簡易檢索 / 詳目顯示

研究生: 周俊翰
Chun-Han Chou
論文名稱: 微透鏡陣列應用於光場虛擬實境系統成像品質分析
Light Field Virtual Reality System with Microlens Array Imaging Quality Analysis
指導教授: 黃忠偉
Jong-Woei Whang
口試委員: 黃忠偉
Jong-Woei Whang
趙涵捷
Han-Chieh Chao
郭重顯
Chung-Hsien Kuo
周純峰
Shun-Fung Chiu
翁林仲
Lin-Chung Woung
陳省三
Sheng-San Cheng
陳建宇
Chien-Yu Chen
林瑞珠
Jui-chu Lin
修芳仲
Fang-Jung Shiou
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 85
中文關鍵詞: 虛擬實境微透鏡陣列成像系統線追跡光場色散序列性追跡非續 列追跡
外文關鍵詞: Microlens array, imaging system, sequential, non-sequential, diffraction elements, light field, virtual reality, dispersion
相關次數: 點閱:417下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文展示了一光場虛擬實境系統設計,其系統僅需要一個顯示器,就可顯示一四維影像,並可提升穿戴時的舒適度、方便製造聚焦線索與降低成本等優點。在本論文中系統設計主要可以分為兩個部分,第一部分主要在分析不同形狀對於微透鏡陣列成像品質的影響。目前微透鏡陣列已廣泛應用於成像產品中,用於縮小系統體積、提升系統的可視角與擷取空間四維影像訊息等。而微透鏡陣列有許多不同形狀,最常見的為方型與圓型,但並沒人深入探討不同形狀對於微透鏡陣列成像品質的影響,因此,我們就在本論文中提出四種形狀的微透鏡陣列,分別為:方型、圓形、非球面方型與非球面圓型,討論各種形狀透鏡的成像品質。

    第二部分將用第一部分最佳成像品質的形狀透鏡陣列進行光場虛擬實境系統的設計,此系統包含一顯示器、一混合透鏡與一透鏡組,我們提供了一硬體架構設計與優化過程,其優化過程分析圖表包含光斑圖、調製函數轉換圖、色差分析、賽德爾係數與輻照度圖。

    透過這些分析過程可以讓我們所模擬設計的系統更貼近實際情況,避免造成模擬與實際製作時的差距,而此系統不僅縮小了系統體積、減少長期穿戴造成的眼睛疲勞、容易做出聚焦線索與方便製造立體影像等優點。


    The paper describes a new light field virtual reality(VR) system’s key component development. The system includes a display, convex lens and hybrid lens. The hybrid lens is composed by aspherical microlens and diffraction element which is the key component in the system. We want to design a high image quality hybrid lens for the system. Firstly, we analyzed the different shapes of microlens array image quality. Microlens array are widely used in imaging systems to reduce systems sizes, extend the camera field of view, and capture the 3D objects information as well. Lenses in the array may have different shapes. The common shapes of microlens array is rectangular or circular. Different lens types have different aberration effects in the imaging systems, but people seldom discussed it. Therefore, we presented four different types of lenses: circular, rectangular, aspherical circular and aspherical rectangular, to analyze their effects on the image quality produced by the associated imaging system.
    Secondly, we use the best image quality microlens array to the light field VR system from the first part simulation result. We present the system optimization process which include spot diagram, modulation transfer function(MTF), longitudinal aberration diagram, seidel aberration coefficients and irradiance map. These charts can help us comprehensive analysis the system of key component make it more perfect and closer practice situation. We use aspherical surface and diffraction to build hybrid lens which can correct primary aberration and chromatic dispersion. The system has the advantage of smaller size, low vergence-accommodation conflict, easy creation depth cue and stereo imaging.

    摘要 I Abstract III Acknowledgment V Table of contents VI List of Figures VIII List of Tables XII Chapter 1 Introduction 1 1.1 Research background and motivation 1 1.2 Research objectives and contribution 7 1.3 Dissertation organization 9 Chapter 2 Principle of design and analysis charts 10 2.1 Basic optical theory 10 2.2 Principle of analysis charts 17 2.3 Aspherical surface 22 2.4 Diffraction element 23 Chapter 3 System design methodology 26 3.1 Different shapes of microlens array analysis methodology 26 3.2 Light Field VR system design methodology 28 Chapter 4 Light field VR system simulation 33 4.1 Simulation results of aberration analysis in different shapes of microlens array 33 4.1.1 Sequential optics simulation 33 4.1.2 Non-sequential optics simulation 46 4.1.3 Simulation result discussion 49 4.2 Simulation results of light field VR system 49 4.2.1 Achromatic Hybrid microlens design 50 4.2.2 Non-sequential simulation for image quality 55 4.2.3 Simulation results discussion 58 Chapter 5 Conclusions and results 59 5.1 Conclusions and results 59 5.2 Future work 61

    [1]. Duparré, J., Dannberg, P., Schreiber, P., Bräuer, A., & Tünnermann, A. (2004). Artificial apposition compound eye fabricated by micro-optics technology. Applied Optics, 43(22), 4303-4310.
    [2]. Duparré, J. W., & Wippermann, F. C. (2006). Micro-optical artificial compound eyes. Bioinspiration & biomimetics, 1(1), R1.
    [3]. Horisaki, R., Irie, S., Nakao, Y., Ogura, Y., Toyoda, T., & Masaki, Y. (2007, September). 3D information acquisition using a compound imaging system. In Optics and Photonics for Information Processing (Vol. 6695, p. 66950F). International Society for Optics and Photonics.
    [4]. Tanida, J., Kitamura, Y., Yamada, K., Miyatake, S., Miyamoto, M., Morimoto, T., ... & Ichioka, Y. (2001, December). Compact image capturing system based on compound imaging and digital reconstruction. In Micro-and Nano-optics for Optical Interconnection and Information Processing (Vol. 4455, pp. 34-42). International Society for Optics and Photonics.
    [5]. Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., & Hanrahan, P. (2005). Light field photography with a hand-held plenoptic camera. Computer Science Technical Report CSTR, 2(11), 1-11.
    [6]. Wang, Y. W. (2015). 適用於鬆散光場應用之基於區塊切割之快速擬真事後對焦演算法設計. 清華大學電機工程學系學位論文, 1-51.
    [7]. Yang, J. C., Everett, M., Buehler, C., & McMillan, L. (2002). A real-time distributed light field camera. Rendering Techniques, 2002, 77-86.
    [8]. Ooi, R., Hamamoto, T., Naemura, T., & Aizawa, K. (2001, October). Pixel independent random access image sensor for real time image-based rendering system. In Image Processing, 2001. Proceedings. 2001 International Conference on (Vol. 2, pp. 193-196). IEEE.
    [9]. Bourke, P. (1999). Calculating stereo pairs. Retrieved December, 12, 2006.
    [10]. Dubois, E. (2001). A projection method to generate anaglyph stereo images. In Acoustics, Speech, and Signal Processing, 2001. Proceedings.(ICASSP'01). 2001 IEEE International Conference on (Vol. 3, pp. 1661-1664). IEEE.
    [11]. Huang, F. C., Luebke, D. P., & Wetzstein, G. (2015, July). The light field stereoscope. In SIGGRAPH Emerging Technologies (pp. 24-1).
    [12]. Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., ... & Vorozcovs, A. (2004, August). High dynamic range display systems. In ACM transactions on graphics (TOG) (Vol. 23, No. 3, pp. 760-768). ACM.
    [13]. Pamplona, V. F., Oliveira, M. M., Aliaga, D. G., & Raskar, R. (2012). Tailored displays to compensate for visual aberrations.
    [14]. Shiwa, S., Omura, K., & Kishino, F. (1996). Proposal for a 3‐D display with accommodative compensation: 3DDAC. Journal of the Society for Information Display, 4(4), 255-261.
    [15]. Lanman, D., Hirsch, M., Kim, Y., & Raskar, R. (2010, December). Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization. In ACM Transactions on Graphics (TOG) (Vol. 29, No. 6, p. 163). ACM.
    [16]. Wang, S., Sun, M., Surman, P., Yuan, J., & Sun, X. W. (2015, June). P‐79: Maximizing the 2D Viewing Field of a Computational Two‐layer Light Field 3D Display. In SID Symposium Digest of Technical Papers (Vol. 46, No. 1, pp. 1440-1443).
    [17]. Chen, R., Maimone, A., Fuchs, H., Raskar, R., & Wetzstein, G. (2014). Wide field of view compressive light field display using a multilayer architecture and tracked viewers. Journal of the Society for Information Display, 22(10), 525-534.
    [18]. Wetzstein, G., Lanman, D., Hirsch, M., & Raskar, R. (2012). Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting.
    [19]. J. Plücker (1839). Discussion de la forme générale des ondes lumineuses. J. f. reine u. angew. Math. 19 (1839), 1-44
    [20]. Wetzstein, G., Lanman, D., Heidrich, W., & Raskar, R. (2011, August). Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays. In ACM Transactions on Graphics (ToG) (Vol. 30, No. 4, p. 95). ACM.
    [21]. Huang, F. C., Wetzstein, G., Barsky, B. A., & Raskar, R. (2014). Eyeglasses-free display: towards correcting visual aberrations with computational light field displays. ACM Transactions on Graphics (TOG), 33(4), 59.
    [22]. Chen, C. C. A., Chen, C. M., & Chen, J. R. (2007). Toolpath generation for diamond shaping of aspheric lens array. Journal of materials processing technology, 192, 194-199.
    [23]. Wandell, B. A. (1995). Foundations of vision. Sinauer Associates.
    [24]. Held, R. T., Cooper, E. A., O’brien, J. F., & Banks, M. S. (2010). Using blur to affect perceived distance and size. ACM transactions on graphics, 29(2).
    [25]. Hoffman, D. M., & Banks, M. S. (2010). Focus information is used to interpret binocular images. Journal of vision, 10(5), 13-13.
    [26]. Hoffman, D. M., Girshick, A. R., Akeley, K., & Banks, M. S. (2008). Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. Journal of vision, 8(3), 33-33.
    [27]. Roorda, A., & Williams, D. R. (1999). The arrangement of the three cone classes in the living human eye. Nature, 397(6719), 520.
    [28]. Malacara, D., & Malacara, Z. (1994). Handbook of lens design.
    [29]. Singer, W., Totzeck, M., & Gross, H. (Eds.). (2006). Handbook of optical systems, volume 2: Physical image formation. John Wiley & Sons.
    [30]. Zemax, R. (2011). ZEMAX User’s Manual. July.
    [31]. https://www.thorlabs.de/index.cfm, 2018.02.02
    [32]. Hua, H., & Javidi, B. (2014). A 3D integral imaging optical see-through head-mounted display. Optics express, 22(11), 13484-13491.
    [33]. Ng, R. (2005, July). Fourier slice photography. In ACM transactions on graphics (TOG) (Vol. 24, No. 3, pp. 735-744). ACM.
    [34]. Clark, J. H. (1982, July). The geometry engine: A VLSI geometry system for graphics. In ACM SIGGRAPH Computer Graphics (Vol. 16, No. 3, pp. 127-133). ACM.
    [35]. Marschner, S., & Shirley, P. (2015). Fundamentals of computer graphics. CRC Press.
    [36]. Sutherland, I. E. (1968, December). A head-mounted three dimensional display. In Proceedings of the December 9-11, 1968, fall joint computer conference, part I (pp. 757-764). ACM.
    [37]. Cutting, J. E., & Vishton, P. M. (1995). Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In Perception of space and motion (pp. 69-117).

    無法下載圖示 全文公開日期 2023/02/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE