簡易檢索 / 詳目顯示

研究生: 范致嘉
Chih-chia Fan
論文名稱: 具遠紅外線放射特性及抗菌性聚丙烯開發之奈米複合纖維製程最佳化
Nano Composite Fiber Process Optimization for Development of Polypropylene with Antibacterial and Far Infrared Ray Emission Property
指導教授: 郭中豐
Chung-Feng Kuo
口試委員: 黃昌群
Chang-Chiun Huang
蘇德利
none
莊富盛
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 98
中文關鍵詞: 聚丙烯奈米二氧化矽奈米氧化鋅遠紅外線放射特性抗菌性雙螺桿混煉熔融紡絲田口品質工程灰關聯分析法理想解類似度順序偏好法
外文關鍵詞: nanoscale silicon dioxide, nanoscale zinc oxide, far infrared ray emission property, twin-screw mixing, melt spinning, grey relational analysis and technique for order
相關次數: 點閱:314下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究為遠紅外線放射特性及抗菌性等多機能性聚丙烯(polypropene, PP)纖維之開發研究,係使用雙螺桿混煉法將奈米級二氧化矽及氧化鋅粉體均勻混摻於聚丙烯粒中,提升聚丙烯纖維機械性質與熱性質,同時具有遠紅外線放射、溫升及抗菌等附加機能,有助於提升機能性紡織品之相關運用。
    本研究開發分成二部分,第一部分為複合材料開發,探討聚丙烯複合材料之熱性質及加工性質,熱性質方面透過熱重損失分析發現奈米粉體添於聚丙烯中,能提升聚丙烯之熱裂解溫度;由熱示差分析發現奈米粉體添於聚丙烯中具有成核劑的效用,提高結晶溫度及結晶度改善聚丙烯耐熱性;在加工性質方面常因粉體添加過多將導致流動性不佳,故透過熔融指數分析儀發現二氧化矽的添加有助於材料之流動性,以利後續熔融紡絲加工。
    第二部分為聚丙烯複合纖維製程參數設計,利用田口方法(Taguchi method)將粉體比例、雙螺桿混煉及熔融紡絲之製程參數進行實驗規劃,並利用灰關聯分析法(grey relational analysis, GRA)求得各品質特性之客觀權重值,最後結合理想解類似度順序偏好法(technique for order preference by similarity to ideal solution, TOPSIS)進行多品質分析探討加工參數對纖維品質之影響。結果顯示複合纖維相較於純聚丙烯纖維有較好的機械性質,說明品質工程理論能大幅改善複合纖維之品質特性。
    經遠紅外線放射測試發現複合纖維之遠紅外線放射值為85%相較於純聚丙烯提升2.3倍,經遠紅外線溫升測試複合纖維溫度升高8.6°C,相較於純聚丙烯溫升6°C提升43%;透過抗菌測試,複合纖維於黃金葡萄球菌(Staphyloccocus aureus rosenbach)及肺炎桿菌(Klebsiella pneumoniae)下皆有抗菌效果。測試結果證實聚丙烯添加奈米二氧化矽及氧化鋅之複合纖維均符合遠紅外線放射特性FTTS-FA-010及定性抗菌JIS L-1902之標準。


    This study aims to develop multifunctional polypropylene fiber with far infrared ray emission property and microorganism resistance. The nanoscale silicon dioxide and zinc oxide powder are blended with polypropylene cheap uniformly by twin-screw mixing, and then the fiber is produced by melt spinning, the polypropylene fiber's mechanical property and thermal property are enhanced, and it has additional functions of far infrared ray emission, temperature rise and antibiosis, contributing to enhancing relevant application of functional textile.
    The development is divided into two parts in this study, Part 1 is the development of composite material, the thermal property and working properties of polypropylene composite material are discussed. In terms of thermal property, the thermogravimetry analyzer shows the addition of nano-powder to the polypropylene can increase the pyrolysis temperature of polypropylene. The differential scanning calorimetry shows the nano-powder in the polypropylene has the effectiveness of nucleating agent, increasing the crystallization temperature and the degree of crystallinity, improving the heat resistance of polypropylene. In terms of working properties, excessive addition of powder often causes bad flowability, so the melt index shows the addition of silicon dioxide contributes to the flowability of material, helpful to subsequent melt spinning process.
    Part 2 shows the polypropylene composite fiber process parameter design, the process parameters of powder proportion, twin-screw mixing and melt spinning are planned by using Taguchi method, and the objective weights of quality characteristics are obtained by grey relational analysis (GRA). Finally, the technique for order preference by similarity to ideal solution (TOPSIS) is used for multi-quality analysis to discuss the influence of processing parameters on the fiber quality. The results show that the composite fiber has better mechanical property than pure polypropylene fiber, proving that the quality engineering theory can improve the quality characteristics of composite fiber greatly.
    According to the far infrared ray emission test, the far infrared ray emission value of composite fiber is 85%, it is 2.3 times of pure polypropylene. According to the far infrared ray emission temperature rise test, the composite fiber temperature increases by 8.6℃, 43% higher than the 6℃ temperature rise of pure polypropylene. The antibacterial test shows the composite fiber has antibacterial effect on staphylococcus aureus and pneumobacillus. The test results show that the composite fiber of polypropylene with nano silicon dioxide and zinc oxide meets the far infrared ray emission property FTTS-FA-010 and qualitative antibacterial JIS L-1902 standards.

    摘要I AbstractIII 目錄V 圖目錄VIII 表目錄XI 第1章緒論1 1.1研究背景與動機1 1.2文獻回顧3 1.2.1聚丙烯複合材料3 1.2.2纖維抗菌材料6 1.2.3纖維遠紅外線放射材料7 1.2.4參數最佳化理論9 1.3研究規劃及目的10 1.4論文大綱與流程圖12 第2章研究規劃與原理15 2.1製程材料概述15 2.2.1聚丙烯15 2.2.2奈米二氧化矽17 2.2.3奈米氧化鋅20 2.2實驗設備與原理22 2.2.1雙螺桿混煉混煉機22 2.2.2熔融紡絲機24 2.3材料分析儀原理26 2.3.1熔融指數儀26 2.3.2熱重損失分析儀27 2.3.3熱示差分析儀28 2.3.4掃描式電子顯微鏡29 2.3.5抗張強度試驗機30 2.3.6繞紗機32 2.3.7遠紅外線放射測定33 2.3.8定性抗菌測定34 第3章品質分析與最佳化理論36 3.1田口方法36 3.1.1田口方法概述37 3.1.2實驗因子38 3.1.3直交表38 3.1.4選擇直交表39 3.1.5S/N比39 3.1.6品質特性之種類39 3.1.7回應表40 3.1.8變異數分析42 3.1.9確認實驗44 3.1.10田口實驗設計不足之處45 3.2灰關聯分析法45 3.2.1灰關聯分析45 3.2.2量化分析46 3.3理想解類似度順序偏好法48 TOPSIS計算步驟49 3.4分析流程52 第4章實驗步驟規劃53 4.1實驗材料53 4.2加工前材料分析54 4.3實驗規劃56 4.4製程設備58 4.4.1雙螺桿混煉機58 4.4.2熔融紡絲機59 第5章實驗結果61 5.1纖維開發前分析61 5.1.1熱重損失分析61 5.1.2熱差示分析62 5.1.3熔融指數分析64 5.2纖維表面分析65 5.3纖維加工實驗數據分析69 5.3.1拉伸強度最佳化69 5.3.2伸長度最佳化74 5.3.3丹尼數最佳化76 5.3.4多品質最佳化80 第6章結論91 參考文獻93

    [1]國內聚丙烯產業用纖維最新發展,台灣區人造纖維製造工業同業公會,2011。
    [2]李信宏,人造纖維機能性高附加價值產品的發展趨勢,2006。
    [3]機能性紡織品競爭力與市場發展分析(物理現象機能),經濟部國際貿易局,2007。
    [4]S. Y. Fu, X. Q. Feng, B. Lauke, and Y. W. Mai, “Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites”, Composites Part B:Engineering, Vol. 39, No. 6, pp.933-961, 2008.
    [5]Y. C. Zhang, H. Y. Wu, and Y. P. Qiu, “Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber”, Bioresource Technology, Vol. 101, No. 20, pp. 7944-7950, 2010.
    [6]N. Srisawat, M. Nithitanakul, and K. Srikulkit, “Spinning of fibers from polypropylene/silica composite resins”, Journal of Composite Materials, Vol. 46, No. 1, pp. 99-110, 2012.
    [7]M. Nithitanakul, K. Srikulkit, and N. Srisawat, “Characterizations of fibers produced from polypropylene/silica composite”, Journal of Metals, Materials and Minerals, Vol. 19, No.1, pp. 53-58, 2009.
    [8]J. H. Qian, P. S. He, and K. M. Nie, “Nonisothermal crystallization of PP/nano-SiO2 composites”, Journal of Applied Polymer Science, Vol. 91, No. 2, pp. 1013-1019, 2004.
    [9]劉家豪,“聚丙烯與聚酯熔融摻合並形成奈米二氧化矽以改質聚丙烯纖維染色性之研究”,逢甲大學,纖維與複合材料所,碩士論文,2011。
    [10]D. N. Bikiaris, A. Vassilioua, E. Pavlidoub, and G. Karayannidisa, “Compatibilisation effect of PP-g-MA copolymer on iPP/SiO2 nanocomposites prepared by melt mixing”, European Polymer Journal, Vol. 41, No. 9, pp. 1965-1978, 2005.
    [11]X. L. Jiang, Y. H. Fan, and F. Li, “Preparation and properties of dynamically cured polypropylene/maleic anhydride–grafted polypropylene/calcium carbonate/epoxy composites”, Journal of Thermoplastic Composite Materials, Vol. 26, No. 9, pp. 1192-1205, 2013.
    [12]L. Huang, R. B. Zhan, and Y. F. Lu, “Mechanical properties and crystallization behavior of polypropylene/nano-SiO2 composites”, Journal of Reinforced Plastics and Composites, Vol. 25, No. 9, pp. 1001-1012, 2006.
    [13]S. K. Esthappan, S. K. Kuttappan, and R. Joseph, “Thermal and mechanical properties of polypropylene/titaniumdioxide nanocomposite fibers”, Materials and Design, Vol. 37, pp. 537-542, 2012.
    [14]X. F. He, L. Y. Hu, X. X. Cao, L. B. Wang, “Characterization of thermal property of Nano-ZnO/PP composite”, Environment and Transportation Engineering International Conference, pp. 5799-5801, 2011.
    [15]黃玲娉,廖雅卿,機能性紡織品,紡織綜合研究所出版,2005。
    [16]M. Shateri-Khalilabad, and M. E. Yazdanshenas, “Bifunctionalization of cotton textiles by ZnO nanostructures: antimicrobial activity and ultraviolet protection”, Textile Research Journal, Vol. 83, No. 10, pp. 993-1004, 2013.
    [17]S. H. Hwang, J. Y. Song, and Y. J. Jung, “Electrospun ZnO/TiO2 composite nanofibers as a bactericidal agent”, Chemical Communications, Vol. 47, pp. 9164-9166, 2011.
    [18]A. D. Erem, G. Ozcan, and M. Skrifvars, “Antibacterial activity of PA6/ZnO nanocomposite fibers”, Textile Research Journal, Vol. 81, No. 16, pp. 1638-1646, 2011.
    [19]A. D. Erem, G. Ozcan, and M. Skrifvars, “In vitro assessment of antimicrobial polypropylene/zinc oxide nanocomposite fibers”, Textile Research Journal , Vol. 83, No. 20, pp. 2152-2163, 2013.
    [20]李其然,遠紅外線完全健康手冊:低能量遠紅外線照射療法,世茂出版社,2012。
    [21]邱垂豪,“遠紅外功能之聚乙烯醇纖維”,纖維與複合材料所,碩士論文,2002。
    [22]C. A. Lin, T. C. An, and Y. H. Hsu, “Study on the far infrared ray emission property and adsorption performance of bamboo charcoal /polyvinyl alcohol fiber”, Polymer-Plastics Technology and Engineering, Vol. 46, No. 11, pp. 1073-1078, 2011.
    [23]G. W. Bahng, and J. D. Lee, “Development of heat- generatingpolyester fiber harnessing catalytic ceramic powder combined with heat-generating super microorganisms”, Textile Research Journal, Vol. 84, No. 11, pp. 1220-1230, 2014.
    [24]李冠儒,李貴琪,張偉瑤及林榮敏,“WPU/BC 被覆棉織物遠紅外線放射率之研究”,華岡紡織期刊,16卷2期,pp. 132-139,2009。
    [25]C. P. Fung, and P. C. Kang, “Multi-response optimization in friction properties of PBT composites using Taguchi method and principle component analysis” Journal of Materials Processing Technology, Vol. 170, No. 3, pp. 602-610, 2005.
    [26]Y. S. Tarng, S. C. Juang, C. H. Chang, “The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing”, Journal of Materials Processing Technology, Vol. 128, No. 1-3, pp. 1-6, 2002.
    [27]N. M. Mehata, and S. Kamaruddinb, “Optimization of mechanical properties of recycled plastic products via optimal processing parameters using the Taguchi method”, Journal of Materials Processing Technology, Vol. 211, No. 12, pp. 1989-1994, 2011.
    [28]C. F. J. Kuo, W. L. Lan, Y. C. Chang, and K. W. Lin, “The preparation of organic light-emitting diode encapsulation barrier layer by low-temperature plasma-enhanced chemical vapor deposition: a study on the SiOxNy film parameter optimization”, Journal of Intelligent Manufacturing, published online 2014, DOI :10.1007/s10845-014-0893-8.
    [29]C. F. J. Kuo, T. L. Su, P. R. Jhang, C. Y. Huang, and C.H. Chiu, “Using the Taguchi method and grey relational analysis to optimize the flat-plate collector process with multiple quality characteristics in solar energy collector manufacturing”, Energy, Vol. 36, No. 5, pp. 3554-3562, 2011.
    [30]劉瑞珍,抗菌消臭原理與其在織物上的應用,工業技術研究院材料與化工研究所,第四頁,2014。
    [31]蕭凱仁,Metallocene聚丙烯纖維之介紹,台灣人纖工業會訊,第19 期,台灣區人造纖維製造工業同業公會,2001。
    [32]趙敏,高俊剛,劉奎林及趙興藝,改性聚丙烯-新材料,化學工業出版社,2002。
    [33]宮本武明,「新纖維材料入門」,中國紡織工研究中心出版,1998。
    [34]James A Harrington, Infrared Fibers and Their Applications, published by SPIE-The International Society for Optical Engineering, 2004.
    [35]C. C.Lin, C. F. Chang, M. Y. Lai, T. W. Chen, and P. C. Lee, “Far-infrared therapy:anovel treatment to improve access blood flow and unassisted patency of arteriovenous fistulain hemodialysis Patients” Journal of the American Society of Nephrology, Vol. 18, No. 3, pp. 985-992, 2007.
    [36]S. Y. Yu, J. H. Chiu, S. D. Yang, Yu-Chen Hsu, W. Y. Lui, and C. W. Wu,“Biological effect of far-infrared therapy on increasing skin microcirculation in rats”, Photodermatology Photoimmunology and Photomedicine, Vol. 22, No. 2, pp. 78-86, 2006.
    [37]藤島昭、橋本和仁及渡部俊也,圖解光觸媒,世茂出版社,2006。
    [38]N. Sombatsompop, M. Panaploy, “Die geometry effects on the temperature profile measurements of flowing PP melt in a twin-screw extruder”, Polymer Testing, Vol. 21, No. 1, pp. 17-25, 2002.
    [39]C. W. Chiu, C. A. Lin, and P. D. Hong, “Melt-spinning and thermal stability behavior of TiO2 nanoparticle/polypropylene nanocomposite fibers, Journal of Polymer Research, Vol. 18, No. 3, pp. 367-372, 2011.
    [40]莊東漢,材料分析與檢測實驗,五南出版社,2006。
    [41]ASTM D1238,熔融指數驗證規範,2013。
    [42]CNS8306,纖維伸長度及拉伸強度驗證規範,1982。
    [43]ASTM D1577,丹尼數驗證規範,2007。
    [44]FTTS-FA-010,遠紅外線紡織品驗證規範,2007修訂版。
    [45]JIS L-1902,織物定性抗菌驗證規範,2008修訂版。
    [46]葉怡成,實驗計劃法-製程與產品最佳化,五南圖書出版股份有限公司,2001。
    [47]蘇朝墩,產品穩健設計:田口品質工程方,三民書局出版,2002。
    [48]李輝煌,田口方法-品質設計的原理與實務,高立圖書有限公司出版,2003。
    [49]鄧聚龍,灰色系統理論與應用,高立圖書有限公司出版,2003。
    [50]溫坤禮,灰關聯模型方法與應用,高立圖書有限公司出版,2003。
    [51]S. H. Chang, J. R. Hwang, and J. L. Doong, “Optimization of the injection molding process of short glass fiber reinforced polycarbonate composites using grey relational analysis”, Journal of Materials Processing Technology, Vol. 97, No. 1-3, pp. 186-1931, 2000.
    [52]C. J. Tzenga, Y. H. Linb, Y. K. Yang, and M. C. Jeng, “Optimization of turning operations with multiple performance characteristics using the Taguchi method and grey relational analysis”, Journal of Materials Processing Technology, Vol. 209, No. 6, pp. 2753-2759, 2009.
    [53]Evangelos Triantaphyllou, Multi-Criteria Decision Making Methods: A Comparative Study, published by Springer, 2000.
    [54]L. I. Tong, C. H. Wang, and H. C. Chen, “Optimization of multiple responses using principal component analysis and technique for order preference by similarity to ideal solution”, The International Journal of Advanced Manufacturing Technology, Vol. 27, No. 3-4, pp. 407-414, 2005.
    [55]Bernhard Wunderlich, Thermal Analysis, published by Academic Press, 1990.

    無法下載圖示 全文公開日期 2019/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE