簡易檢索 / 詳目顯示

研究生: 徐其全
Chi-Chuan Hsu
論文名稱: 靜電紡絲蠶絲蛋白/二氧化鈦奈米纖維薄膜作為生醫敷料之探討
Preparation and characterization of electrospun silk fibroin/TiO2 naofibers for biomedical applications
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 王大銘
Da-Ming Wang
蘇清淵
Ching-Yuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 92
中文關鍵詞: 靜電紡絲蠶絲蛋白二氧化鈦創傷敷料
外文關鍵詞: Electrospinning, Silk fibroin(SF), TiO2, Wound
相關次數: 點閱:383下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以靜電紡絲製備蠶絲蛋白奈米纖維薄膜,並探討其溶液濃度對成絲之影響,以製作最佳化的蠶絲蛋白纖維薄膜。而後混摻不同濃度之二氧化鈦奈米顆粒,在最佳參數條件下製成蠶絲蛋白/二氧化鈦奈米纖維薄膜。本實驗探討奈米纖維的製備效果與添加二氧化鈦奈米顆粒後的基本物理性質、血液與生物相容性。
    由SEM得知蠶絲蛋白的濃度達10%(w/v)時,出現完整的不織布狀奈米級纖維,平均尺寸約386±73 nm ;添加二氧化鈦後也有良好的成絲性。FTIR光譜中出現Silk I、SilkII分子構型的改變。亞甲基藍溶液經過24小時的光觸媒分解其濃度減低近50%。材料熱穩定性和表面粗糙度隨著二氧化鈦濃度增加而上升。蠶絲蛋白/二氧化鈦薄膜具有比市售敷料較佳的含水率與水蒸氣穿透率。血液常規測試與細胞毒性並無特殊異常。觀察纖維母細胞L929在蠶絲蛋白/二氧化鈦薄膜上的貼附有明顯地增加。抗菌性測試也顯示出對於大腸桿菌(E.coli)有明顯的抑菌性。
    總括而言,本實驗製備的蠶絲蛋白/二氧化鈦奈米纖維薄膜具有潛力應用於組織工程之創傷敷料相關研究。


    Using electrospinning to fabricate silk fibroin (SF) nanofiber film was investigated, thus blending different weight ratio of TiO2 with SF solution fabricates SF/TiO2 hybrid nanofibers with optimizative parameters. In this study, we investigated the preparation of nanofibers, and the physical properties, biocompatibility after blending with TiO2 nanoparticle.
    Scanning electron microscope (SEM) revealed that the SF nanofibers was formed with average diameters 386±73 nm when the concentration of SF was up to 10 %(w/v). The SF/TiO2 nanofibers film was also successfully prepared. FTIR identified the conversion of the random coil (Silk I) conformation of SF into β-sheet (Silk II) by treating with acetone. The maximum photocatalytic decomposition of methylene blue solution was nearly achieved to 50% after 24 hours. Compared with pure SF film, the thermal stability and surface roughness was improved by the blending with TiO2 nanoparticle. The SF/TiO2 nanofibers film provided a better level of equilibrium water content (EWC) and water vapor transmission rate (WVTR) than TegasorbTM (Hydrocolloid dressing). Complete blood count (CBC) and cytotoxicity showed no significantly difference. The SF/TiO2 nanofibers film was found to promote the adhesion, growth and spreading of L929 fibroblasts cells according to a three dimensional network of the nanofibrous structure, and exhibited antibacterial activities against Escherichia coli. In conclusion, the novel nanocomposite mats may be a good candidate as wound dressing for tissue engineering applications.

    中文摘要 II 英文摘要 III 誌謝 IV 目錄 V 圖索引 IX 表索引 XI 第一章 緒論 1 1-1研究背景 1 1-1研究目的 3 第二章 文獻回顧 4 2-1靜電紡絲介紹 4 2-1-1電紡基本原理 4 2-1-2電紡裝置架設 6 2-1-3影響電紡之因素 7 2-2生醫材料 8 2-2-1蠶絲蛋白 8 2-2-2蠶絲蛋白結構改性 13 2-2-3聚氧乙烯(PEO) 17 2-3光觸媒TiO2之介紹 18 2-4皮膚 20 2-4-1皮膚之功能 20 2-4-2皮膚之構造 21 2-4-3皮膚癒合之機制 22 2-5創傷敷料 24 2-5-1敷料之發展演進 24 2-5-1人工敷料之種類 25 第三章 實驗材料與方法 29 3-1實驗藥品 29 3-2實驗儀器 30 3-3實驗流程 31 3-4實驗方法 32 3-4-1蠶絲蛋白/二氧化鈦纖維薄膜製備 32 3-4-1-1蠶絲蛋白之純化 32 3-4-1-2配置蠶絲蛋白電紡溶液 33 3-4-1-3奈米纖維薄膜製備 34 3-4-1-4蠶絲蛋白纖維結構改性 35 3-4-2紅外光譜分子結構鑑定(FTIR) 36 3-4-3光觸媒對有機物之分解性能 37 3-4-4分子表面型態分析 37 3-4-4-1原子力顯微鏡(AFM) 37 3-4-4-2掃描式電子顯微鏡和能量散譜分析(SEM&EDX) 38 3-4-5材料熱性質分析 39 3-4-5-1熱重分析儀(TGA) 39 3-4-5-2熱示差掃描分析儀(DSC) 39 3-4-6平衡含水率(EWC) 40 3-4-7水蒸氣穿透速率(WVTR) 41 3-4-8血液常規測試(CBC) 42 3-4-9生物相容性 44 3-4-9-1細胞培養 44 3-4-9-2細胞毒性測試 44 3-4-9-3細胞增生性 46 3-4-9-3抗菌測試 48 第四章 結果與討論 50 4-1奈米纖維薄膜製備 50 4-1-1蠶絲蛋白奈米纖維結構形態 50 4-1-2蠶絲蛋白/二氧化鈦奈米纖維製備 55 4-1-3蠶絲蛋白/二氧化鈦奈米纖維改性 56 4-2能量散佈光譜儀分析(EDX) 58 4-3原子力顯微鏡(AFM) 60 4-4紅外光光譜儀分析(FTIR) 63 4-5光觸媒對有機物之分解性能 66 4-6熱重分析儀(TGA) 67 4-7熱示差式掃描分析儀(DSC) 69 4-8平衡含水率(EWC) 71 4-9水蒸氣穿透速率(WVTR) 73 4-10血液常規測試(CBC) 76 4-11細胞毒性測試 78 4-12細胞增生微型態觀察 80 4-13抗菌測試 82 第五章 結論 84 第六章 參考文獻 85 作者簡介 93

    【1】 K. Whang, T. K. Goldstick, K. E. Healy, A biodegradable polymer scaffold for delivery of osteotropic factors. Biomaterials, 21: 2545-2551, (2000).
    【2】 W. H. Park, L. Jeong, D. I. Yoo, S. Hudsonc, Effect of chitosan on morphology and conformation of electrospun silkfibroin nanofibers. Polymer, 45: 7151-7157, (2004).
    【3】 W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, F. K. Ko, Electrospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research, 60: 613-621, (2002).
    【4】 黃玲娉,醫療及衛生用紡織品專題調查報告,中國紡織工業研究中心,1998。
    【5】 徐翊庭,由國際紡織標竿企業之技術開發趨勢預測台灣的發展路徑, 紡織產業 綜合研究所,2008。
    【6】 Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63: 2223-2253, (2003).
    【7】 N. Bhardwaj, S. C. Kundu, Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28: 325-347, (2010).
    【8】 X. Zhang, M. R. Reagan, D. L. Kaplan, Electrospun silk biomaterial scaffolds for regenerative medicine. Advanced Drug Delivery Reviews, 61: 988-1006, (2009).
    【9】 蔡晟豪,靜電紡絲PVDF混摻F127複合膜作為生醫基材之探討,台灣科技大學高分子工程研究所碩士學位論文,2009。
    【10】 A. Formhals, US Patent, 1975: 504, (1934).
    【11】 D. H. Reneker, I. Chun, Nanometre diameter fibres of polymer produced by electrospinning. Nanotechnology, 7: 216-223, (1996).
    【12】 X. Zhang, C. B. Baughman, D. L. Kaplan, In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth. Biomaterials, 29: 2217-2227, (2008).
    【13】 A. Baji, Y. W. Mai, S. C. Wong, M. Abtahi, P. Chen, Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Composites Science and Technology, 70: 703-718, (2010).
    【14】 Z. Zhao, J. Li, X. Yung, X. Li, Y. Zhang, J. Sheng, Preparation and Properties of Electrospun Poly(Vinylidene Fluoride) Membranes. Jourmal of Applied Polymer Science, 97: 466-474, (2005).
    【15】 J. Doshi, D. H. Reneker, Electronspinning process and application of electrospun fibers. Journal of Electrostatics, 35: 151-160, (1995).
    【16】 S. N. Reznilk, A. L. Yarin, A. Theron, E. Zussman, Transient and steady shapes of droplets attached to a surface in a strong electricfield. Journal of Fluid Mechanics, 516: 349-377, (2004).
    【17】 Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63: 2223-2253, (2003).
    【18】 李培慈,以半乳糖修飾蠶絲蛋白纖維培養鼠肝細胞之研究,長庚大學生化與生醫工程所碩士學位論文,2007。
    【19】 Y. Z. Wang, H. J. Kim, V. N. Gordana, D. L. Kaplan, Stem cell-based tissue engineering with silk biomaterials. Biomaterials, 27: 6064-6082, (2006).
    【20】 A. Matsumoto, J. Chen, A. L. Collette, U. J. Kim, G. H. Altman, P. Cebe, D. L. Kaplan, Mechanisms of silk fibroin sol-gel transitions. Journal of Physical Chemistry B, 110: 21630-21638, (2006).
    【21】 徐云廷,蠶絲蛋白質薄膜之靜電紡絲製程及其牙齒美白貼片應用研究,台北醫學大學生醫材料暨工程研究所碩士學位論文,2008。
    【22】 A. Kuzuhara, T. Asakura, R. Tomoda, T. Matsunaga, Use of silk fibroin for enzyme membrane. Journal of Biotechnology, 5: 199-207, (1987).
    【23】 H. Yoshimizu, T. Asakura, Preparation and characterization of silk fibroin powder and its application to enzyme immobilization. Journal of Applied Polymer Science, 40: 127-134, (2003).
    【24】 V. B. Haywood, R. H. Leonard, C. F. Nelson, W. D. Brunson, Effectiveness, side effects and long-term status of nightguard vital bleaching. Journal of the American Dental Association, 125: 1219-1226, (1994).
    【25】 N. Minoura, S. L. Aiba, M. Higuchi, Y. Gotoh, M. Tsukada, Y. Imai, Attachment and growth of cultured fibroblast cells on silk protein matrices. Journal of Biomedical Materials Research, 29: 1215-1221, (2004).
    【26】 G. H. Altman, R. L. Horan, H. H. Lu, J. Moreau, I. Martin, J. C. Richmond, D. L. Kaplan, Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials, 23: 4131-4141, (2002).
    【27】 C. Li, C. Vepari, H. J. Jin, H. J. Kim, D. L. Kaplan, Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials, 27: 3115–3124, (2006).
    【28】 G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. S. Chen, H. Lu, J. Richmond, D. L. Kaplan, Silk-based biomaterials. Biomaterials, 24: 401-416, (2003).
    【29】 楊新菊,桑蠶絲蛋白的STM研究,真空科學與技術,14:15-17,1994。
    【30】 X. X. Feng, L. L. Zhang, J. Y. Chena,Y. H. Guoa, H. P. Zhang, C. I. Jia, Preparation and characterization of novel nanocompositefilms formed from silk fibroin and nano-TiO2. International Journal of Biological Macromolecules, 40: 105-111, (2007).
    【31】 J. Zhou, C. Cao, X. Ma, A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning. International Journal of Biological Macromolecules, 45: 504-510, (2009).
    【32】 C. Veparia, D. L. Kaplan, Silk as a biomaterial. Progress in Polymer Science, 32: 991-1007, (2007).
    【33】 K. Yamada, Y. Tsuboi, A. Itaya, AFM observation of silk fibroin on mica substrates: Morphologies reflecting the secondary structures. Thin Solid Films, 440: 208-216, (2003).
    【34】 N. Özturk, S. Akgöl, M. Arisoy, A. Denizli, Reversible adsorption of lipase on novel hydrophobic nanospheres. Separation and Purification Technology, 58: 83-90, (2007).
    【35】 湯有春,新穎創傷敷材:利用電紡技術製成之玻尿酸/幾丁聚醣奈米纖維薄膜,長庚大學生化與生醫工程所碩士學位論文,2006。
    【36】 Y. Ji, K. Ghosh, X. Z. Shu, B. Li, J. C. Sokolov, G. D. Prestwichc, R. A. F. Clark, M. H. Rafailovich, Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials, 27: 3782-3792, (2006).
    【37】 H. J. Jin, S. V. Fridrikh, G. C. Ritledge, D. L. Kaplan, Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules, 3: 1233-1239, (2002).
    【38】 H. J. Jin, Ji. S. Chen, V. Karageorgiou, G. H. Altman, D. L. Kaplan, Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials, 25: 1039-1047, (2003).
    【39】 王進美,馮國平,奈米紡織工程,化學工業出版社,2009。
    【40】 方詩馨,以可降解性敷材包覆中藥白芨作為傷口癒合之可行性評估,中台科技大學醫學工程暨材料研究所碩士學位論文,2006。
    【41】 L. Aiello, C. Dean, An Introduction to Human Evolutionary Anatomy. Academic Press: London, (1990).
    【42】 黃穎婓,生醫敷料及人工皮膚專題報導,科學發展,2004。
    【43】 石政坪,以UV光聚合Chitosan-PAA-pHEMA水膠應用於創傷敷料之研究,南台科技大學化學工程與材料工程研究所碩士學位論文,2008。
    【44】 K. Obara, M. Ishihara, T. Ishizuka, M. Fujita, Y. Ozeki, T. Maehara, Y. Saito, H. Yura, T. Matsui, H. Hattori, M. Kikuchi, A. Kurita, Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials, 24: 3437-3444, (2003).
    【45】 G. A. Kannon, A. B. Garrett, Moist wound healing with occlusive dressing. Dermatologic Surgery, 21: 583-590, (2008).
    【46】 A. J. Meinel, K. E. Kubow, E. Klotzsch, M. G. Fuentes, M. L. Smith, V. Vogel, H. P. Merkle, L. Meinel, Optimization strategies for electrospun silk fibroin tissue engineering scaffolds. Biomaterials, 30: 3058-3067, (2009).
    【47】 H. Cao, X. Chen, L. Huang, Z. Z. Shao, Electrospinning of reconstituted silk fiber from aqueous silk fibroin solution. Materials Science and Engineering C, 29: 2270-2274, (2009).
    【48】 A. Alessandrino, B. Marelli, C. Arosio, S. Fare, M. C. Tanzi, G. Fredd, Electrospun silk fibroin mats for tissue engineering. Engineering in Life Sciences, 8: 219-225, (2008).
    【49】 Y. B. Kim, D. H. Cho, W. H. Park, Fabrication and characterization of TiO2/poly(dimethyl siloxane) composite fibers with thermal and mechanical stability. Journal of Applied Polymer Science, 116: 449-454, (2009).
    【50】 B. Balakrishnana, M. Mohantyb, P. R. Umashankarc. A. Jayakrishnan, Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 26: 6335-6342, (2005).
    【51】 B. G. Gay, K. Parker, Understanding the complete blood count with differential. Journal of PeriAnesthesia Nursing, 18: 96-117, (2003).
    【52】 L. Jeong, I. S. Yeo, H. N. Kim, Y. I. Yoon, D. H. Jang, S. Y. Jung, B. M. Min, W. H. Park, Plasma-treated silk fibroin nanofibers for skin regeneration. International Journal of Biological Macromolecules, 44: 222-228, (2009).
    【53】 王惠宗,光觸媒二氧化鈦奈米材質抗菌活性之探討,台灣海洋大學食品科學所碩士學位論文,2005。
    【54】 洪培倫 ,奈米光觸媒二氧化鈦粉末在功能性不織布建材之研究,中國文化大學材料科學與製造研究所碩士學位論文,2003。
    【55】 F.R. Marciano, D.A. Lima-Oliveira, N.S. Da-Silva, A.V. Diniz, E.J. Corat, V.J. Trava-Airoldi, Antibacterial activity of DLC films containing TiO2 nanoparticles. Journal of Colloid and Interface Science, 340: 87-92, (2009).
    【56】 E.V. Skorb, L.I. Antonouskaya, N.A. Belyasova, D.G. Shchukin, H. Mohwald, D.V. Sviridov, Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2:In2O3 nanocomposite. Applied Catalysis B: Environmental, 84: 94-99, (2008).
    【57】 C. Shang, L. M. Cheung, C. M. Ho, M. Z. Zeng, Repression of photoreactivation and dark repair of coliform bacteria by TiO2-modified UV-C disinfection. Applied Catalysis B: Environmental, 89: 536-542, (2009).
    【58】 吳其章,奈米纖維發展趨勢分析,紡織產業綜合研究所,2009。
    【59】 X. X. Feng, Y. H. Guo, J. Y. Chen, J. C. Zhang, Nano-TiO2 induced secondary structural transition of silk fibroin studied by two-dimensional Fourier-transform infrared correlation spectroscopy and Raman spectroscopy. Journal of Biomaterials Science, 18: 1443-1456, (2007).
    【60】 N. Wu, D. F. Shao, Q. Wei, Y. B. Cai, W. D. Gao, Characterization of PVAc/TiO2 hybrid nanofibers: From fibrous morphologies to molecular structures. Journal of Applied Polymer Science, 112: 1481-1485, (2009).
    【61】 D. D. Deligianni, N. D. Katsala, P. G.. Koutsoukos, Y. F. Missirlis, Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials, 22: 87-96, (2001).
    【62】 M. Tsukada, G. Freddi, P. Monti, A. Bertoluzza, N. Kasai, Structure and molecular conformation of tussah silk fibroin films: Effect of methanol. Journal of Polymer Science Part B, 33: 1995-2001, (2003).
    【63】 M. Jin, X. T. Zhang, A. V. Emeline, Z.Y. Liu, D. A. Tryk, T. Murakami, A. Fujishima, Fibrous TiO2-SiO2 nanocomposite photocatalyst. Chemical communications, 43: 4483-4485, (2006).
    【64】 王建皓,利用聚醯亞胺酸與鈦醇鹽類為前驅物進行高均勻性之電泳封裝研究,國立成功大學化學工程所碩士學位論文,2004。
    【65】 Y. Yang, P. Wang, Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol–gel process. Polymer, 47 : 2683-2688, (2006).
    【66】 A. Motta, L. Fambri, C. Migliaresi, Regenerated silk fibroin films: Thermal and dynamic mechanical analysis. Macromolecular Chemistry and Physics, 203: 1658-1665, (2002).
    【67】 K. Zhang, X. Mo, C. Huang, C. G. He, H. S. Wang, Electrospun scaffolds from silk fibroin and their cellular compatibility. Journal of Biomedical Materials Research Part A, 96: 976-983, (2009).
    【68】 G. L. Jones, A. Motta, M. J. Marshall, A. E. Haj, S. H. Cartmell, Osteoblast: Osteoclast co-cultures on silk fibroin, chitosan and PLLA films. Biomaterials, 30: 5376-5384, (2009).
    【69】 A. Hou, H. Chen, Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process. Materials Science and Engineering B, 167: 164-168, (2010).
    【70】 M. P. Prabhakaran, J. R. Venugopal, T. T. Chyan, L. B. Hai, C. K. Chan, A. Y. Lim, S. Ramakrishna, Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Engineering Part A, 14: 1787-1797, (2008).
    【71】 J. S. Lee, J. K. Kim, Y. H. Chang, Preparation of collagen/poly(L-lactic acid) composite material for wound dressing. Macromolecular Research, 15: 205-210, (2007).
    【72】 L. G. Ovington, Advances in wound dressings. Clinics in Dermatology, 25: 33-38, (2007).
    【73】 J. J. Chang, P. J. Lin, Y. H. Lee, M.C. Yang, C. T. Chien, The effect of covalent immobilization of sialic acid on the removal of lipopolysaccharide and reactive oxygen species for polyethylene terephthalate. Polymers for Advanced Technologies, 21: 1-7, (2010).
    【74】 B. Son, B. Y. Yeom, S. H. Song, C. S. Lee, T. S. Hwang, Antibacterial Electrospun Chitosan/Poly(vinyl alcohol) Nanofibers Containing Silver Nitrate and Titanium Dioxide. Journal of Applied Polymer Science, 111: 2892-2899, (2009).
    【75】 R. A. Damodara, S. J. Youa, H. H. Chou, Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. Journal of Hazardous Materials, 172: 1321-1328, (2009).

    無法下載圖示 全文公開日期 2015/07/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE