簡易檢索 / 詳目顯示

研究生: 謝欽智
Chin-Chih Hsieh
論文名稱: 氧化鋅-碳點/奈米纖維薄膜應用至柔性敏化太陽能電池
ZnO-Cdot/nanofiber composite film electrode for flexible DSSC
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 氏原真樹
Masaki Ujihara
周宏隆
Hung-Lung Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 56
中文關鍵詞: 氧化鋅奈米碳點奈米纖維柔性電極染料敏化太陽能電池
外文關鍵詞: ZnO, Cdot, nanofiber, flexible electrode, DSSC
相關次數: 點閱:247下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,描述了2,2,6,6-四甲基哌啶氧化纖維素奈米纖維(2,2,6,6-tetramethyl-1-piperidinyloxy radical -oxidized cellulose nanofiber, TOCNF)和氧化鋅、奈米碳點製作成柔性導電複合薄膜,並且當作工作電極以及TOCNF和聚吡咯製作成複合物並當作相對電極,並應用於染料敏化太陽能電池。
    奈米纖維主要利用TEMPO作為介導物質的氧化方法製備,並取之TOCNF,並透過水熱法製備氧化鋅奈米棒或氧化鋅奈米線和碳點。工作電極的複合材料主要是利用原位生長的方式結合奈米纖維素以及奈米氧化鋅兩種材料,並利用球狀奈米氧化鋅或線狀奈米氧化鋅和奈米碳點作表面加載,以改善光電轉換效率。相對電極的複合材料主要是利用原位生長聚合法結合聚吡咯以及TOCNF,可有效地代替價格較為昂貴的鉑。
    透過實驗在工作電極表面加載氧化鋅以及奈米碳點可以有效的提高光電轉換效率,將100毫克的氧化鋅奈米粒子附載於纖維素與奈米棒狀氧化鋅的基板上可以提高光電轉化效率至0.051%。利用氧化鋅與奈米碳點其最佳重量比位1/0.6附載於維素與奈米棒狀氧化鋅的基板上,可以提高光電轉化效率至0.117%。
    藉由藥品用量的比例,可準備出不同比例的官能基(COOH:NH2)的奈米碳點,其最優化為1:1.5,利用此種比例的奈米碳點以及氧化鋅附載於柔性基板上可以獲得0.18%的光電轉換效率。將奈米氧化鋅粒子改為奈米氧化鋅線,其功率可從0.18%提高至0.246%。
    表面加載為一種方法,而修改柔性基板也是另一種可行方式,透過改變奈米棒狀氧化鋅為奈米線狀氧化鋅與TOCNF成為柔性基板,並且附載最優量化的奈米碳點以及奈米氧化鋅粒子,其功率從0.18%提高至0.4%。


    This thesis was describes a composite of 2,2,6,6-tetramethyl-1-piperidinyloxy radical (TEMPO) oxidized cellulose nanofibers (TOCNFs), Zinc oxide (ZnO) and carbon dots (Cdots) used as a photoanode and a composite of TOCNF and polypyrrole(PPY) as a counter electrode which was applied on the dye-sensitized solar cell.
    TOCNF was prepared based on the TEMPO-mediated oxidation procedure, and ZnO nanorods(ZnO NR) and ZnO nanowires(ZnO NW) and Cdots were prepared by hydrothermal method. And ZnO nanoparticle (ZnO NP) was prepared by polyol method.
    ZnO NR was in-situ grown on TOCNF, the composite of TOCNF and ZnO NR was prepared, and this was used as a photoanode in dye-sensitized solar cell. ZnO NP optimized 100 mg was loaded on TOCNF-ZnO NR electrode, the energy conversion efficiency 0.05 % was obtained from this electrode. The weight ratio of ZnO NP with Cdots was optimized 1/0.6 and loaded on the TOCNF-ZnO NR electrode. The energy conversion efficiency 0.117% was obtained from this electrode.
    The ratio of COOH: NH2 in Cdots was optimized 1:1.5, then energy conversion efficiency was 0.18%, could be enhanced from 0.18 to 0.246% by changing ZnO NP to ZnO NW. TOCNF-ZnO NW electrode which was loaded ZnO NP and Cdots had better photovoltaic performance than TOCNF-ZnO NR electrode which loaded ZnO NP and Cdots, and the energy conversion was increased from 0.18 to 0.4%.

    Abstract i 摘要 ii Acknowledgements iii Content iv List of figure vi List of table viii Chapter1. Introduction - 1 - 1.1 Introduction - 1 - 1.2 Classification of solar cells - 1 - 1.3 Materials applied on DSSC - 2 - 1.4 Application of solar cells - 3 - 1.5 Motivation - 5 - Chapter 2.Experimental - 6 - 2.1 Materials - 6 - 2.2 Experiment Process - 7 - 2.2.1 Synthesis of TEMPO-Oxidized Cellulose Nanofiber (TOCNF) - 7 - 2.2.2 Synthesis of Composite Film of TOCNF and Polypyrrole (PPy) (TOCNF-PPy film) - 9 - 2.2.3 Synthesis of ZnO nanorods (ZnO NR),ZnO NP (ZnO NP), ZnO nanowires (ZnO NW) and Carbon dots (Cdots) - 10 - 2.2.4 Synthesis of the composites of TOCNF, ZnO, and Cdots - 11 - 2.3 Assembling of Dye-sensitized Solar Cells (DSSCs) - 14 - 2.4 Electrochemical Measurements - 15 - 2.5 Instruments - 15 - Chapter 3 Results and Discussion - 16 - 3.1 Characterization of TOCNF/ZnO/ Cdots and their composite - 16 - 3.1.1 Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffractometer (XRD) and Morphology - 16 - 3.1.2 Thermal property - 25 - 3.1.3 Optical band gap - 27 - 3.2 Photoelectric performance of TOCNF composites - 29 - 3.2.1 Electrochemical performance - 29 - 3.2.2 Photo-electrochemical measurement of DSSC solar cell - 30 - 3.3 Effects of ZnO and Cdots on TOCNF composites on DSSC - 32 - 3.3.1 ZnO NP loaded on TOCNF-ZnO NR effect on DSSCs - 32 - 3.3.2 Cdots @ZnO NP loaded on TOCNF-ZnO NR effect on DSSCs - 34 - 3.3.3 Different concentration of Cdots @ZnO NP effect on DSSCs - 37 - 3.4 Effect of calcination and ZnO shape onto TOCNF composites on DSSC - 39 - 3.4.1 Effect of the shape or thermal treatment of ZnO nanostructure onto TOCNF composite on DSSC - 39 - Chapter 4 Conclusion - 42 - References - 43 -

    1. Lindley, D., Smart grids: The energy storage problem. Nat. News, 2010. 463(7277): p. 18-20.
    2. Francová, A., Chrastný, V., Šillerová, H., Evaluating the suitability of different environmental samples for tracing atmospheric pollution in industrial areas. Environ. Pollut., 2017. 220: p. 286-297.
    3. Nelms, S.E., Galloway, T.S., Godley, B.J., Investigating microplastic trophic transfer in marine top predators. Environ. Pollut., 2018. 238: p. 999-1007.
    4. Zalba, B., Marin, J.M., Cabeza, L.F., Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng., 2003. 23(3): p. 251-283.
    5. Safari, A., Saidur, R., F.A. Sulaiman., A review on supercooling of Phase Change Materials in thermal energy storage systems. J. Renew. Sustain. Ener. Rev., 2017. 70: p. 905-919.
    6. Ferrer, G., Camila, B., Solé, A., New proposed methodology for specific heat capacity determination of materials for thermal energy storage (TES) by DSC. J. Energ. Storage, 2017. 11: p. 1-6.
    7. Giroud, F., Sawada, K., Taya, M., 5, 5-Dithiobis (2-nitrobenzoic acid) pyrene derivative-carbon nanotube electrodes for NADH electrooxidation and oriented immobilization of multicopper oxidases for the development of glucose/O2 biofuel cells. Biosens. Bioelectron., 2017. 87: p. 957-963.
    8. Qiu, H.-J., Guan, Y., Luo, P., Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells. Biosens. Bioelectron., 2017. 89: p. 85-95.
    9. Kato, H., Onda, Y., Hisadome K., Temporal changes in radiocesium deposition in various forest stands following the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioactiv., 2017. 166: p. 449-457.
    10. Li, M.-J., Zhu, H.-H., Guo, J.-Q., The development technology and applications of supercritical CO2 power cycle in nuclear energy, solar energy and other energy industries. Appl. Therm. Eng., 2017. 126: p. 255-275.
    11. Yella, A., Mathew, S., Aghazada, S., Dye-sensitized solar cells using cobalt electrolytes: the influence of porosity and pore size to achieve high-efficiency. J. Mater. Chem. C, 2017. 5(11): p. 2833-2843.
    12. Denholm, P., Ela, E., Kirby, B., The role of energy storage with renewable electricity generation. 2010.
    13. Zhao, J., Wang, A. Green, M.A., 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett., 1998. 73(14): p. 1991-1993.
    14. Rühle, S., Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy, 2016. 130: p. 139-147.
    15. Naghavi, N., Spiering, S., Powalla, M., High‐efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD). Prog. Photovoltat. Res. Appl., 2003. 11(7): p. 437-443.
    16. Panthani, M.G., Akhavan, V., Goodfellow, B., Synthesis of CuInS2, CuInSe2, and Cu (In x Ga1-x) Se2 (CIGS) nanocrystal “inks” for printable photovoltaics. J. Am. Chem. Soc., 2008. 130(49): p. 16770-16777.
    17. Repins, I., Contreras, M.A., Egaas, B., 19· 9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81· 2% fill factor. Prog. Photovoltat. Res. Appl., 2008. 16(3): p. 235-239.
    18. Dimroth, F., Tibbits T.N.D., Niemeyer, M., Four-junction wafer-bonded concentrator solar cells. IEEE J. Photovolt., 2016. 6(1): p. 343-349.
    19. Tributsch, H., Dye sensitization solar cells: a critical assessment of the learning curve. Coordin. Chem. Rev., 2004. 248(13-14): p. 1511-1530.
    20. Phattalung, S.N., Limpijumnong S., Yu J., Passivated co-doping approach to bandgap narrowing of titanium dioxide with enhanced photocatalytic activity. Appl. Catal. B- Environ., 2017. 200: p. 1-9.
    21. Momeni, M.M., Ghayeb, Y., Gheibee, S., Silver nanoparticles decorated titanium dioxide-tungsten trioxide nanotube films with enhanced visible light photo catalytic activity. Ceram. Int., 2017. 43(1): p. 564-570.
    22. Lei, C., Pi, M., Cheng, B., Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red. J. Colloid Interf. Sci., 2017. 490: p. 242-251.
    23. Bush, K.A., Palmstrom, A.F., Zhengshan, J.Y., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy, 2017. 2(4): p. 17009.
    24. Abulikemu, M., Neophytou, M. Barbé, J. M., Microwave-synthesized tin oxide nanocrystals for low-temperature solution-processed planar junction organo-halide perovskite solar cells. J. Mater. Chem. A, 2017. 5(17): p. 7759-7763.
    25. Bao, Y., Lim, T.T., Goei, R., One-step construction of heterostructured metal-organics@ Bi2O3 with improved photoinduced charge transfer and enhanced activity in photocatalytic degradation of sulfamethoxazole under solar light irradiation. Chemosphere, 2018. 205: p. 396-403.
    26. Das, T.K., Ilaiyaraja, P., Sudakar, C., Template assisted nanoporous TiO 2 nanoparticles: The effect of oxygen vacancy defects on photovoltaic performance of DSSC and QDSSC. Sol. Ener., 2018. 159: p. 920-929.
    27. Tricoli, A., Nasiri, N., Chen, H., Ultra-rapid synthesis of highly porous and robust hierarchical ZnO films for dye sensitized solar cells. Sol. Ener., 2016. 136: p. 553-559.
    28. Chen, L., Chen, W., Wang, E., Graphene with cobalt oxide and tungsten carbide as a low-cost counter electrode catalyst applied in Pt-free dye-sensitized solar cells. J. Power Sources, 2018. 380: p. 18-25.
    29. Suzuki, K., Yamaguchi, M., Kumagai, M., Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem. Lett., 2002. 32(1): p. 28-29.
    30. Wu, J., Li, Q., Fan, L., High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells. J. Power Sources, 2008. 181(1): p. 172-176.
    31. Jha, P., Veerender, P., Koiry, S.P., Growth of aligned polypyrrole acicular nanorods and their application as Pt‐free semitransparent counter electrode in dye‐sensitized solar cell. Polym. Adv. Technol., 2018. 29(1): p. 401-406.
    32. Wan, C., Jiao, Y., Li, J., Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J. Mater. Chem. A, 2017. 5(8): p. 3819-3831.
    33. Chauhan, I., Aggrawal, S., Mohanty, P., ZnO nanowire-immobilized paper matrices for visible light-induced antibacterial activity against Escherichia coli. Environmental Science: Nano, 2015. 2(3): p. 273-279.
    34. Shokri, J., Adibkia, K., Application of cellulose and cellulose derivatives in pharmaceutical industries, Cell.-med., Pharmac. Elect. Appl. 2013, InTech.
    35. Mun, S., Chen, Y., and Kim J., Cellulose–titanium dioxide–multiwalled carbon nanotube hybrid nanocomposite and its ammonia gas sensing properties at room temperature. Sensor. Actuat. B- Chem., 2012. 171: p. 1186-1191.
    36. Isogai, A., Saito, T., Fukuzumi, H., TEMPO-oxidized cellulose nanofibers. nanoscale, 2011. 3(1): p. 71-85.
    37. Harale, N.S., Kamble, A.S., Tarwal, N.L., Hydrothermally grown ZnO nanorods arrays for selective NO2 gas sensing: Effect of anion generating agents. Ceram. Int., 2016. 42(11): p. 12807-12814.
    38. Efa, M.T., Imae T., Hybridization of carbon-dots with ZnO nanoparticles of different sizes. J. Taiwan Inst. Chem. E., 2018.
    39. Alshehri, N.A., Lewis, A.R., Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications. J. Saudi Chem. Soc., 2017.
    40. Devadas, B., Imae T., Effect of Carbon Dots on Conducting Polymers for Energy Storage Applications. ACS Sustain. Chem. Eng., 2017. 6(1): p. 127-134.
    41. Krysmann, M.J., Kelerakis, A., Dallas, P., Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc., 2011. 134(2): p. 747-750.
    42. Ko, H.-U., Mun, S. Min, S.-K., Fabrication of cellulose ZnO hybrid nanocomposite and its strain sensing behavior. Materials, 2014. 7(10): p. 7000-7009.
    43. Liu, C.-F., Ren, J.-L., Xu, F., Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse. J. Agr. food chem., 2006. 54(16): p. 5742-5748.
    44. Breedon, M., Yu, J., Wlodarski, W., ZnO nanostructured arrays grown from aqueous solutions on different substrates. Nanosci. Nanotech., 2008. ICONN 2008. International Conference on. 2008. IEEE.
    45. Baruah, S., Dutta, J., Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mat., 2009. 10(1): p. 013001.
    46. Guo, W., Liu, T., Hung, L., HMT assisted hydrothermal synthesis of various ZnO nanostructures: structure, growth and gas sensor properties. Physica E., 2011. 44(3): p. 680-685.
    47. Bhadra, P., Mitra, M.K., Das, G.C., Interaction of chitosan capped ZnO nanorods with Escherichia coli. Adv. Mater. Sci. Eng., 2011. 31(5): p. 929-937.
    48. Vinogradoff, V., Rimola, A., Duvernay, F., The mechanism of hexamethylenetetramine (HMT) formation in the solid state at low temperature. Phys. Chem. Chem. Phys., 2012. 14(35): p. 12309-12320.
    49. Lu, P., Hsieh, Y.-L., Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohyd. polym., 2010. 82(2): p. 329-336.
    50. Mahadeva, S.K., Yun, S., Kim, J., Flexible humidity and temperature sensor based on cellulose–polypyrrole nanocomposite. Sensors Actuat. A- Phys., 2011. 165(2): p. 194-199.
    51. Wang, J.-G., Wei, B., Kang, F., Facile synthesis of hierarchical conducting polypyrrole nanostructures via a reactive template of MnO 2 and their application in supercapacitors. Rsc. Adv., 2014. 4(1): p. 199-202.
    52. Liu, S., He, K., Wu, X., Surface modification of cellulose scaffold with polypyrrole for the fabrication of flexible supercapacitor electrode with enhanced capacitance. RSC Adv., 2015. 5(106): p. 87266-87276.
    53. Wu, X., Chabot, V.L., Kim, B.K., Cost-effective and scalable chemical synthesis of conductive cellulose nanocrystals for high-performance supercapacitors. Electrochim. Acta, 2014. 138: p. 139-147.
    54. Jradi, K., Maury, C., Daneault, C., Contribution of TEMPO-oxidized cellulose gel in the formation of flower-like zinc oxide superstructures: characterization of the TOCgel/ZnO composite films. Appl. Sci., 2015. 5(4): p. 1164-1183.
    55. Lizundia, E., Urrurchi, A., Vilas, J.L., Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films. Carbohyd. polym., 2016. 136: p. 250-258.
    56. Barman, M.K., Mitra, P., Bera, R., An efficient charge separation and photocurrent generation in the carbon dot–zinc oxide nanoparticle composite. Nanoscale, 2017. 9(20): p. 6791-6799.
    57. Zhang, G., Liao, Q., Qin, Z., Fast sensitization process of ZnO-nanorod-array electrodes by electrophoresis for dye-sensitized solar cells. RSC Adv., 2014. 4(74): p. 39332-39336.
    58. Lin, L.-Y., Yeh, M.-H., Lee. C.-P., Enhanced performance of a flexible dye-sensitized solar cell with a composite semiconductor film of ZnO nanorods and ZnO nanoparticles. Electrochim. Acta, 2012. 62: p. 341-347.
    59. Li, Y., Zhang, B.-P., Zhao, J.-X., ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties. Appl. Surf. Sci., 2013. 279: p. 367-373.
    60. Eom, K.H., Yun, T.-K., Hong, J.-Y., Effect of Nitrogen Doping on the Performance of Dye-Sensitized Solar Cells Composed of Mesoporous TiO2 Photoelectrodes. J. Nanosci. Nanotechno., 2014. 14(12): p. 9362-9367.
    61. Wu, J., Li, P., Hao, S., A polyblend electrolyte (PVP/PEG+ KI+ I2) for dye-sensitized nanocrystalline TiO2 solar cells. Electrochim. Acta, 2007. 52(17): p. 5334-5338.

    無法下載圖示 全文公開日期 2023/07/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE