簡易檢索 / 詳目顯示

研究生: 陳嘉良
Jia-Liang Chen
論文名稱: 飛秒雷射結合聲光偏轉器進行微加工之角度色散補償研究
Angular Dispersion Compensation for Acousto-Optic Deflectors Combined with Ultrashort-Pulsed Laser Micromachining
指導教授: 譚昌文
Chen-Wen Tarn
口試委員: 陳鴻興
Hung-Shing Chen
范慶麟
Ching-Lin Fan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 53
中文關鍵詞: 飛秒雷射聲光偏轉器角度色散微加工
外文關鍵詞: Ultrashort-Pulsed Laser, Acousto-Optic Deflectors, Angular Dispersion, Micromachining
相關次數: 點閱:201下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討飛秒雷射(Ultrashort-pulsed laser)於經過聲光偏轉器(Acousto-optic deflector)進行微加工(Micromachining)時所產生之角度色散(Angular dispersion)問題。飛秒雷射相較於長脈衝雷射,其採用超快脈衝來剝離(Ablation)材料,於材料上之熱量尚未累積時即已造成剝離,因此被稱為冷加工,有著熱影響區極小、無重鑄層及加工尺寸小等優點,但因為飛秒雷射屬於寬頻譜光源(Broadband light source),不同頻率的光有著不同的行進速度,其經過聲光偏轉器時會產生不同之偏轉角度,故有角度色散之問題,本論文提出一理論模型加以描述角度色散之產生,並於數值研究方面,利用傅立葉級數(Fourier series)描述飛秒雷射之表示式,並採用布拉格法則(Bragg regime)計算角度色散值之多寡,最後由本論文所提出之角度色散補償方式補償色散之角度。


    The purpose of this research is to discuss the angular dispersion problem of the ultrashort-pulsed laser in micromachining. In comparison with the long-pulse laser, the ultrashort-pulsed laser (pulse duration 150 fs, wavelength 800nm) has a better application in ablation for polymers, glasses and metal materials with its negligible heat-affected zone, no recasting, and the high machining precision. However, its broadband optical spectrum results in the problem of deflection angles of light when the ultrashort-pulsed laser passes through the acousto-optic deflector, which leads to the angular dispersion. In order to find a method to compensate for the angular dispersion, we formulated the phenomenon. By using the Fourier series technique, the short time light pulse can be decomposed into a combination of a series of time harmonic signals. And by applying the acousto-optic Bragg interaction principle, each harmonic of light can interact a corresponding sound wave. The quantitative description of the compensation of the angular dispersion is hence derived.

    目 錄 摘 要 i Abstract ii 誌 謝 iii 目 錄 iv 圖 目 錄 ivi 表 目 錄 viii 第 一 章 緒 論 1 1.1 研究背景........................................................................................................1 1.2 研究動機與目的............................................................................................2 1.3 導讀................................................................................................................4 第 二 章 飛秒雷射 5 2.1 雷射簡介…………………………………………………………………..5 2.1.1 激發系統………………………………………………………….7 2.1.2 激發介質………………………………………………………….8 2.1.3 共振腔…………………………………………………………...11 2.2 雷射加工…………………………………………………………………13 2.2.1 光熱加工………………………………………………………...14 2.2.2 光化學加工……………………………………………….……..15 2.3 飛秒雷射簡介及工作原理………………… …………………………16 2.3.1 鎖模技術………………………………………………………….17 2.3.2 啾頻脈衝放大………………………………………………….…20 2.4 飛秒雷射相關加工參數…………………………………………………21 2.5 一般雷射與飛秒雷射之比較分析………………………………..……..22 第 三 章 聲光偏轉器 24 3.1 聲光效應………………………………………………………………....24 3.1.1 波動方程式…………………………………………………...…26 3.1.2 聲光效應於介質中之行為…………………………………...…28 3.2 聲光效應對光場之影響……………………………………...………….31 3.3 Bragg繞射原理…………………………………...………………….…..34 第 四 章 微加工 36 4.1 飛秒雷射結合聲光偏轉器進行微加工之探討…...........……………….36 4.2 光耦合方程式…...…………...…………...…………...…………........…38 4.3 飛秒雷射之傅立葉級數表示……….………... ………...........................41 4.4 角度色散之補償…... ………... ………....................................................43 4.5 加工光斑理論大小…………………………………………………..…..46 第 五 章 結論與未來展望 48 5.1 結論……... ………....................................................................................48 5.2 未來展望……............................................................................................49

    [1]沈柯,雷射原理教程,亞東書局,1990。
    [2]W. Demtröder, Laser Spectroscopy, Springer, 1996.
    [3]E. Hecht, A. Zajac, Optics, Addison-Wesley, 1974.
    [4]M. Bertolotti, The History of the Laser, CRC Press, 2004.
    [5]M. Csele, Fundamentals of Light Sources and Lasers, John Wiley, 2004.
    [6]C. V. Shank, R. L. Fork, B. I. Greene, F. K. Reinhart and R. A. Logan1, “Picosecond Nonequilibrium Carrier Transport in GaAs,” Applied Physics Lett., vol. 38, pp. 104-105, 1981.
    [7]E. Ohmura and I. Fukumoto, “Molecular Dynamics Simulation on Laser Ablation of Fcc Metal,” Int. J. Jpn. Soc. Precis. Eng., vol.30, pp.128-133, 1996.
    [8]B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal1, S. M. Kuebler, I.-Y. Sandy Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder and J. W. Perry, “Two-photon Polymerization Initiators for Three-dimensional Optical Data Storage and Microfabrication,” Nature, vol. 398, pp. 51-54, 1999.
    [9]H. Zhang, D. Y. Tang, L. M. Zhao, and H. Y. Tam, “Induced Solitons Formed by Cross Polarization Coupling in a Birefringent Cavity Fiber Laser,” Optics Lett., vol. 33, no. 20, pp. 2317-2319, 2008.
    [10]D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of High-order Polarization-locked Vector Solitons in a Fiber Laser,” Phys. Rev. Lett., vol. 101, pp. 153904, 2008.
    [11]H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent Energy Exchange between Components of a Vector Soliton in Fiber Lasers,” Optics Express, vol. 16, no. 17, pp. 12618-12623, 2008.
    [12]H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength Dissipative Soliton Operation of Anerbium-doped Fiber Laser,” Optics Express, vol. 17, no. 15, pp. 12692-12697, 2009.

    [13]L. M. Zhao, D. Y. Tang, H. Zhang and X. Wu, “Polarization Rotation Locking of Vector Solitons in a Fiber Ring Laser”, Optics Express, vol. 16, no.14, pp. 10053-10058, 2008.
    [14]Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh and D. Y. Tang, “Atomic Layer Graphene as Saturable Absorber for Ultrafast Pulsed Lasers, ” Advanced Functional Materials, vol. 19, no. 19, pp. 3077-3083, 2009.
    [15]朱旭新,十兆瓦超短脈衝雷射系統,科儀新知128期,pp. 5-18,1992。
    [16]張天立,羅绍維,姚中翰,周大鑫,蘇志杰,蔡宏營,林宏彝,雷射超精密微奈米結構加工技術介紹,機械工業雜誌第306期, pp. 2-12,2008。
    [17]丁勝懋,雷射工程導論,中央圖書供應社,2000。
    [18]張國順,現代雷射製造技術,新文京開發出版股份有限公司,2008。
    [19]谷腰欣司,圖解雷射應用與原理,世茂出版有限公司,2006。
    [20]G. Chryssolouris, Laser Machining: Theory and Practice, Springer, 1991.
    [21]張天立,羅紹維,姚中翰,周大鑫,蘇志杰,蔡宏營,雷射超精密微奈米結構加工技術介紹,機械工業306期,2008。
    [22]A. Penzkofer, “Passive Q-switching and Mode-locking for the Generation of Nanosecond to Femtosecond Pulses,” Applied Physics B, vol. 46, no. 1, pp. 43-60, 1988.
    [23]J. Kroger and W. Kautek, “Ultrashort Pulse Laser Interaction with Dielectrics and Polymers,” Adv. Polym. Sci., vol. 168, pp.247-289, 2004.

    [24]L. E. Hargrove, R. L. Fork and M. A. Pollack, “Locking of He–Ne Laser Modes Induced by Synchronous Intracavity Modulation,” Appl. Phys. Lett., vol. 5, no. 1, pp. 4, 1964.
    [25]K. Gurs, “Modulation and mode locking of the continuous ruby laser,” IEEE Journal of Quantum Electronics, vol. 3, no. 5, pp. 175-180, 1967.
    [26]P. Maine, D. Strickland, P. Bado and M. Pessot, “Generation of Ultrahigh Peak Power Pulses by Chirped Pulse Amplification,” IEEE Journal of Quantum Electronics, vol. 24, no. 2, pp. 398-403, 1988.
    [27]D. Strickland and G. Mourou, “Compression of Amplified Chirped Optical Pulses,” Optics Communications, vol. 56, no. 3, pp. 219-221, 1985.
    [28]M. Pessot, P. Maine and G. Mourou, “1000 Times Expansion/Compression of Optical Pulses for Chirped Pulse Amplification,” Optics Communications, vol. 62, no. 6, pp. 419-421, 1987.
    [29]J. Kroger and W. Kautek, “Ultrashort Pulse Laser Interaction with Dielectrics and Polymers,” Adv. Polym. Sci., vol. 168, pp. 247-289, 2004.
    [30]J. Kasparian and J. P. Wolf, “Physics and Applications of Atmospheric Nonlinear Optics and Filamentation,” Optics Express, vol. 16, no. 1, pp. 466-493, 2008.
    [31]汪治平,超快雷射與超強電磁場,科學發展390期,2005。
    [32]P. Zeitoun, E. Oliva, T. T. T. Le, D. Ros, S. Sebban, L. Li, P. Velarde and M. Fajardo, “X-ray Chirped Pulse Amplification: towards GW Soft X-ray Lasers,” Appl. Sci., vol. 3, pp. 581-592, 2013.
    [33]林忠緯,雷射加工矽晶圓表面微結構之研究,國立中正大學機械研究所,碩士論文,2006。
    [34]B. N. Chichkov, C. Momma, S. Nolte and F. V. Alvensleben, “Femtosecond, Picosecond and Nanosecond Laser Ablation of Solids,” Applied Physics A, vol. 63, pp. 109-115, 1996.
    [35]J. A. Kong, “Second-Order Coupled-Mode Equations for Spatially Periodic Media,” J. Opt. Soc. Am., vol. 67, no. 6, pp. 825-829, 1977.
    [36]K. Iizuka, Elements of Photonics, vol. I, John Wiley, 2002.

    [37]B. A. Auld, Acoustic Fields and Waves in Solids, vol. I, John Wiley, 1973.
    [38]S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, Prentice Hall, 2000.
    [39]A. Korpel, Acousto-Optics, CRC Press, 1996.
    [40] P. P. Banerjee, C. W. Tarn and J. J. Liu, “Interaction of Profiled Light with Contrapropagating Acoustic Waves: Fourier Transform Approach,” Society of Photo-Optical Instrumentation Engineers, vol. 31, no. 10, pp. 2095-2102, 1992.
    [41]A.Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, Oxford University Press, 2007.
    [42]R. C. Dorf and R. J. Tallarida, Pocket Book of Electrical Engineering Formulas, CRC Press, 1993.
    [43]B. K. A. Ngoi, K. Venkatakrishnan, B. Tan, P. Stanley and L. E. N. Lim, “Angular Dispersion Compensation for Acousto-optic Devices used for Ultrashort-pulsed Laser Micromachining,” Optics Express, vol. 9, no. 4, pp. 200-206, 2001.
    [44]V. Iyer, B. E. Losavio, P. Saggau, “Compensation of Spatial and Temporal Dispersion for Acousto-optic Multiphoton Laser-scanning Microscopy,” Journal of Biomedical Optics, vol. 8, no. 3, pp. 460-471, 2003.

    QR CODE