簡易檢索 / 詳目顯示

研究生: 張哲航
Che-Hang Chang
論文名稱: 可撓式鈣鈦礦太陽能電池性能之探討
The Study of the Performance of Flexible Perovskite Solar Cells
指導教授: 陳良益
Liang-Yih Chen
口試委員: 陳貞夙
Jen-Sue Chen
吳季珍
Jih-Jen Wu
江志強
Jyh-Chiang Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 164
中文關鍵詞: 可撓式有機金屬含鹵鈣鈦礦太陽能電池紫外光處理二氧化鈦電化學交流阻抗頻譜
外文關鍵詞: flexible, MAPbI3 perovskite, solar cell, UV treatment, titanium dioxide, electronchemical impedance spectroscopy
相關次數: 點閱:183下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究主要探討低溫二氧化鈦結構層製備以應用於可撓式鈣鈦礦太陽能電池。研究初期先鈣鈦礦的優化條件。由結果可知:於碘化鉛與甲基碘化胺兩步驟的熱處理時間為15分鐘時,可獲得較佳的光電轉化效率,且元件磁滯效應較小。將此條件進一步運用於紫外光照射二氧化鈦結構層之低溫製程上,分別進行紫外光不同照射時間對於鈣鈦礦太陽能電池效能的影響。由研究結果可知:當紫外光照射時間達200分鐘時,二氧化鈦結構層擁有較佳的表面形態及結晶性質,因此可獲得8.28 %的光電轉化效率。此外,為了進一步提高鈣鈦礦太陽能電池,分別以硝酸製程及二乙醇胺製程進行二氧化鈦緻密層塗佈,並在氟摻雜氧化錫玻璃基板上製備鈣鈦礦太陽能電池分別可達到15.30 % 及10.23 % 的光電轉化效率。但將以上兩種緻密層製程應用在氧化銦錫/聚萘二甲酸乙二醇酯可撓曲基材時,由於硝酸會劣化氧化銦錫的導電性質,光電轉化效率僅達6.07 %;相較之下,二乙醇胺製程由於不會劣化氧化銦錫導電層,因此光電轉化效率可達到9.31 %。


    In this study, we investigated the low temperature process for titanium dioxide (TiO2) meso-porous structural layer used in flexible perovskite solar cells. Firstly, we studied the optimal conditions for preparing pervoskite layer via sequential deposition process. According to results, the pervoskite solar cells with the best performance and less hysteresis behavior would be obtained under 15 min heating time for lead iodide and methylammonium iodide. We further applied above conditions on UV irradiated TiO2 meso-porous structural layer under low temperature process and studied the influence of UV irradiation time on the performance of perovskite solar cell. From analysis results, we could observe that the morphology and crystallinity of TiO2 meso-porous structural layer were good and the power conversion efficiency (PCE) can achieve 8.28 % when UV irradiation time around 200 min. To increase the efficiency furthermore, TiO2 treated by nitric acid and di-ethanolamine (DEA) were employed as compact layer. When nitric acid and DEA treated TiO2 compact layer were applied on fluoride-doped tin oxide (FTO) glass substrate, the PCE of perovskite solar cells could achieve 15.30 % and 10.23 %, respectively. However, when nitric acied treated TiO2 compact layer was applied on indium tin oxide (ITO)/ploy(ethylene naphthalate) (PEN) substrate, the PCE only achieved around 6.07% because ITO would be deteriorated by nitric acid easily. Comparing with nitric acid based process, the PCE of perovskite solar cell colud achieve 9.31 % because ITO would not be affectd by DEA.

    中文摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章、 緒論 1-1 前言 1-2 研究動機 第二章、 理論基礎與文獻回顧 2-1 半導體材料 2-2-1 p-n接面 (p-n junction) 2-2 鈣鈦礦材料 2-2-1 鈣鈦礦結構 (perovskite structure) 2-2-2 鈣鈦礦之材料特性 2-2-2-1 能隙特性 2-2-2-2 離子遷移 (ionic migration) 2-2-3 鐵電效應 (ferroelectric polarization) 2-3 鈣鈦礦太陽能電池結構介紹 2-3-1 介孔型態結構 2-3-2 平面型態結構 2-3-2-2 p-i-n反向型態結構 2-4 鈣鈦礦層製作方式 2-4-1 一步驟溶液沉積法 (one step solution deposition) 2-4-2 連續沉積法 (Sequential deposition) 2-4-3 氣相輔助溶液法(vapor-assisted solution process) 2-4-4 真空氣相沉積法 (vacuum deposition) 2-5 磁滯效應 (hysteresis) 2-5-1 電化學交流阻抗頻譜分析 2-5-2 鈣鈦礦元件EIS之分析及擬合模型 第三章、 實驗方法與步驟 3-1 實驗流程步驟圖 3-2 實驗藥品與儀器設備 3-2-1 實驗藥品 3-2-2 分析儀器 3-3 實驗步驟 3-3-1 清理導電基板及定義工作面積 3-3-2 二氧化鈦緻密層及結構層塗佈與製備 3-3-2-1 高溫退火製程 3-3-2-2 低溫UV光製程 3-3-3 沉積鈣鈦礦層及電洞傳輸層 3-3-3-1 配置溶液 3-3-3-2 沉積元件各層之步驟 3-3-4 蒸鍍金屬電極 3-3-5 量測元件效率 第四章、 結果與討論 4-1 製程溫度與時間對鈣鈦礦層之影響 4-1-1 碘化鉛鍍層於不同時間熱處理之性質分析 4-1-2 鈣鈦礦鍍層於不同時間熱處理之性質分析 4-1-3 製程熱處理時間對太陽能電池效能之影響 4-2 以低溫製程進行二氧化鈦結構層對鈣鈦礦太陽能電池之效能影響 4-2-1 紫外光照射處理時間對二氧化鈦結構層影響之性質分析 4-2-2 碘化鉛及鈣鈦礦鍍層製備於低溫二氧化鈦薄膜上之表面型態與結晶性質分析 4-2-3 紫外光照射低溫製程應用於鈣鈦礦太陽能電池之元件效能分析 4-2-4 二氧化鈦緻密層對於低溫製程中鈣鈦礦鍍層表面型態及結晶之影響 4-2-5 二氧化鈦緻密層對低溫製程元件效能之影響 4-3 可撓曲鈣鈦礦太陽能電池之研究 4-3-1 將緻密層應用於可撓曲基板之性質分析 4-3-1 硝酸製程應用於可撓曲基板之元件效能分析 4-3-2 將二乙醇胺製程應用於可撓曲基板之元件效能分析 第五章、 結論 第六章、 參考文獻

    1. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling and B. A. Alamariu.Efficiency enhancement in Si solar cells by textured photonic crystal back reflector. Applied Physics Letters 89 (11), 111111 (2006).
    2. J. Benick, B. Hoex, M. C. M. v. d. Sanden, W. M. M. Kessels, O. Schultz and S. W. Glunz.High efficiency n-type Si solar cells on Al2O3-passivated boron emitters. Applied Physics Letters 92 (25), 253504 (2008).
    3. J. Zhao, A. Wang, M. A. Green and F. Ferrazza.19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters 73 (14), 1991-1993 (1998).
    4. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 131 (17), 6050-6051 (2009).
    5. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh and S. I. Seok.Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356 (6345), 1376-1379 (2017).
    6. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel and N.-G. Park.Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports 2, 591 (2012).
    7. G. Sfyri, C. V. Kumar, D. Raptis, V. Dracopoulos and P. Lianos.Study of perovskite solar cells synthesized under ambient conditions and of the performance of small cell modules. Solar Energy Materials and Solar Cells 134, 60-63 (2015).
    8. C. R.-C. Alexander D. Jodlowski, Giulia Grancini, Manuel Salado, Maryline Ralaiarisoa, Shahzada Ahmad, Norbert Koch, Luis Camacho, Gustavo de Miguel, Mohammad Khaja Nazeeruddin., Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nature Energy 2, 972-979. (2017).
    9. W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel and L. Han.Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350 (6263), 944-948 (2015).
    10. X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt and M. Grätzel.A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science 353 (6294), 58-62 (2016).
    11. J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou and Y. Yang.Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8 (2), 1674-1680 (2014).
    12. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon and H. J. Snaith.Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Communications 4, 2761 (2013).
    13. C. Roldan-Carmona, O. Malinkiewicz, A. Soriano, G. Minguez Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M. I. Dar, M. K. Nazeeruddin and H. J. Bolink.Flexible high efficiency perovskite solar cells. Energy & Environmental Science 7 (3), 994-997 (2014).
    14. 施敏 and 伍國, 半導體元件物理與製作技術. (2013).
    15. Y. T. Yin.(PhD thesis) Development of high power conversion efficiency ZnO-based photoanode to the application of dye-sensitized solar cell. National Taiwan University of Science and Technology (2016).
    16. K. H. Cheng.(Master thesis) The study of chlorine-incorporated perovskite planar heterojunction solar cell. National Taiwan University of Science and Technology (2016).
    17. M. Liu, M. B. Johnston and H. J. Snaith.Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013).
    18. P. Gao, M. Gratzel and M. K. Nazeeruddin.Organohalide lead perovskites for photovoltaic applications. Energy & Environmental Science 7 (8), 2448-2463 (2014).
    19. H. Kim, K.-G. Lim and T.-W. Lee.Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy & Environmental Science 9 (1), 12-30 (2016).
    20. N.-G. Park.Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. The Journal of Physical Chemistry Letters 4 (15), 2423-2429 (2013).
    21. N.-G. Park.Perovskite solar cells: an emerging photovoltaic technology. Materials Today 18 (2), 65-72 (2015).
    22. M. Salado, L. Calio, R. Berger, S. Kazim and S. Ahmad.Influence of the mixed organic cation ratio in lead iodide based perovskite on the performance of solar cells. Physical Chemistry Chemical Physics 18 (39), 27148-27157 (2016).
    23. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt and M. Grätzel.Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354 (6309), 206-209 (2016).
    24. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith.Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 7 (3), 982-988 (2014).
    25. Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma and S. Hayase.CH3NH3SnxPb(1–x)I3 perovskite solar cells covering up to 1060 nm. The Journal of Physical Chemistry Letters 5 (6), 1004-1011 (2014).
    26. F. Hao, C. C. Stoumpos, R. P. H. Chang and M. G. Kanatzidis.Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. Journal of the American Chemical Society 136 (22), 8094-8099 (2014).
    27. N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M. K. Nazeeruddin, J. Maier and M. Grätzel.Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angewandte Chemie International Edition 53 (12), 3151-3157 (2014).
    28. M. Xiao, L. Zhao, S. Wei, Y. Li, B. Dong, Z. Xu, L. Wan and S. Wang.Application of mixed-organic-cation for high performance hole-conductor-free perovskite solar cells. Journal of Colloid and Interface Science 510, 118-126 (2018).
    29. J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S. M. Cho and N.-G. Park.Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Advanced Energy Materials 5 (20), 1501310-n/a (2015).
    30. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt and M. Gratzel.Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science 9 (6), 1989-1997 (2016).
    31. R. W. Siegel, Atomic defects and diffusion in metals Materials Science Division, Argonne National Laboratory, Argonne, Illinois, 16-20 (1981).
    32. G. D. Watkins.Native defects and their interactions with impurities in silicon. MRS Proceedings 469, 139 (2011).
    33. T. Taguchi and B. Ray.Point defects in II–VI compounds. Progress in Crystal Growth and Characterization 6 (2), 103-162 (1983).
    34. M. H. Du.Efficient carrier transport in halide perovskites: theoretical perspectives. Journal of Materials Chemistry A 2 (24), 9091-9098 (2014).
    35. C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O’Regan, A. Walsh and M. S. Islam.Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications 6, 7497 (2015).
    36. C. H. Park and D. J. Chadi.Microscopic study of oxygen-vacancy defects in ferroelectric perovskites. Physical Review B 57 (22), R13961-R13964 (1998).
    37. T. Ishigaki, S. Yamauchi, K. Kishio, J. Mizusaki and K. Fueki.Diffusion of oxide ion vacancies in perovskite-type oxides. Journal of Solid State Chemistry 73 (1), 179-187 (1988).
    38. J. Kim, S.-H. Lee, J. H. Lee and K.-H. Hong.The role of intrinsic defects in methylammonium lead iodide perovskite. The Journal of Physical Chemistry Letters 5 (8), 1312-1317 (2014).
    39. E. Mosconi, D. Meggiolaro, H. J. Snaith, S. D. Stranks and F. De Angelis.Light-induced annihilation of Frenkel defects in organo-lead halide perovskites. Energy & Environmental Science 9 (10), 3180-3187 (2016).
    40. A. Walsh, D. O. Scanlon, S. Chen, X. G. Gong and S.-H. Wei.Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angewandte Chemie International Edition 54 (6), 1791-1794 (2015).
    41. J. M. Azpiroz, E. Mosconi, J. Bisquert and F. De Angelis.Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy & Environmental Science 8 (7), 2118-2127 (2015).
    42. S. C. Abrahams, S. K. Kurtz and P. B. Jamieson.Atomic displacement relationship to curie temperature and spontaneous polarization in displacive ferroelectrics. Physical Review 172 (2), 551-553 (1968).
    43. K. M. Ok, E. O. Chi and P. S. Halasyamani.Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chemical Society Reviews 35 (8), 710-717 (2006).
    44. J. M. Frost, K. T. Butler and A. Walsh.Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Materials 2 (8), 081506 (2014).
    45. M. A. Green, A. Ho-Baillie and H. J. Snaith.The emergence of perovskite solar cells. Nature Photonics 8, 506 (2014).
    46. S. Ravishankar, O. Almora, C. Echeverría-Arrondo, E. Ghahremanirad, C. Aranda, A. Guerrero, F. Fabregat-Santiago, A. Zaban, G. Garcia-Belmonte and J. Bisquert.Surface polarization model for the dynamic hysteresis of perovskite solar cells. The Journal of Physical Chemistry Letters 8 (5), 915-921 (2017).
    47. Z. Fan, J. Xiao, K. Sun, L. Chen, Y. Hu, J. Ouyang, K. P. Ong, K. Zeng and J. Wang.Ferroelectricity of CH3NH3PbI3 perovskite. The Journal of Physical Chemistry Letters 6 (7), 1155-1161 (2015).
    48. B. O'Regan and M. Grätzel.A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).
    49. M. Grätzel.Dye-sensitized solar cells. Journal of Photochemistry and Photobiology 4 (2), 145-153 (2003).
    50. Y. B. Lee.(Master thesis) The influence of photoanode surface treatment on the performance of dye-sensitized solar cells. National Taiwan University of Science and Technology (2017).
    51. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338 (6107), 643-647 (2012).
    52. J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith.Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science 6 (6), 1739-1743 (2013).
    53. H.-S. Kim and N.-G. Park.Parameters affecting I–V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. The Journal of Physical Chemistry Letters 5 (17), 2927-2934 (2014).
    54. D. Bi, S.-J. Moon, L. Haggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Gratzel and A. Hagfeldt.Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Advances 3 (41), 18762-18766 (2013).
    55. J. H. Heo, H. J. Han, D. Kim, T. K. Ahn and S. H. Im.Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science 8 (5), 1602-1608 (2015).
    56. J. W. Chiou.(Master thesis) Perovskite solar cell. National Taiwan University of Science and Technology (2015).
    57. G. Yang, H. Lei, H. Tao, X. Zheng, J. Ma, Q. Liu, W. Ke, Z. Chen, L. Xiong, P. Qin, Z. Chen, M. Qin, X. Lu, Y. Yan and G. Fang.Reducing hysteresis and enhancing performance of perovskite solar cells using low-temperature processed Y-doped SnO2 nanosheets as electron selective layers. Small 13 (2), 1601769-n/a (2017).
    58. L. Huang, X. Sun, C. Li, J. Xu, R. Xu, Y. Du, J. Ni, H. Cai, J. Li, Z. Hu and J. Zhang.UV-sintered low-temperature solution-processed SnO2 as robust electron transport layer for efficient planar heterojunction perovskite solar cells. ACS Applied Materials & Interfaces 9 (26), 21909-21920 (2017).
    59. W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang and Y. Yan.Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. Journal of the American Chemical Society 137 (21), 6730-6733 (2015).
    60. J. Song, J. Bian, E. Zheng, X.-F. Wang, W. Tian and T. Miyasaka.Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer. Chemistry Letters 44 (5), 610-612 (2015).
    61. Y. Cheng, Q.-D. Yang, J. Xiao, Q. Xue, H.-W. Li, Z. Guan, H.-L. Yip and S.-W. Tsang.Decomposition of organometal halide perovskite films on zinc oxide nanoparticles. ACS Applied Materials & Interfaces 7 (36), 19986-19993 (2015).
    62. Z. Guo, L. Gao, C. Zhang, Z. Xu and T. Ma.Low-temperature processed non-TiO2 electron selective layers for perovskite solar cells. Journal of Materials Chemistry A 6 (11), 4572-4589 (2018).
    63. M. A. Mejía Escobar, S. Pathak, J. Liu, H. J. Snaith and F. Jaramillo.ZrO2/TiO2 electron collection layer for efficient meso-superstructured hybrid perovskite solar cells. ACS Applied Materials & Interfaces 9 (3), 2342-2349 (2017).
    64. K. Wang, Y. Shi, Q. Dong, Y. Li, S. Wang, X. Yu, M. Wu and T. Ma.Low-temperature and solution-processed amorphous WOX as electron-selective layer for perovskite solar cells. The Journal of Physical Chemistry Letters 6 (5), 755-759 (2015).
    65. X. Wang, L.-L. Deng, L.-Y. Wang, S.-M. Dai, Z. Xing, X.-X. Zhan, X.-Z. Lu, S.-Y. Xie, R.-B. Huang and L.-S. Zheng.Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature. Journal of Materials Chemistry A 5 (4), 1706-1712 (2017).
    66. P. Chen, X. Yin, M. Que, X. Liu and W. Que.Low temperature solution processed indium oxide thin films with reliable photoelectrochemical stability for efficient and stable planar perovskite solar cells. Journal of Materials Chemistry A 5 (20), 9641-9648 (2017).
    67. P. Chen, X. Yin, M. Que, Y. Yang, X. Liu and W. Que.Bilayer photoanode approach for efficient In2O3 based planar heterojunction perovskite solar cells. Journal of Alloys and Compounds 735, 938-944 (2018).
    68. A. Yella, L.-P. Heiniger, P. Gao, M. K. Nazeeruddin and M. Grätzel.Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano Letters 14 (5), 2591-2596 (2014).
    69. T. van der Meulen, A. Mattson and L. Österlund.A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase–rutile TiO2 nanoparticles: Role of surface intermediates. Journal of Catalysis 251 (1), 131-144 (2007).
    70. S.-D. Mo and W. Y. Ching.Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Physical Review B 51 (19), 13023-13032 (1995).
    71. J. Zhang, Q. Xu, Z. Feng, M. Li and C. Li.Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angewandte Chemie International Edition 47 (9), 1766-1769 (2008).
    72. P. S. C. Schulze, A. J. Bett, K. Winkler, A. Hinsch, S. Lee, S. Mastroianni, L. E. Mundt, M. Mundus, U. Würfel, S. W. Glunz, M. Hermle and J. C. Goldschmidt.Novel low-temperature process for perovskite solar cells with a mesoporous TiO2 scaffold. ACS Applied Materials & Interfaces 9 (36), 30567-30574 (2017).
    73. L. Huang, J. Xu, X. Sun, C. Li, R. Xu, Y. Du, J. Ni, H. Cai, J. Li, Z. Hu and J. Zhang.Low-temperature photochemical activation of sol-gel titanium dioxide films for efficient planar heterojunction perovskite solar cells. Journal of Alloys and Compounds 735, 224-233 (2018).
    74. Q. Dong, Y. Shi, C. Zhang, Y. Wu and L. Wang.Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%. Nano Energy 40, 336-344 (2017).
    75. Y. Wang, S. Li, P. Zhang, D. Liu, X. Gu, H. Sarvari, Z. Ye, J. Wu, Z. Wang and Z. D. Chen.Solvent annealing of PbI2 for the high-quality crystallization of perovskite films for solar cells with efficiencies exceeding 18%. Nanoscale 8 (47), 19654-19661 (2016).
    76. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith.Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342 (6156), 341-344 (2013).
    77. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li and Y. Yang.Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society 136 (2), 622-625 (2014).
    78. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely and H. J. Snaith.Morphological control for high performance, solution‐processed planar heterojunction perovskite solar cells. Advanced Functional Materials 24 (1), 151-157 (2014).
    79. G. Yang, C. Chen, F. Yao, Z. Chen, Q. Zhang, X. Zheng, J. Ma, H. Lei, P. Qin and L. Xiong.Effective carrier‐concentration tuning of SnO2 quantum dot electron‐selective layers for high‐performance planar perovskite solar cells. Advanced Materials 30 (14), 1706023 (2018).
    80. J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen and T. C. Wen.CH3NH3PbI3 perovskite/fullerene planar‐heterojunction hybrid solar cells. Advanced Materials 25 (27), 3727-3732 (2013).
    81. J. Y. Jeng, K. C. Chen, T. Y. Chiang, P. Y. Lin, T. D. Tsai, Y. C. Chang, T. F. Guo, P. Chen, T. C. Wen and Y. J. Hsu.Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar‐heterojunction hybrid solar cells. Advanced Materials 26 (24), 4107-4113 (2014).
    82. Y. Bai, H. Yu, Z. Zhu, K. Jiang, T. Zhang, N. Zhao, S. Yang and H. Yan.High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer. Journal of Materials Chemistry A 3 (17), 9098-9102 (2015).
    83. H. Dong, Z. Wu, B. Xia, J. Xi, F. Yuan, S. Ning, L. Xiao and X. Hou, Modified deposition process of electron transport layer for efficient inverted planar perovskite solar cells. Chem. commun 51, 8986-8989. (2015).
    84. H. Zhang, J. Cheng, F. Lin, H. He, J. Mao, K. S. Wong, A. K. Y. Jen and W. C. H. Choy.Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano 10 (1), 1503-1511 (2016).
    85. N. Mehrdad, D. G. Francesco, Z. Dong, S. Santhosh, S. Alessia, V. Wiljan, H. Afshin, G. Yulia, A. Tom, V. Sjoerd and A. Ronn.Highly efficient and stable flexible perovskite solar cells with metal oxides nanoparticle charge extraction layers. Small 14 (12), 1702775 (2018).
    86. C.-H. Chiang, M. K. Nazeeruddin, M. Gratzel and C.-G. Wu.The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy & Environmental Science 10 (3), 808-817 (2017).
    87. H.-S. Kim, I.-H. Jang, N. Ahn, M. Choi, A. Guerrero, J. Bisquert and N.-G. Park.Control of I–V hysteresis in CH3NH3PbI3 perovskite solar cell. The Journal of Physical Chemistry Letters 6 (22), 4633-4639 (2015).
    88. Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu and Y. Yang.Controllable self-induced passivation of hybrid lead Iodide perovskites toward high performance solar cells. Nano Letters 14 (7), 4158-4163 (2014).
    89. Z. Ren, M. Zhu, X. Li and C. Dong.An isopropanol-assisted fabrication strategy of pinhole-free perovskite films in air for efficient and stable planar perovskite solar cells. Journal of Power Sources 363, 317-326 (2017).
    90. F. Hao, C. C. Stoumpos, Z. Liu, R. P. H. Chang and M. G. Kanatzidis.Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. Journal of the American Chemical Society 136 (46), 16411-16419 (2014).
    91. C. W. Chen, H. W. Kang, S. Y. Hsiao, P. F. Yang, K. M. Chiang and H. W. Lin.Efficient and uniform planar‐type perovskite solar cells by simple sequential vacuum deposition. Advanced Materials 26 (38), 6647-6652 (2014).
    92. W. T. Wang, S. K. Das and Y. Tai.Fully ambient-processed perovskite film for perovskite solar cells: effect of solvent polarity on lead iodide. ACS Appl Mater Interfaces 9 (12), 10743-10751 (2017).
    93. Y. Tu, J. Wu, X. He, P. Guo, T. Wu, H. Luo, Q. Liu, K. Wang, J. Lin and M. Huang.Solvent engineering for forming stonehenge-like PbI2 nano-structures towards efficient perovskite solar cells. Journal of Materials Chemistry A 5 (9), 4376-4383 (2017).
    94. M. Li, X. Yan, Z. Kang, X. Liao, Y. Li, X. Zheng, P. Lin, J. Meng and Y. Zhang.Enhanced efficiency and stability of perovskite solar cells via anti-solvent treatment in two-step deposition method. ACS applied materials & interfaces 9 (8), 7224-7231 (2017).
    95. J. Zhang, G. Zhai, W. Gao, C. Zhang, Z. Shao, F. Mei, J. Zhang, Y. Yang, X. Liu and B. Xu.Accelerated formation and improved performance of CH3NH3PbI3-based perovskite solar cells via solvent coordination and anti-solvent extraction. Journal of Materials Chemistry A 5 (8), 4190-4198 (2017).
    96. S. Wang, W. Zhang, D. Ma, Z. Jiang, Z. Fan, Q. Ma and Y. Xi.Improvement of photovoltaic performance of the inverted planar perovskite solar cells by using CH3NH3PbI3−xBrx films with solvent annealing. Superlattices and Microstructures 113, 1-12 (2017).
    97. M.-C. Shih, S.-S. Li, C.-H. Hsieh, Y.-C. Wang, H.-D. Yang, Y.-P. Chiu, C.-S. Chang and C.-W. Chen.Spatially resolved imaging on photocarrier generations and band alignments at perovskite/PbI2 heterointerfaces of perovskite solar cells by light-modulated scanning tunneling microscopy. Nano Letters 17 (2), 1154-1160 (2017).
    98. R. S. Sanchez, V. Gonzalez-Pedro, J.-W. Lee, N.-G. Park, Y. S. Kang, I. Mora-Sero and J. Bisquert.Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. The Journal of Physical Chemistry Letters 5 (13), 2357-2363 (2014).
    99. G. Giorgi and K. Yamashita.Zero-dipole molecular organic cations in mixed organic–inorganic halide perovskites: possible chemical solution for the reported anomalous hysteresis in the current–voltage curve measurements. Nanotechnology 26 (44), 442001 (2015).
    100. E. Unger, E. Hoke, C. Bailie, W. Nguyen, A. Bowring, T. Heumüller, M. Christoforo and M. McGehee.Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy & Environmental Science 7 (11), 3690-3698 (2014).
    101. E. Ghahremanirad, A. Bou, S. Olyaee and J. Bisquert.Inductive loop in the impedance response of perovskite solar cells explained by surface polarization model. The Journal of Physical Chemistry Letters 8 (7), 1402-1406 (2017).
    102. R. Gottesman, P. Lopez-Varo, L. Gouda, J. A. Jimenez-Tejada, J. Hu, S. Tirosh, A. Zaban and J. Bisquert.Dynamic phenomena at perovskite/electron-selective contact interface as interpreted from photovoltage decays. Chem 1 (5), 776-789 (2016).
    103. I. Zarazua, J. Bisquert and G. Garcia-Belmonte.Light-induced space-charge accumulation zone as photovoltaic mechanism in perovskite solar cells. The Journal of Physical Chemistry Letters 7 (3), 525-528 (2016).
    104. O. Almora, C. Aranda, I. Zarazua, A. Guerrero and G. Garcia-Belmonte.Noncapacitive hysteresis in perovskite solar cells at room temperature. ACS Energy Letters 1 (1), 209-215 (2016).
    105. W. Tress, N. Marinova, T. Moehl, S. M. Zakeeruddin, M. K. Nazeeruddin and M. Grätzel.Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science 8 (3), 995-1004 (2015).
    106. H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski and W. Zhang.Anomalous hysteresis in perovskite solar cells. The Journal of Physical Chemistry Letters 5 (9), 1511-1515 (2014).
    107. C. Ma, D. Shen, T. W. Ng, M. F. Lo and C. S. Lee.2D perovskites with short interlayer distance for high‐performance solar cell application. Advanced Materials 30 (22), 1800710 (2018).
    108. T. Singh, S. Öz, A. Sasinska, R. Frohnhoven, S. Mathur and T. Miyasaka.Sulfate‐assisted interfacial engineering for high yield and efficiency of triple cation perovskite solar cells with alkali‐doped TiO2 electron‐transporting layers. Advanced Functional Materials 28 (14), 1706287 (2018).
    109. C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, M. K. Nazeeruddin, A. Hagfeldt and M. Grätzel.High efficiency stable inverted perovskite solar cells without current hysteresis. Energy & Environmental Science 8 (9), 2725-2733 (2015).
    110. W.-T. Wang, J. Sharma, J.-W. Chen, C.-H. Kao, S.-Y. Chen, C.-H. Chen, Y.-C. Feng and Y. Tai.Nanoparticle-induced fast nucleation of pinhole-free PbI2 film for ambient-processed highly-efficient perovskite solar cell. Nano Energy 49, 109-116 (2018).
    111. J. Chen, Z. Wan, J. Liu, S.-Q. Fu, F. Zhang, S. Yang, S. Tao, M. Wang and C. Chen.Growth of compact CH3NH3PbI3 thin films governed by the crystallization in PbI2 matrix for efficient planar perovskite solar cells. ACS applied materials & interfaces 10 (10), 8649-8658 (2018).
    112. C. Roldan-Carmona, P. Gratia, I. Zimmermann, G. Grancini, P. Gao, M. Graetzel and M. K. Nazeeruddin.High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors. Energy & Environmental Science 8 (12), 3550-3556 (2015).
    113. D. Yang, R. Yang, J. Zhang, Z. Yang, S. F. Liu and C. Li.High efficiency flexible perovskite solar cells using superior low temperature TiO 2. Energy & Environmental Science 8 (11), 3208-3214 (2015).
    114. K. Wang, Y. Shi, L. Gao, R. Chi, K. Shi, B. Guo, L. Zhao and T. Ma.W(Nb)Ox-based efficient flexible perovskite solar cells: From material optimization to working principle. Nano Energy 31, 424-431 (2017).
    115. D. C. Schmelling and K. A. Gray.Photocatalytic transformation and mineralization of 2,4,6-trinitrotoluene (TNT) in TiO2 slurries. Water Research 29 (12), 2651-2662 (1995).
    116. B. L. Bischoff and M. A. Anderson.Peptization process in the sol-gel preparation of porous anatase (TiO2). Chemistry of Materials 7 (10), 1772-1778 (1995).
    117. B. Conings, L. Baeten, T. Jacobs, R. Dera, J. D’Haen, J. Manca and H.-G. Boyen.An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells. APL Materials 2 (8), 081505 (2014).
    118. A. Verma and S. Agnihotry.Thermal treatment effect on nanostructured TiO2 films deposited using diethanolamine stabilized precursor sol. Electrochimica Acta 52 (7), 2701-2709 (2007).
    119. A. Verma, M. Kar and S. Agnihotry.Aging effect of diethanolamine stabilized sol on different properties of TiO2 films: Electrochromic applications. Solar Energy Materials and Solar Cells 91 (14), 1305-1312 (2007).

    無法下載圖示 全文公開日期 2023/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE