

研究生: 林宗鴻
Tsung-Hung Lin
論文名稱: 以近接式曝光微影製作微透鏡陣列與光波導光阻模仁之研究
Research of Optical Microlens Array and Optical Waveguide Mold Fabrication in Photoresist using UV Proximity Printing
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 楊錫杭
H. Yang
何智廷
C.-T. Ho
黃世欽
Shyh-Chin Huang
林哲平
Che-Ping Lin
楊燿州
Yao-Joe Joseph Yang
李維楨
Wei-Chen Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 86
中文關鍵詞: 微透鏡陣列微透鏡陣列模仁近接式曝光光波導
外文關鍵詞: Micro-lens array, Microlens array mold, Proximity exposure, Optical waveguide
相關次數: 點閱:319下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以近接曝光微影術(UV-proximity printing)來進行製作微光學元件:微透鏡或微透鏡陣列、光波導。另外,以田口方法穩健化設計結合類神經網路(ANN)和基因演算法(GA)建立高填充率微透鏡陣列之製程模型,尋找出微透鏡焦距均一性之最佳參數組合。在光學元件製作中,係利用曝光時光罩和光阻之間的間距與光罩的設計產生光學元件的結構。微透鏡陣列得以使用PDMS之光學材料進行複製。新光波導結構為具有垂直和水平錐度之平躺半圓錐光波導,則製作需再搭配雙光罩之方式,使得光源波長在1550nm與光纖之間耦合效率可達到52%。高填充率微透鏡陣列使用穩健化設計與類神經網路/基因演算法降低微透鏡陣列的焦距變異。以直交表 作為實驗配置的依據,計算出品質特性的訊噪比,類神經網路以 直交表來作為學習的樣本建構製程模型,可預期任意參數的焦距,再以基因演算法尋找出微透鏡焦距均一性最佳的參數組合,與實驗結果相比較;ANN模型的預測誤差大約2%,實驗結果證明田口方法與ANN/GA可分別降低變異敏感性34% 和56%。


    This thesis aims to develop the micro optical component production using UV-proximity printing, such as microlens array molds and optical waveguides are illustrated. In addition, artificial neural network and genetic algorithm technologies are combined with the Taguchi method to create a robust design for the high fill factor microlens array modeling. The finding of the robust parameters combination can result in the uniform microlens array fabrication. The optical component profiles were produced by utilizing a printing gap between the mask and photoresist substrate. The microlens array can use PDMS optical material of to replicate in mass production. A horizontal frustum optical waveguide with a both lateral and vertical taper structure was produced. The orthogonal and inclined masks with the diffraction effect were employed in the lithography process. A horizontal frustum optical waveguide provides a coupling efficiency higher than 52% from laser diode to the single-mode fiber when using 1550 nm laser diode. The artificial neural network and genetic algorithm technologies are combined with the robust design to reduce the variations in the focal length of the high fill factor microlens array. The orthogonal array was used for these experiments and calculated the S/N ratio of quality characteristic. The orthogonal array was used as the learning data for the artificial neural network to construct system model that can predict the focal length for arbitrary parameters setting. Then, the genetic algorithm was applied to obtain the parameters setting. The ANN/GA model is compared with the experimental result, the predicted error is about 2%. The experimental results prove that 34% and 56% reductions in sensitivity variation can be achieved using the Taguchi method and the ANN/GA model, respectively.

    中文摘要-------------------------------------------------------------------I 英文摘要-------------------------------------------------------------------II 誌謝-------------------------------------------------------------------------III 目錄-------------------------------------------------------------------------IV 圖目錄----------------------------------------------------------------------VII 表目錄----------------------------------------------------------------------XI 第一章 緒論---------------------------------------------------------------1 1.1 研究動機與目的---------------------------------------------1 1.2 文獻回顧------------------------------------------------------3 1.2.1 微透鏡之文獻回顧----------------------------------------3 1.2.2 微光波導之文獻回顧-------------------------------------4 1.3 本論文架構規劃---------------------------------------------5 第二章 微透鏡與微光波導之製程------------------------------------9 2.1 微透鏡之製程------------------------------------------------9 2.2 微透鏡模仁之製作------------------------------------------12 2.3 微光波導之製程---------------------------------------------13 第三章 以近接轉印法在光阻上製作微透鏡模仁------------------ 3.1 紫外線曝光之特性------------------------------------------24 3.2 實驗方法與步驟---------------------------------------------24 3.3 結果與討論---------------------------------------------------28 第四章 高填充率微透鏡陣列之最佳化推演-----------------------37 4.1建立物理模型和最佳化方法-------------------------------37 4.1.1 田口品質工程----------------------------------------------37 4.1.2 類神經網路-------------------------------------------------39 4.1.3 基因演算法-------------------------------------------------43 4.2 實驗方法------------------------------------------------------46 4.3 結果與討論---------------------------------------------------47 第五章 近接轉印法製作平躺半圓錐狀微光波導元件------------59 5.1光學模擬--------------------------------------------------------59 5.2 紫外線曝光方法---------------------------------------------61 5.3平躺半圓錐狀光波導製作-----------------------------------62 5.4 結果與討論---------------------------------------------------63 第六章 結論與未來展望------------------------------------------------75 6.1 結論------------------------------------------------------------75 6-2 未來發展------------------------------------------------------76 參考文獻-------------------------------------------------------------------77 作者簡介-------------------------------------------------------------------85

    [1] Yang, H., Pan, C. T. and Chou, M. C., “Ultra-fine machining tool/molds by LIGA Technology”, J. Micromech. Microeng. Vol.11, pp.94-99 (2001).

    [2] Shiono, T., Setsune, K., Yamazaki, O., and Wasa, K., “Rectangular-apertured micro-Fresnel lens arrays fabricated by electron-beam lithography,” Applied Optics, Vol. 26, No. 3, pp. 587-591 (1987).

    [3] Veldkamp, W. B., “Overview of Microoptics: Past, Present, and Future,” Proc. SPIE 1544, pp. 287-299 (1991).

    [4] Itakura, K., Nobusada, T., Kokusenya, N., Nagayoshi, R., and Ozaki, M., “A 1-mm 50k-pixel IT CCD image sensor for miniature camera system,” IEEE Tran. on Electron Devices, Vol. 47, No. 1, pp. 65-70 (2000).

    [5] Leggatt, J. S., and Hutley, M. C., “Microlens arrays for interconnection of single-mode fiber arrays,” Electron. Lett., Vol. 27, pp. 238-240 (1991).

    [6] Fu, Y., Annbryan, N. K., and Shing, O. N., “Integrated micro-cylindrical lens with laser diode for single-mode fiber coupling,” IEEE Photon. Technol. Lett., Vol. 12, No. 9, pp. 1213-1215 (2000).

    [7] Cho, S. R., Kim, J., Oh, K. S., Yang, S. K., Baek, J. M., Jang, D. H., Kim, T. I., and Jeon, H., “Enhanced optical coupling performance in an InGaAs photodiode integrated with wet-etched microlens,” IEEE Photon. Technol. Lett., Vol. 14, No. 3 pp. 378-380 (2002).

    [8] Smith, G. P., “Some recent advances in glasses and glass-ceramics,” Materials & Design, Vol. 10, No. 2, pp. 54-63 (1989).

    [9] Ezell, B., “Making microlens backlights grow up,” Information Display, Vol. 5, pp. 42-45 (2001).

    [10] Ishihara, Y., and Tanigaki, K., “A high photosensitivity IL-CCD image sensor with monolithic resin lens array in Proceedings,” International Electron Devices Meeting, Washington, DC, pp. 497-500 (1993).

    [11] Fu, Y., and Annbryan, N. K., “Semiconductor microlens fabricated by one-step focused ion beam direct writing,” IEEE Tran. On Semiconductor Manufacturing, Vol. 15, No. 2, pp. 229-231 (2002).

    [12] Chen, J., Wang, W., Fang, J., Varahramyan, K., “Variable focusing microlens with microfluidic chip.” J. Micromech Microeng 14:675-680 (2004).

    [13] Hoshino, K., and Shimoyama, I., “An elastic thin-film microlens array with a pneumatic actuator” IEEE, pp.321-324 (2001).

    [14] Kim, J., Jeong, K. H., and Lee L. P., “Artificial ommatidia by self-aligned microlenses and waveguides”, Optics Letters, Vol. 30 pp.5-7 (2005).

    [15] Nishihara, H., Haruna, M. and Suhara, T., “Optical integrated circuits” McGraw-Hill (1987).

    [16] Wenger, G., Stoll, L., Weiss B., et al., “Design and fabrication of monolithic optical spot size transformers (most’s) for highly efficient fiber-chip coupling”, Journal of lightwave technology, Vol. 12, pp.1782-1790 (1994).

    [17] Shiraishi, K., and Hiraguri, N., “A lensed fiber with cascaded GI-fiber configuration for efficient coupling between LDs to single mode fiber,” ECOC’98, pp.355-356 (1998).

    [18] Mondal, S. K., and Gangopadhyay, S., “Analysis of an upside-down taper lens and from a single-mode step-index fiber,” Appl. Opt. Vol.37, pp.1006-1009 (1998)
    [19] Yoda, H., and Shiraishi, K., “A new scheme of a lensed fiber employing a wedge-shaped graded-index fiber tip for coupling between high-power laser diodes and single-fibers,” J. Lightwave Technol. Vol. 19, pp.1910-1917 (2001).

    [20] Huang, S. Y., Gaebe, C. E., Miller, K. A., Wiand, G. T., and Stakelon, T. S., “High coupling optical design for laser diodes with large aspect ratio,” IEEE Tansaction on Advanced Packaging, pp.165-169 (2000).

    [21] Steinberg, R. A., Giallorenzi, T. G., Priest, R. G., “Polarization insensitive integrated-optical switches: a new electrode design”, Appl. Opt., Vol. 16, pp.2166-2170 (1977).

    [22] Morand, A., Sanchez-Perez, C., Benech, P., Tedjini, S., Bose, D., “Integrated optical waveguide polarizer on glass with a birefringent polymer overlay” IEEE Photonics Technology Letters, Vol.10, pp.1599-1601 (1998).

    [23] Martin, W. E., “A new waveguide switch/modulator for integrated optics”, Appl. Phys. Lett., Vol.26, pp. 562-564 (1975).

    [24] Lee, M. H., Lee, H. J., Han, S. G., Kim, H. Y., Kim, K. H., Won, Y. H., Kang, S. Y., “Fabrication and characterization of and electro-optic polymer waveguide modulator for photonic applications”, Thin Solid Films, Vol.303, pp. 287-291 (1996).

    [25] Bourbin, Y., Enard, A., Blondeau, R., Razeghi, M., Rondi, D., Papuchon, M., Cremoux, B. D., “Electro-optical modulators using novel buried waveguides in GaInAsP/InP material. ”Electronics Letters, Vol.24, pp.221-223 (1988).

    [26] Mikami, O. and Zembutsu, S., “Coupling-length adjustment for and optical directional coupler as a 2×2 switch”, Appl. Phys. Lett., Vol.35, pp.2321-2325 (1981).

    [27] Rics, R. R., Zino, J. D., Bryan, D. A., Dalke, E. A. and Reed, W. R., “Multiwavelength monolithic integrated fiber-optic terminal”, Proc. Soc. Photo-Optical Instr. Eng., Vol.176, pp. 133 (1979).

    [28] Takada, K., Abe, M., Hida, Y., Shibata, T., Ishii, M., Himeno, A., Okamoto, K., “Fabrication of 2 GHz-spaced 16-channel arrayed-waveguide grating demultiplexer for optical frequency monitoring applications.” Electronics Letters, Vol.36, pp.1643-1644 (2000).

    [29] Fujino, T., Sasaki, K. and Marumoto, K., “X-ray mask fabrication process using Cr mask and ITO stopper in the dry etch of W absorber”, Jpn. J. Appl. Phys., Vol.31, pp. 4086-4090 (1992).

    [30] Moerman, I., Daele, P. P. V., , and Demeester, P. M., “A Review on Fabrication Technologies for the Monolithic Integration of Tapers with III–V Semiconductor Devices”, Journal of Selected Topics in Quantum Electronics, Vol.3, pp.1308-1320 (1997).

    [31] Popovic, Z. D., Sprague, R. A., Connell, N., “A Technique for monolithic fabrication of microlens arrays”, Appl. Opt., Vol.27, pp.1281-1284 (1988).

    [32] Lin, C. P., Yang, H., Chao, C. K., “A new microlens array fabrication method using UV proximity printing.” J. Micromech. Microeng., Vol. 13, pp.748-757 (2003).

    [33] Cheng, L. W., “Fabrication and analysis of diffractive optical elements”, thesis of Department of Physics, National Central University, pp. 51-52 (2001).

    [34] Fu, Y., Annbryan, N. K., “Semiconductor microlens fabricated by one-step focused ion beam direct writing”, IEEE Tran Semicond. Manufact., Vol.15, pp.229-231 (2002).

    [35] Choo, H., Muller, R. S., “Optical properties of microlenses fabricated using hydrophobic effects and polymer-jet-printing technology”, Optical MEMS, 2003 IEEE/LEOS International Conference, pp.169- 170 (2003).

    [36] Monteiro, D. W. L, Akhzar-Mehr, O., Sarro, P. M. and Vdovin, G., “Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si”, Optics Express, Vol.11, pp.2244-2252 (2003).

    [37] Xia, Y, Whitesides, G. M., “Soft lithography”, Angewandte Chemie International Edition 37, pp.550–575 (1998).

    [38] Kim, Y. S., Kim J. and Jeon, H., “Semiconductor microlenses fabricated by one-step wet etching Lasers and Electro-Optics,” Conference, pp. 213 -214 (2000).

    [39] Kohler, U., Guber, A. E., Bier, W., Heckele, W. and Schaller, T., “Fabrication of microlenses by plasmaless isotropic etching combined with plastic moulding,” Sensors and Actuators, pp. 36l-363 (1996).

    [40] Lau, H. W., Davies, N. A. and McCormick, M., “Microlens array fabricated in surface relief with high numerical aperture,” Proceedings of SPIE - The International Society for Optical Engineering, Vol. 1544, pp. 178-188 (1991).

    [41] Watanabe, K., Morita, T. and Kometani, R., “Nanoimprint using three-dimensional microlens moldmade by focused-ion-beam chemical vapor deposition,”Journal of Vacuum Science and Technology B:Microelectronics and Nanometer Structures, Vol. 22, p22-26 (2004).

    [42] Borrelli, N. F., “Efficiency of microlens array for projection”, LCD 44th electronic components and technology conf, pp.338-345 (1994).

    [43] Yang, H., Chao, C. K., Wei, M. K., Lin, C. P., “High fill-factor microlens array mold insert fabrication using a thermal reflow process”, J Micromech. Microeng., pp.1197–1204 (2004).

    [44] Garner, S. M. et al., “Three-dimensional integrated optics using polymers”, IEEE J. of Quantum Electronics, Vol. 35, pp.1146-1155 (1999).

    [45] Balmer, R. S. et al., “Vertically tapered epilayers for low-loss waveguide–fiber coupling achieved in a single epitaxial growth run,” J. of Lightwave Technology, Vol. 21, pp.211-217 (2003).

    [46] 駱韋仲,「光電基板簡介」業材料雜誌, Vol.217, pp.119-230 (2005).

    [47] Flores, G. E., and Kirkpatrick, B., “Optical lithography stalls X-rays,” IEEE Spectrum, Vol. 28, Issue 10, pp.21-27 (1991).

    [48] Plummer, J. D., “Silicon VLSI Technology”, Prentice Hall, USA, pp.206-233 (2000).

    [49] Dentinger, P. M., Krafcik, K. L., Simison, K. L., Janek, R. P., and Hachman, J., “High aspect ratio patterning with a proximity ultraviolet source,” Microelectronic Engineering, Vol.61, pp.1001-1007 (2002).

    [50] Henke, W., Schwalm, R., Weiss, M., and Pelka, J., “Diffraction effects in submicron contact or proximity printing,” Microelectronic Engineering, Vol.10, pp. 73-89 (1990).

    [51] 白賜清,「工業實驗計畫法」,中華民國品質學會(2004)。

    [52] 鄭崇義,「田口品質工程技術理論與實務」,中華民國品質學會(2000)。
    [53] 李建宏、陳定宇,「類神經網路在最佳化設計之應用」,興大工程學報(1991)。

    [54] 胡玉成, 「暢談類神經網路」,倚天資訊股份有限公司,第3-1~5-35 頁(1997)。
    [55] 葉怡成,「類神經網路模式應用與實作」,儒林圖書有限公司,臺北。

    [56] 蘇木春、張孝德,「機器學習:類神經網路、模糊系統以及基因演算法」全華書局(1999)。

    [57] The photoresist data of JSR(THB-120N), Courtesy of Japanese Synthetic Rubber Company.

    [58] Su, C. T. and Chiang, T. L., “Optimizing The IC Wire Bonding Process Using a Neural Network/Genetic Algorithms approach”, J. Intell. manuf., Vol.14, pp.229-38 (2003).

    [59] Su, C. T., Chiu, C. C. and Chang, H. H., “Parameter Design Optimization via Neural Network and Genetic Algorithm”, Int. J. Indus. Eng. Vol.7 pp.224-31 (2000).

    [60] Wang, G. J., Tsai, J. C., Tseng, P. C. and Chen, T. C., “Neural-Taguchi Method for Robust Design Analysis”, J. CSME, Vol.19 pp.223-30 (1998).

    [61] Chen, W. T., and Wang, L. A., “Laser-to-fiber coupling scheme by utilizing a lensed fiber integrated with a long-period fiber grating,” IEEE Photon. Technol. Lett., Vol.12, pp.501 (2000).
    [62] Fan, R. S., Goodwill, D. J., Hooker, R. B., Lee, Y. C., McComas B. K., Mickelson, A. R., Morozova, N. D. and Tomic, D. “Polymer tapered waveguides and flip-chip solder bonding as compatible technologies for efficient OEIC coupling”, 47th ECTC Proceedings, pp. 788-796. (1997).

    [63] Feit, M. D. and Fleck, J. A., “Light propagation in graded-indexoptical fibers”, Appl. Opt, Vol.17, pp.3990-3998 (1978).

    [64] Kawano, K. and Kitoh, T., “Introduction to Optical Waveguide Analysis”, New York: John Wiley & Sons, pp.165-203 (2001).

    [65] Hunsperger, R. G., Photonic Devices and Systems, New York: Marcel Dekker, pp.360-364 (1994)
    .

    無法下載圖示 全文公開日期 2013/01/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE