簡易檢索 / 詳目顯示

研究生: 徐雲飛
HSU, YUN-FEI
論文名稱: 田口法應用於熔紡熱塑性聚氨酯纖維製程參數最佳化之研究
Process Optimizing on Melt Spun Thermoplastic Polyurethane Filaments by Taguchi Method
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 邱顯堂
Hsien-Tang Chiu
安大中
Ta-Chung An
陳錦江
JIENG-CHIANG CHEN
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 113
中文關鍵詞: 熔融紡絲熱塑性聚氨酯田口法主成分分析
外文關鍵詞: Melt Spinning, Thermoplastic Polyurethane, Taguchi Method, Principal Component Analysis
相關次數: 點閱:215下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用熔融紡絲技術製備熱塑性聚氨酯(Thermoplastic polyurethane, TPU)彈性纖維並搭配田口法探討TPU纖維製程參數最佳化,以直交表L9(34)設計4個實驗因子(模頭溫度、幫浦轉速、延伸倍率、熱延伸溫度),並利用變異數分析(ANOVA),針對5項品質特性(強度、應變、纖維細度、沸水收縮、彈性回復)做最佳化探討。結果顯示,模頭溫度與熱延伸溫度為最主要影響因子,模頭溫度主要影響纖維細度與應變,纖維細度最細為103.33d/24f,應變最大為239.70%,熱延伸溫度主要影響彈性回復及強度,最佳彈性回復為96.56%,最大強度為2.88 g/Den。延伸率影響沸水收縮,於2倍延伸率沸水收縮最低為16.13%。最後從五項品質特性中尋找較佳貢獻度者,並導入主成分分析(Principal Components Analysis, PCA),再綜合四項品質特性因子尋找最佳之參數組合,其參數:模頭溫度260°C、幫浦轉速40 rpm、延伸倍率2倍、熱延伸溫度50℃,結果顯示,纖維細度為122.67d/24f,應變為239.70%,彈性回復為92.55%,沸水收縮為16.13%。


    This experiment used the thermoplastic polyurethane (TPU) elastic fiber of melt spinning technology with Taguchi method to investigate the optimized parameters of the TPU fiber manufacturing process. Four experimental factors, including die temperature, pump speed, extension ratio and heat extension temperature, were designed by orthogonal array L9(34) and by performing the variance analysis (ANOVA), the five quality characteristics (strength, strain, Denier, boiling water shrinkage and elastic recovery) were also optimized. Result showed that die temperature and heat extension temperature were the two primary influential factors. The die temperature specifically affects Denier and strain. The Denier number was the finest at 103.33d/24f with the maximum strain of 239.70%. The heat extension temperature mainly affects elastic recovery and strength. The optimal elastic recovery was 96.56% and the maximum strength was 2.88g/Den. The extension ratio affects boiling water shrinkage, yielding at least 16.13% of boiling water shrinkage with twice the extension ratio. Lastly, the best contributor was identified among the five quality characteristics and with introduction of principal components analysis (PCA) and the combination of four experimental factors, the study would attempt to find the best parameter combination, as follows: Die temperature at 260°C, pump speed at 40rpm, extension ratio at 2 folds, and heat extension temperature at 50℃. Such that, the results showed Denier of 122.67d/24f, strain of 239.70%, elastic recovery at 92.55% boiling water shrinkage of 16.13%.

    摘要.....................................I ASTRACT..................................II 目錄.....................................III 圖索引...................................VII 表索引....................................XX 第1章 緒論.................................1 1.1 前言...................................1 1.2 研究動機與目的..........................3 1.3 文獻回顧...............................4 1.3.1 TPU熱塑性聚氨酯......................4 1.3.2 製程最佳化..........................10 第2章 製程最佳化相關理論...................12 2.1 實驗方法概論..........................12 2.1.1 試誤法.............................13 2.1.2 一次一因子法.......................13 2.1.3 全因子法...........................14 2.1.4 田口法.............................14 2.2 田口方法概述.........................15 2.2.1 實驗因子簡述.......................18 2.2.2 直交表............................19 2.2.3 直交表選擇........................20 2.2.4 品質損失函數......................21 2.2.5 信號雜訊比........................23 2.2.6 變異數分析........................24 2.2.7 信賴區間..........................27 2.3 主成分分析概論......................29 2.3.1 計算理論基礎......................29 2.3.2 主成分計算步驟....................32 第3章 實驗儀器與材料介紹................35 3.1 熔融紡絲...........................36 3.2 材料分析...........................38 3.2.1 熱重損失分析儀...................38 3.2.2 熱示差分析儀.....................39 3.2.3 掃描式電子顯微鏡.................39 3.2.4 卡氏水分測定儀...................40 3.2.5 熔融指數測試.....................41 3.2.6 沸水收縮試驗.....................41 3.2.7 彈性回復.........................42 3.2.8 動態彈性回復.....................42 3.2.9 拉伸試驗機.......................44 3.2.10纖維細度試驗.....................45 第4章 實驗步驟與規劃...................46 4.1 研究流程..........................46 4.2實驗規劃...........................47 第5章 實驗結果與討論...................50 5.1 熔融紡絲實驗數據...................50 5.1.1纖維細度分析.....................54 5.1.2 拉伸強度分析....................57 5.1.3 拉伸應變分析....................60 5.1.4 沸水收縮分析....................63 5.1.5 彈性回復分析....................66 5.1.6 動態彈性回復分析................70 5.2 品質特性確認實驗..................74 5.2.1 拉伸強度確認實驗................74 5.2.2 彈性回復確認實驗................75 5.2.3 動態彈性回復確認實驗............75 5.3 多品質特性分析....................76 5.3.1 主成分分析......................76 第6章 結論............................83 參考文獻..............................85 附錄..................................91

    1. 朱新生、程嘉祺、徐彤、顧亞兵,氨綸結晶性與回彈性能的關係,合成纖維,2005, 34(8): 17-21.

    2. Z. Jiang, T. Ouyang, X. Yao, Y. Fei, The effect of the spinning conditions on the structure of mesophase pitch-based carbon fibers by Taguchi method. Carbon Letters.2016, 19: 89-98.

    3. A.B. Sulong, J. Park, C.H. Azhari, K. Jusoff, Process optimization of melt spinning and mechanical strength enhancement of functionalized multi-walled carbon nanotubes reinforcing polyethylene fibers. Composites Part B: Engineering.2011, 42.1: 11-17.

    4. C.F.J. Kuo, W.L. Lan, M.Y. Dong, S.H. Chen, F.S. Lin, Development of disperse dyes polypropylene fiber and process parameter optimization Part II: Dyeable polypropylene fiber production and melt spinning process parameter optimization. Textile Research Journal.2018, 88.13: 1505-1516.

    5. C.F.J. Kuo, S.S. Syu, C.H. Lin and K.C. Peng, The application of principal component analysis and gray relational method in the optimization of the melt spinning process using the cooling air system. Textile Research Journal.2013, 83.4: 371-380.

    6. K.H. Mohammad, A.B. Chin, S. Talebian, A. Muhammad, A. Andriyana, Electrospinning of polymethyl methacrylate nanofibers optimization of processing parameters using the Taguchi design of experiments. Textile Research Journal.2015, 85(4): 356-368.

    7. C.I. Su, Y.S. Liu, C.H. Hsu, J.Y. Lee, C.H. Lu, Optimum parameters of the continuous process of electrospun nanofibrous yarn. Fibers and Polymers. 2015, 16(4): 826-833.

    8. B. Chu, T. Gao, Y. Li, J. Wang, C.R. Desper, C.A. Byrne, Microphase separation kinetics in segmented polyurethanes effects of soft segment length and structure. Macromolecules.1992, 25(21): 5724-5729.
    9. Y. Li, Z. Ren, M. Zhao, H. Yang, B. Chu, Multiphase structure of segmented polyurethanes: effects of hard segment flexibility. Macromolecules.1993, 26(4): 612-622.

    10. R.A. Azzam, S.K. Mohamed, R. Tol, V. Everaert, H. Reynaers, B. Goderis, Synthesis and thermo-mechanical characterization of high performance polyurethane elastomers based on heterocyclic and aromatic diamine chain extenders. Polymer degradation and stability.2007, 92(7): 1316-1325.

    11. 韓車偉、崔再治,熔紡氨綸設備的研究及開發,聚酯工業, 2002,15(3):23-25.

    12. 丁雪佳、褚文娟、張德強、袁園、張麗娟、韓海軍,熱塑性聚氨酯彈性體的共混改性研究進展,彈性體,2010, 20(2): 67-6976。

    13. 趙若鵬、沈劍、徐時敏、鹿萍、董堅,耐熱氨綸的研究現狀,合成纖維工業,2012, 5: 38-41.

    14. X.Q. Shi, H. Ito, T. Kikutani., Structure development and properties of high speed melt spun poly (butylene terephthalate)/poly (butylene adipate-co-terephthalate) bicomponent fibers. Polymer.2006, 47.2: 611-616.

    15. S. Oprea, Effect of structure on the thermal stability of curable polyester urethane urea acrylates. Polymer degradation and stability.2002, 75(1): 9-15.

    16. T. Gupta, B. Adhikari, Thermal degradation and stability of HTPB-based polyurethane and polyurethaneureas. Thermochimica acta.2003,402(1): 169-181.

    17. 趙若鵬、沈劍、徐時敏、鹿萍、董堅,耐熱氨綸的研究現狀,合成纖維工業,2012, 5: 38-41.

    18. 趙躍、馬輝,熔紡氨綸的工業現狀及發展前景,聚酯工業,2003,16(6): 10-12.

    19. 牛家祥、劉興富、張祖文,聚氨酯彈性纖維發展趨勢及其熔融紡絲工藝簡述,廣東化纖,2002, 4:19-24.

    20. 夏飲冰、張樂德,熔融法氨綸的原料性能和投資分析,合成纖維工業, 2000, 23(6): 62-63.

    21. 蘆靜、王海波,中國氨綸的現狀與未來,合成纖維,2003, 32(6): 5-8.

    22. 鄭海春、葉韞珊、邢鐵玲、陳斌,熔紡氨綸長絲的熱學和力學性能研究,絲綢,2016, 2: 8-13.

    23. J. Kaursoin, A.K. Agrawal, Melt spun thermoresponsive shape memory fibers based on polyurethanes: Effect of drawing and heat‐setting on fiber morphology and properties. Journal of applied polymer science.2007,103(4): 2172-2182.

    24. N. Radhakrishnan, P. Reghunadhan, C.P. Nair, D.J. Francis, Imide modified polyurethanes, syntheses, thermal, and mechanical characteristics. Journal of applied polymer science.1998,70(8): 1483-1491.

    25. Y.M. Song, W.C. Chen, T. L. Yu, K. Linliu, Y.H. Tseng, Effect of isocyanates on the crystallinity and thermal stability of polyurethanes. Journal of applied polymer science.1996, 62(5): 827-834.

    26. H. Yeganeh, M.A. Shamekhi, Poly (urethane-imide-imide), a new generation of thermoplastic polyurethane elastomers with enhanced thermal stability. Polymer.2004, 45(2): 359-365.

    27. F. Qiu, D. Yang, G. Cao, R. Zhang, P. Li, Synthesis characterization thermal stability and thermo-optical properties of poly (urethane-imide). Sensors and Actuators B: Chemical.2009, 135(2): 449-454.

    28. 劉偉時、薛孝川、司徒建嵩、肖水波,熔紡氨綸結構和性能的研究,化纖與紡織技術,2010, 39(3): 4-9.

    29. 周建平,氨綸熔融紡織生產工藝的探討,江蘇紡織,2002, 10: 42-43.

    30. 陶宇、陳穎,改善熔紡氨綸彈性恢復率的研究,合成纖維工業,2007, 30(3):1-2.

    31. 陳佩蘭,熔紡氨綸,合成纖維,2003, 32(4): 8-10.

    32. D.M. Byrne, S. Taguchi, The taguchi approach to parameter design. Quality Process.1987, 20: 19-26.

    33. S.W. Anderson, K. Sedatole, Designing quality into products the use of accounting data in new product development. Accounting Horizons.1998,12: 213-233.

    34. G. Nandi, S. Datta, A. Bandyopadhyay, P.K. Pal, Application of PCA-based hybrid Taguchi method for correlated multicriteria optimization of submerged arc weld a case study. Int J Adv Manuf Technol.2009, 45: 276-286.

    35. F.C. Chen, Y.F. Tzeng, W.R. Chen, M.H. Hsu, The use of the Taguchi method and principal component analysis for the sensitivity analysis of a dual-purpose six-bar mechanism Proceedings of the Institution of Mechanical Engineers Part C. Journal of Mechanical Engineering Science.2009, 223-733.

    36. S. Datta and S.S. Mahapatra, Use of desirability function and principal component analysis in grey-Taguchi approach to solve correlated multi-responde optimization in submerged arc welding. Journal of Advanced Manufacturing Systems.2010, 9: 117-128.

    37. 李昭陽、韓之俊,田口方法和雙重曲面響應(DRSM)法,數理統計與管理,2000, 19(5): 40-44.

    38. 趙秀栩、楊明忠,面向產品質量的穩健設計及應用,武漢理工大學學報信息與管理工程版,2001, 23(2): 90-92.

    39. 李堃,日本企業質量管理方法簡介(二)田口方法的基礎和核心-參數設計,上海質量,2008, 4: 013.

    40. 徐鐵漢、李清,運用田口方法優化裝配工藝參數設計,四川兵工學報,2003, 24(6): 31-33.

    41. 魏林,值得重視的田口式參數設計法,電子質量,2006, 2: 25-28.

    42. 古曉霈、黃啟敬,田口法對提高工程分析能力的研究,江蘇科技信息,2014, 14: 35-37.

    43. 韶洛、彭杰、向毅、章橋新,田口試驗設計的改進及其應用研究,電子工藝技術,2010, 1: 20-23.

    44. 薛躍、盛黨紅、朱立峰、韓之俊,田口式測量質量工程學與傳統MSA的比較分析,系統工程理論與實踐,2006, 26(8): 76-80.

    45. 石貴龍,質量機能展開與田口方法的綜合應用,集團經濟研究,2007,02: 238-239.

    46. 牛勇、袁泉、侯鬱,田口方法近年來的發展—穩健性技術開發,農機化研究,2001, 1: 33-37.

    47. 陳首峰、溫正忠、張彥軍,基於田口法的產品質量工程優化系統開發,計算機仿真,2004, 21(6): 179-181.

    48. E. Oliaei, B.S. Heidari, S.M. Davachi, M. Bahrami, S. Davoodi, I. Hejazi and J. Seyfi, Warpage and shrinkage optimization of injection-molded plastic spoon parts for biodegradable polymers using taguchi ANOVA and artificial neural network methods. Journal of Materials Science & Technology.2016, 32(8): 710-720.

    49. S.N. Patra, A.J. Easteal, D. Bhattacharyya, Parametric study of manufacturing poly(lactic) acid nanofibrous mat by electrospinning. Journal of Materials Science.2008, 44(2): 647-654.

    50. Julie Z. Zhang, Joseph C. Chen, E. Daniel Kirby., Surface roughness optimization in an end-milling operation using the Taguchi design 110 method. Journal of Materials Processing Technology.2007,184(1–3): 233-239.

    51. N. Radhakrishnan, P. Reghunadhan, C.P. Nair, D.J. Francis, Imide‐modified polyurethanes syntheses thermal and mechanical characteristics. Journal of applied polymer science.1998, 70(8): 1483-1491.

    52. Y.M. Song, W.C. Chen, T.L. Yu, K. Linliu, Y.H. Tseng, Effect of isocyanates on the crystallinity and thermal stability of polyurethanes. Journal of applied polymer science.1996, 62(5): 827-834.

    53. S.H. Park and J. Antony, Robust design for quality engineering and six sigma. World Scientific Publishing Company.2008.

    54. PJ. Ross, Taguchi techniques for quality engineering loss function, orthogonal experiments, parameter and tolerance design. NewYork:McGraw-Hill.1998.

    55. 蘇朝墩,產品穩健設計,台北:中華民國品質學會,2002.

    56. 李輝煌,田口方法-品質設計的原理與實務,台北:高立圖書有限公司,2000.

    57. C. F. J Kuo, S. S. Syu, C. H. Lin, & K. C. Peng, The application of principal component analysis and gray relational method in the optimization of the melt spinning process using the cooling air system. Textile Research Journal, 2013, 83.4: 371-380.

    58. C. F. J. Kuo, W. L. Lan, M. Y. Dong, S. H. Chen, & F. S. Lin, Development of disperse dyes polypropylene fiber and process parameter optimization Part II: Dyeable polypropylene fiber production and melt spinning process parameter optimization. Textile Research Journal, 2018, 88.13: 1505-1516.

    59. A. B. Sulong, J. Park, C. H. Azhari, & K. Jusoff, Process optimization of melt spinning and mechanical strength enhancement of functionalized multi-walled carbon nanotubes reinforcing polyethylene fibers. Composites Part B: Engineering, 2011, 42.1: 11-17.

    60. Z. Jiang, T. Ouyang, X. Yao, & Y. Fei, The effect of the spinning conditions on the structure of mesophase pitch-based carbon fibers by Taguchi method. Carbon Letters (Carbon Lett.), 2016, 19: 89-98.

    無法下載圖示 全文公開日期 2024/08/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE