簡易檢索 / 詳目顯示

研究生: 巫宜頻
Yi-Pin Wu
論文名稱: 金/錫-鋅合金/銅三明治反應偶之界面反應
Interfacial Reactions of the Au/Sn-xZn/Cu sandwich structure couples
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 郭俞麟
Yu-Lin Kuo
陳志銘
Chih-Ming Chen
吳子嘉
Albert T. Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 114
中文關鍵詞: 錫-鋅合金界面反應
外文關鍵詞: Sn-Zn alloys, interfacial reactions
相關次數: 點閱:282下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將兩種不同厚度的Sn-xZn(x=1、5、9、20與40 wt%)銲料分別與Au及Cu兩種常見的導線材製做成三明治反應偶,於160oC下進行20至1000小時的界面反應。
    結果顯示,在Sn-1Zn系統中,與Au端反應後界面主要生成Au-Sn二元系統的介金屬相,並且Cu原子會擴散至Au端反應生成Cu6Sn5相;當Zn含量增加至20與40 wt%後,界面則是以Au-Zn二元相為主。然而在Sn-5Zn/Au與Sn-9Zn/Au反應偶中,因為存在Zn含量分布不均的情況,故在界面處會同時觀察到有Au-Sn與Au-Zn兩種系統的相生成以及一個Au-Sn-Zn三元介穩相。
    而與Cu端反應的結果中,只有Sn-1Zn/Cu反應偶界面有CuZn及Cu6Sn5相生成,當Zn含量增加後,界面則轉變成以Cu5Zn8相為主。當時效效時間增長後,Sn-xZn/Au反應偶之介金屬相也隨之變厚,且在Zn含量小於20 wt%的系統中,可發現Cu原子會逐漸固溶入介金屬相中。Sn-xZn/Cu反應偶的部分則是隨時效時間增長,Cu5Zn8相會有明顯的熟化現象。當銲料厚度變厚時,會使Cu原子擴散至Au端的情況變慢,但並無造成生成相的轉變,而是僅有固溶入介金屬相的時間點不同。


    In this study, the Sn-xZn solders (x=1, 5, 9, 20 and 40 wt%) with two kinds of thickness and the Au and Cu metals were prepared to form sandwich reaction couples then aged at 160oC for 20 to 1000 h.
    The results showed that the Au-Sn binary phases were form at the Sn-1Zn/Au interface and Cu diffused to the Au side to form Cu6Sn5 phase. When the Zn content increased to 20 and 40 wt%, there were Au-Zn binary phases form at the interface. But the Sn-5Zn/Au and Sn-9Zn/Au couples, there were Au-Sn, Au-Zn binary phases and also a Au-Sn-Zn ternary metastable phase form at the interface simultaneously.
    To react with Cu substrate, the CuZn and Cu6Sn5 phases were found at the Sn-1Zn/Cu couple. And the IMC transformed into Cu5Zn8 phase when the Zn content increased. When aged for a long time, the IMCs became thicker than before. Besides, the Cu dissolves into the IMCs when Zn content less than 20 wt%. At the Sn-xZn/Cu reaction couples, there were significantly ripening phenomenon at the Cu5Zn8 phase with increasing of the aging time. And the diffusion rate of Cu was decreased with increasing the thickness of solders. This did not cause any phase transitions, but the Cu would dissolved into the IMCs at different aging times.

    目 錄 摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章、前言 第二章、文獻回顧 2-1 電子構裝概論 2-1.1 覆晶接合技術 2-2 無鉛銲料簡介 2-3 界面反應與擴散理論 2-3.1 界面反應理論 2-3.2 擴散理論 2-4 界面反應相關文獻 2-4.1 Sn-Cu/Au系統界面反應 2-4.2 Sn-Zn/Au系統界面反應 2-4.3 Sn-Zn/Cu系統界面反應 2-4.4 相關系統界面反應 第三章、實驗方法 3-1 Sn-xZn合金與Au、Cu基材製備 3-2 Au/Sn-xZn/Cu反應偶製備 3-3 金相處理 3-4界面觀察與分析 第四章、結果與討論 4-1 Au/Sn-xZn/Cu之界面反應(銲料厚度為0.5 mm) 4-1.1 Au/Sn-xZn/Cu(x=1 wt%)反應偶 4-1.2 Au/Sn-xZn/Cu(x=5與9 wt%)反應偶 4-1.3 不同Zn含量對Sn-xZn/Au界面反應之影響 4-2 Au/Sn-xZn/Cu之界面反應(銲料厚度為1 mm) 4-2.1 Au/Sn-xZn/Au(x=1 wt%)反應偶 4-2.2 Au/Sn-xZn/Cu(x=5與9 wt%)反應偶 4-3 Au/Sn-xZn/Cu(x= 20與40 wt%)之界面反應 4-3.1 Au/Sn-xZn/Cu(x= 20 wt%)反應偶 4-4 Au/Sn-xZn/Cu反應偶之界面反應路徑 4-4.1 Sn-1Zn/Au反應偶 4-4.2 Sn-xZn/Au(x=5與9 wt%)反應偶 4-4.3 Sn-xZn/Au(x=20與40 wt%)反應偶 4-3.4 Sn-xZn/Cu(x=1、5、9、20與40 wt%)之反應路徑 4-5 不同銲料厚度對生成介金屬相的影響 4-5.1 Sn-1Zn/Au反應偶 4-4.2 Sn-5Zn/Au與Sn-9Zn/Au反應偶 4-4.3 Sn-20Zn/Au與Sn-40Zn/Au反應偶 4-4.4 Sn-xZn/Cu(x=1、5、9、20與40 wt%)反應偶 第五章、結論 參考文獻

    參考文獻
    [1] “WEEE Regulations”EU-Directive 96/EC (2002)
    [2] “RoHS Regulations” EU-Directive 96/EC (2002)
    [3] H. C. Cheng, K. N. Chiang and M. H. Lee, ASME Transaction, Journal of Electronic Packaging, 120 (1998) 129-134.
    [4] K. N. Chiang, W. L. Chen, Journal of Electronic Packaging, 120 (1998) 175-178.
    [5] 林定皓著,“電子構裝技術概述”,台灣電路板協會 (2010)。
    [6] 田明波著、顏怡文修訂,“半導體電子元件構裝技術”,五南(2005)。
    [7] 陳信文、陳立軒、林永森與陳志銘著,“電子構裝技術與材料”,高立圖書有限公司 (2005)。
    [8] http://www.ami.ac.uk/courses/topics/0260_fc/#2
    [9] 劉為開,顏怡文與柴世融,興大工程學刊,21 (2010) 88-95。
    [10] C. Ghosh, Intermetallics, 18 (2010) 2178-2182.
    [11] Y. W. Yen, P. H. Tsai, Y. K. Fang, S. C. Lo, Y. P. Hsieh and C. Lee, Journal of Alloys and Compounds, 503 (2010) 25-30.
    [12] L. Liu, W. Zhou, B. Li and P. Wu, Materials Chemistry and Physics, 123 (2010) 629-633.
    [13] J. H. Hwang, Y. M. Kim, T. J. Kim, Y. H. Kim and W. J. Lee, Electronic Packaging Technology and High Density Packaging, 13 (2012) 426-429.
    [14] C. H. Wang and H. H. Chen, Journal of Electronic Materials, 39 (2010) 2375-2381.
    [15] X. Wei, H. Huanf, L. Zhou, M. Zhang and X. Liu, Material Letters, 61 (2007) 655-658.
    [16] Y. W. Yen, P. H. Tsai, Y. K. Fang, B. J. Chen and C. Lee, Journal of Alloys and Compounds, 517 (2012) 111-117.
    [17] L. R. Garcia, W. R. Oso’rio, L. C. Peixoto and A. Garcia, Journal of Electronic Materials, 38 (2009) 2405-2414.
    [18] A. K. Gaina, T. Fouzder, Y.C. Chan, A.Sharif, W. K. C. Yung, Journal of Alloys and Compounds, 489 (2010) 678-684.
    [19] Y. H. Chan, M. M. Arafat and A. S. M. A. Haseeb, Soldering & Surface Mount Technology, 25 (2013) 91-98.
    [20] S. O. Shazlin and M. S. Nurulakmal, World Academy of Science, Engineering and Technology, 60 (2011) 405-409.
    [21] Y. W. Wang, Y. W. Lin, C. T. Tu and C. R. Kao, Journal of Alloys and Compounds, 478 (2009) 121-127.
    [22] Y. T. Wang, C. J. Ho and H. L. Tsai, Nano/Micro Engineered and Molecular Systems, 8 (2013)1038-1041.
    [23] W. X. Chen, S. B. Xue, H. Wang, J. X. Wang, Z. J. Han and L. L. Gao, Journal of Materials Science, 21 (2010) 461-467.
    [24] C. P. Lin, C. M. Chen, C. H. Lin, W. C. Su, Journal of Alloys and Compounds, 502 (2010) L17-L19.
    [25] Y. W. Yen, H. W. Tseng, K. Zeng, S. J. Wang and C. Y. Liu, Journal of Electronic Materials, 38 (2009) 2257-2263.
    [26] Y. W. Yen, W. K. Liou, C. M. Chen, C. K. Lin and M. K. Huang, Materials Chemistry and Physics, 128 (2011) 233-237.
    [27] Y. W. Yen, W. K. Liu, Journal of Materials Research, 22 (2007) 2663-2667.
    [28] L. Liu, P. Wu, W. Zhou, Microelectronics Reliability, (2013).
    [29] Y. Tian, C. Wang, W.Liu and Y. Chen, High Density packaging and Microsystem Integration, 26 (2007) 331-337.
    [30] R. Mayappan and Z. A. Ahmad, Intermetallics, 18 (2010) 730-735.
    [31] Y. Liu, F. Sun and Y. Liu, Journal of Materials Science: Materials in Electronics, 24 (2013) 290-294.
    [32] W. K. Liou and Y. W. Yen, Intermetallics, 17 (2009) 72-78.
    [33] Y. W. Yen, M. C. Lin and C. K. Lin, Journal of Electronic Materials, 41 (2012) 3284-3291.
    [34] W. Liu, C. Q. Wang, Y. H. Tian and Y. R. Chen, Transformation Nonferrous Metals Society of China, 18 (2008) 617-622.
    [35] 蕭憲明,金-錫-銅三元合金、銀-金-銅-錫四元合金相平衡系統及錫-銅合金與金基材的界面反應,國立台灣科技大學 化學工程系碩士學位論文 (2005)。
    [36] W. Liu, C. Wang, L. Sun, Y. Tian and Y. Chen, Electronic Packing Technology& High Density Packaging, ICEPT-HDP'09. International Conference on. IEEE (2009) 642-645.
    [37] Y. W. Yen, C. C. Jao, H. M. Hsiao, G. Y. Lin and C. Lee, Journal of Electron Materials, 36 (2007) 147-158.
    [38] Y. W. Y en, W. K. Chen, W. C. Chen and C. W. Chiu, Journal of Alloys and Compounds, 574 (2013) 490-494.
    [39] W. K. Liou, Y. W. Yen, C. C. Jao, Microsystems, Packaging, Assembly and Circuits Technology Conference, IMPACT 2009 4th International, (2009) 220-223.
    [40] J. Hu, A. Hu, M. Li and D. Mao, Materials Characterization, 61 (2013) 355-361.
    [41] C. F. Yang, S. W. Chen, Intermetallics, 18 (2010) 672-678.
    [42] C. W. Chang, Q. P. Lee, C. E. Ho and C. R. Kao, Journal of Electronic Materials, 35 (2006) 366-371.
    [43] C. H. Chen, C. P. Lin and C. M. Chen, Journal of Electron Materials, 38 (2009) 61-69.
    [44] C. Y. Yu, K. J. Wang and J. G. Duh, Journal of Electron Materials, 39 (2010) 230-237.
    [45] H. Okamoto, "Au-sn (gold-tin)," Journal of Phase Equilibria and Diffusion, 28 (2007) 490.
    [46] T. B. Massalski, Binary Alloy Phase Diagram-CD-ROM, Material Park, OH: ASM International (1996).
    [47] C. C. Jao, Y. W. Yen, S. H. Zhang, C. Y. Lin and C. Lee, International Journal of Materials Research, 6 (2007) 496-500.
    [48] S. C. Yang, C. E. Ho and C. W. Chang, International Journal of Materials Research, 21 (2006) 2436-2439.
    [49] 林承寬,錫-鋅合金與金基材之界面反應,國立台灣科技大學材料科技研究所碩士論文 (2011)。
    [50] C. M. Chen and C. H. Chen, Journal of Electronic Materials, 36 (2007) 1363-1371.
    [51] H. A. Pan, C. P. Lin and C. M. Chen, Journal of Electronic Materials, 41 (2012) 2470-2477.
    [52] B. F. Dyson, T. R. Anthony and D. Turnbull, Journal of Applied Physics, 38 (1976) 3408.
    [53] T. C. Chiu and K. L. Lin, Intermetallics, 17 (2009) 1105-1114.
    [54] 劉為開,微電子構裝中無鉛銲料與基材界面反應行為之探討,國立台灣科技大學 工程技術研究所博士論文 (2009)。
    [55] 陳婉菁,Ni/Sn-xZn/Cu三明治結構反應偶之界面反應,國立台灣科技大學材料科技研究所碩士論文 (2013)。
    [56] 周沁怡,熱氣泡式噴墨列印系統之界面穩定性,國立清華大學材料科學與工程研究所博士論文 (2006)。
    [57] D. Q. Yu, H. P. Xie and L. Wang, Journal of Alloys and Compounds, 385 (2004) 119-125.
    [58] J. Y. Wang, C. F. Lin and C. M. Chen, Scripta Materialia, 64 (2011) 633-636.
    [59] J. F. Li, P. A. Agyakwa and C. M. Johnson, Acta Materialia, 59 (2011) 1198-1211.
    [60] B. Du, F. Wu, B. Wang, H. Liu, B. An and Y. Wu, Electronic Components and Technology Conference, 59 (2009) 1044-1048.
    [61] T. C. Chiu and K. L. Lin, Intermetallics, 23 (2012) 208-216.
    [62] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Minnesota, U.S.A (1995).

    QR CODE