簡易檢索 / 詳目顯示

研究生: 辛自鈞
Tzu-Chun Hsin
論文名稱: 摻雜 CF4於主動層沈積已改善金屬氧化物薄膜電晶體電性及可靠度之研究
Doped CF4 in Active Layer Deposition Improves Metal Oxide Thin Film transistors Study of electrical properties and reliability
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee
劉舜維
Shun-Wei Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 119
中文關鍵詞: 氧化銦鎵鋅氧化銦鋅錫四氟化碳可靠度
外文關鍵詞: a-IGZO, a-IZTO, fluorine, reliability, CF4
相關次數: 點閱:170下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬氧化物半導體薄膜電晶體(Oxide-TFT)由於其高載子遷移率、高可見光透明性、大面積均勻性、低溫製成及低漏電流…等,於近年來常被應用於大尺寸面板甚至是攜帶型產品中作為驅動或是補償電路的元件使用,不過由於顯示器開始朝向高解析度及高畫面更新率做發展,電晶體的載子遷移率勢必須要進一步的提升,因此,本論文將以提升金屬氧化物薄膜電晶體之載子遷移率作為研究的主軸,相較於常見的氧化銦鎵鋅,氧化銦鋅錫擁有先天上較高遷移率的優勢,利用其特點同時摻雜CF4,進一步提升主動層的載子濃度以及穩定度,來達成目標。
    首先,我們利用調變氧化銦鎵鋅在磁控濺鍍生長時的氧氣以及CF4流量及濺鍍功率,分析在不同製程條件下元件在電特性上的表現,找出最佳主動層製程參數,並針對薄膜進行霍爾量測、XPS等材料分析,接著,使用氧化銦鋅錫,調變磁控濺鍍生長時的CF4流量及濺鍍功率對於元件電性的影響,比較出各種參數調變下的電特性差異,同時以XPS材料分析來證明,找出擁有最佳特性的調變參數,達到穩定度提升。


    Metal oxide semiconductor thin-film transistors (Oxide-TFTs) have been widely used in recent years for their high carrier mobility, high visible light transparency, large-area uniformity, low-temperature fabrication, and low leakage current. They are commonly employed as components in driving and compensation circuits for large-sized panels and portable devices. However, as displays strive for higher resolutions and faster screen refresh rates, there is a need to further enhance the carrier mobility of transistors. Therefore, this study focuses on improving the carrier mobility of metal oxide thin-film transistors, with a particular emphasis on indium zinc tin oxide (IZTO). Compared to the commonly used indium gallium zinc oxide, IZTO offers inherent advantages with higher carrier mobility. By utilizing its characteristics and doping it with CF4, the carrier concentration and stability of the active layer can be further improved to achieve the research objectives.
    The research methodology begins by modulating the oxygen, CF4 flow rates, and sputtering power during the growth of indium gallium zinc oxide using magnetron sputtering. This allows for the analysis of device performance in terms of electrical characteristics under different process conditions, facilitating the identification of optimal process parameters for the active layer. The thin films are then subjected to Hall measurements, X-ray photoelectron spectroscopy (XPS), and other material analyses. Subsequently, indium zinc tin oxide is employed, and the effects of CF4 flow rates and sputtering power during the magnetron sputtering growth are investigated in terms of device electrical properties. By comparing the electrical characteristics under various parameter modulations and conducting XPS material analysis, the study aims to determine the modulated parameters that yield the best performance and stability improvements.

    論文摘要...................................... Abstract.....................................I 致謝...........................................II 目錄.........................................III 圖目錄..................................... VI 表目錄....................................XII 第一章 緒論 .............................1 1.1 研究背景..........................1 1.2 研究動機..........................4 1.3 論文大綱..........................6 第二章 材料與製程介紹及理論基礎 .....................................7 2.1 金屬氧化物半導體材料介紹.........................................7 2.1.1 金屬氧化物半導體材料概述 ...................................7 2.1.2 非晶金屬氧化物半導體傳輸機制 ..........................7 2.1.3 非晶氧化銦鋅錫材料特性與電性影響 ................10 2.2 金屬氧化物薄膜電晶體結構.......................................13 2.3 金屬氧化物薄膜電晶體操作模式...............................14 2.4 金屬氧化物薄膜電晶體之參數萃取方式....................19 2.4.1 I-V 特性量測.......19 2.4.2 載子遷移率 (Mobility, μ) .....................................20 2.4.3 臨界電壓 (Threshold Voltage, VTH) .....................21 2.4.4 次臨界斜率 (Subthreshold Swing, S.S)................22 2.4.5 開關電流比 (On/Off Current Ratio, Ion/Ioff)..........24 2.4.6 接觸電阻 (Contact Resistance, RC).......................24 2.5 薄膜材料特性分析........26 2.5.1 原子力顯微鏡 (Atomic Force Microscope , AFM)............................26 2.5.2 紫外光/可見光光譜儀 (Ultraviolet/Visible Spectrophotometer, UV/VIS)..........26 2.5.3 X 光繞射儀(X Ray Diffractometer, XRD)........28 2.5.4 X 射線光電子能譜儀 ( X-ray Photoelectron Spectroscopy, XPS) .............29 第三章 利用射頻濺鍍系統沉積氧化銦鎵鋅摻氟(IGZO:F)之元件電特性分析...............30 3.1 簡介...............................30 3.1.1 文獻回顧............30 3.2 實驗步驟...................31 3.3 氧化銦鎵鋅摻氟之元件電特性分析.......................37 3.3.1 不同摻雜厚度氧化銦鎵鋅摻氟之元件電特性分析........................................37 3.3.2 不同退火時間以及不同 CF4流量下元件電特性分析.............................49 3.4 氧化銦鎵鋅摻氟之元件穩定度分析.......................54 3.5 氧化銦鎵鋅摻氟之薄膜材料分析...........................58 第四章 利用射頻濺鍍系統沉積氧化銦鋅錫摻氟(IZTO:F)之元件電特性分析...............65 4.1. 簡介...........................65 4.1.1. 實驗動機.............65 4.2. 實驗步驟...................65 4.3. 氧化銦鋅錫摻氟之元件電特性分析.......................70 4.3.1. 不同摻雜厚度氧化銦鋅錫摻氟之元件電特性分析...................................70 4.4. 氧化銦鋅錫摻氟之元件穩定度分析............................85 4.5. 氧化銦鋅錫摻氟之薄膜材料分析 ...............................92 第五章 結論與未來展望 .......................................................95 5.1 結論................................95 5.2 未來展望........................97 參考文獻..................................98

    [1] J. F. Wager, "ZnO Transparent Thin-Film Transistor Device Physics," Science, vol. 300,
    no. 5623, pp. 1245-1246, 2003
    [2] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, " AmorphousOxide Semiconductors for High-Performance Flexible Thin-Film Transistors, " Japanese Journal of Applied Physics, " vol. 45, no. 5B, pp. 4303-4308, 2006.
    [3] Zoran Šego, Srećko Kunić, " OLED technology and displays," IEEE (ELMAR), 2012.
    [4] 王木俊、劉傳璽,”薄膜電晶體液晶顯示器原理與實務”,新北市,新文京開發出版股份有限公司,2008
    [5] Jinkoo Chung, Joohyeon Lee, Junho Choi, Chanyoung Park, " Transparent AMOLED Display Based on Bottom Emission Structure," Journal of the Society for Information Display, vol. 41, no.1, pp. 148-151, 2012.
    [6] T. Kim, Y. Nam, J. Hur, S. H. K. Park, and S. Jeon, "The Influence of Hydrogen on Defects of In-Ga-Zn-O Semiconductor Thin-Film Transistors with Atomic-Layer Deposition of Al2O3, " IEEE Electron Device Letters, vol. 37, no. 9, pp. 1131-1134, 2016.
    [7] Nakata, M., Zhao, C., Kanicki, J., "DC sputtered amorphous In-Sn-Zn-O thinfilmtransistors: Electrical properties and stability", Solid-State Electronics, vol. 116, pp. 22-29, 2016.
    [8] Choi W.-H., Kim, M., Jeon, W., Park, J.-S., "Investigating the interface characteristics of high-k ZrO2/SiO2 stacked gate insulator grown by plasma-enhanced atomic layer deposition for improving the performance of InSnZnO thin film transistors", AIP Advances, vol. 10, no. 1, 2020.
    [9] Kang, A.Y., Lenahan, P.M., Conley Jr., J.F., "Electron spin resonance observation of trapped electron centers in atomic-layer-deposited hafnium oxide on Si", Applied Physics Letters, vol. 83, no. 16, pp. 3407-3409, 2003.
    [10] D. H. Lee, S. Y. Han, G. S. Hermanc, and C. h. Chang, " Inkjet printed high-mobility indium zinc tin oxide thin film transistors, " Journal of Materials Chemistry, vol. 19, no. 20, pp. 3135-3137, 2009.
    [11] M. Nakata, C. Zhao, and J. Kanicki, " DC sputtered amorphous In–Sn–Zn–O thin-film transistors: Electrical properties and stability, " Solid-State Electronics, vol. 116, pp. 22-29, 2016.
    [12] X. Xiao, W. Deng, S. Chi, Y. Shao, X. He, L. Wang, and S. Zhang, " Effect of O2 Flow Rate During Channel Layer Deposition on Negative Gate Bias Stress-Induced Vth Shift of a-IGZO TFTs, " IEEE Transactions on Electron Devices, vol. 60, no. 12, pp. 4159-4164, 2013.
    [13] S. Junfei, D. Chengyuan, D. Wenjun, W. Jie, C. Yuting, and Z. Runze, " The influence of RF power on the electrical properties of sputtered amorphous In– Ga–Zn–O thin films and devices, " Journal of Semiconductors, vol. 34, no. 8, 2013.
    [14] M. Orita, H. Ohta, M. Hirano, S. Narushima, and H. Hosono, " Amorphous transparent conductive oxide InGaO3 (ZnO)m (m≤ 4): a Zn4s conductor, " Philosophical Magazine Part B, vol. 81, no. 5, pp. 501-515, 2001.
    [15] D. C. Paine, T. Whitson, D. Janiac, R. Beresford, C. Ow-Yang, and B. Lewis, " A study of low temperature crystallization of amorphous thin film indium-tin-oxide, " Journal of Applied Physics, vol. 85, no. 12, pp. 8445-8450, 1999.
    [16] M. Yasukawa, H. Hosono, N. Ueda, and H. Kawazoe, " Novel Transparent and Electroconductive Amorphous Semiconductor: amorphous AgSbO3 Film, " Journal of Applied Physics, vol. 34, no. 3A, pp. L281-L284, 1995.
    [17] X. Zhou, S. Q. Wang, G. J. Lian, and G. C. Xiong, " Growth of n-type ZnO thin films by using mixture gas of hydrogen and argon, " Chinese Physics, vol.15, no. 1, 2006.
    [18] Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, " P- channel thin-film transistor using p-type oxide semiconductor, SnO, " Applied Physics Letters, vol. 93, no. 3, p. 032113, 2008.
    [19] E. Arca, K. Fleischer, and I. V. Shvets, " Magnesium, nitrogen codoped Cr2O3: A p-type transparent conducting oxide, " Applied Physics Letters, vol. 99, no. 11, p. 111910, 2011.
    [20] A. J. Bosman, and C. Crevecoeur, " Mechanism of the Electrical Conduction in Li-Doped NiO, " Physical Review, vol. 144, no. 2, pp. 763-770, 1966.
    [21] D. C. Look, G. M. Renlund, R. H. Burgener, and J. R. Sizelove, " As-doped p-type ZnO produced by an evaporation∕sputtering process, " Applied Physics Letters, vol. 85, no. 22, pp. 5269-5271, 2004.
    [22] M. L. Tu, Y. K. Su, and C. Y. Ma, " Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering, " Journal of Applied Physics, vol. 100, no. 5, p. 053705, 2006.
    [23] X. Ding, C. Qin, T. Xu, J. Song, J. Zhang, X. Jiang, and Z. Zhang, " Stability enhancement in InGaZnO thin-film transistor with a novel Al2O3/HfO2/Al2O3 as gate insulator, " Molecular Crystals and Liquid Crystals, vol. 651, no. 1, pp. 235-242, 2017.
    [24] T. Kamiya, K. Nomura, and H. Hosono, " Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping, " Journal of Display Technology, vol. 5, no. 7, pp. 273-288, 2009.
    [25] H. Hosono, " Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application, " Journal of Non-Crystalline Solids, vol. 352, pp. 851-858, 2006.
    [26] H. Hosono, M. Yasukawa, and H. Kawazoe, " Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides, " Journal of Non-Crystalline Solids, vol. 203, pp. 334-344, 1996.
    [27] W. Yu, D. Han, H. Li, J. Dong, X. Zhou, Z. Yi, Z. Luo, S. Zhang, X. Zhang, and Y. Wang, " Titanium doped zinc oxide thin film transistors fabricated by cosputtering technique, " Applied Surface Science, vol. 459, pp. 345-348, 2018.
    [28] Q. Tang, X. Chen, J. Wan, H. Wu, and C. Liu, " Influence of Ga Doping on Electrical Performance and Stability of ZnO Thin-Film Transistors Prepared by Atomic Layer Deposition, " IEEE Transactions on Electron Devices, vol. 67, no. 8, pp. 3129-3134, 2020.
    [29] H. Hosono, K. Nomura, Y. Ogo, T. Uruga, and T. Kamiya, " Factors controlling electron transport properties in transparent amorphous oxide semiconductors, " Journal of NonCrystalline Solids, vol. 354, pp. 2796-2800, 2008.
    [30] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, " High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer, " Applied Physics Letters, vol. 86, no. 1, p. 013503, 2005.
    [31] T. Kamiya, K. Nomura, and H. Hosono, " Present status of amorphous In-Ga-Zn-O thinfilm transistors, " Science and Technology of Advanced Materials, vol. 11, no. 4, p. 044305, Aug 2010.
    [32] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, " Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors, " Japanese Journal of Applied Physics, vol. 48, no. 1, p. 010203, 2009.
    [33] 戴亞翔," TFT-LCD 面板的驅動與設計 ",五南圖書出版社股份有限公司,2008.
    [34] J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and C. J. Kim, " Control of threshold voltage in ZnO-based oxide thin film transistors, " Applied Physics Letters, vol. 93, no. 3, p. 033513, 2008.
    [35] P. Barquinha, L. Pereira, G. Gonalves, R. Martins, and E. Fortunato, " The effect of deposition conditions and annealing on the performance of high-mobility GIZO TFTs, " Electrochemical and Solid-State Letters, vol. 11, no. 9, pp. H248-H251, 2008. 148
    [36] J. H. Jeong, H. W. Yang, J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, J. Song, and C. S. Hwang, " Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors, " Electrochemical and Solid-State Letters, vol. 11, no. 6, pp. H157-H159, 2008.
    [37] K. Ide, Y. Kikuchi, K. Nomura, M. Kimura, T. Kamiya, and H. Hosono, " Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors, " Applied Physics Letters, vol. 99, no. 9, p. 093507, 2011
    [38] P. Barquinha, A. M. Vila, G. Goncalves, L. Pereira, R. Martins, J. R. Morante, and E. Fortunato, " Gallium-indium-zinc-oxide-based thin-film transistors: Influence of the source/drain material, " IEEE Transactions on Electron Devices, vol. 55, no. 4, pp. 954- 960, 2008.
    [39] J. R. Yim, S. Y. Jung, H. W. Yeon, J. Y. Kwon, Y. J. Lee, J. H. Lee, and Y. C. Joo, " Effects of metal electrode on the electrical performance of amorphous In-Ga-Zn-O thin film transistor, " Japanese Journal of Applied Physics, vol. 51, no. 1, p. 011401, 2011.
    [40] E. N. Cho, J. H. Kang, and I. Yun, " Contact resistance dependent scaling-down behavior of amorphous InGaZnO thin-film transistors, " Current Applied Physics, vol. 11, no. 4, pp. 1015-1019, 2011.
    [41] H. Kim, K. K. Kim, S. N. Lee, J. H. Ryon, and R. D. Dupuis, " Low resistance Ti/Au contacts to amorphous gallium indium zinc oxides, " Applied Physics Letters, vol. 98, no. 11, p. 112107, 2011.
    [42] J. R. Yim, S. Y. Jung, H. W. Yeon, J. Y. Kwon, Y. J. Lee, J. H. Lee, and Y. C. Joo, " Effects of Metal Electrode on the Electrical Performance of Amorphous In–Ga–Zn–O Thin Film Transistor, " Japanese Journal of Applied Physics, vol. 51, no. 1, p.011401, 2012.
    [43] Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, " Specific contact resistances between amorphous oxide semiconductor In-Ga-Zn-O and metallic electrodes, " Thin Solid Films, vol. 516, no. 17, pp. 5899-5902, 2008.
    [44] Weidong Xu, Guanqun Zhang, Xianjin Feng, " Room temperature fabricated high performance IAZO thin film transistors with dual-active-layer structure and sputtered Ta2O5 gate insulator, " Journal of Alloys and Compounds, vol.862, no 158030, 2021
    [45] Min Seong Kim, Hyung Tae Kim, Hyukjoon Yoo, Dong Hyun Choi, Jeong Woo Park, Tae Sang Kim, Jun Hyung Lim, and Hyun Jae Kim, " Multifunctional Oxygen Scavenger Layer for High-Performance Oxide Thin-Film Transistors with Low-Temperature Processing, " ACS Applied Materials and Interfaces, vol.13,no 27, pp31816–31824 2021
    [46] E. Chong, Y. S. Chun, S. H. Kim, and S. Y. Lee, " Effect of oxygen on the threshold voltage of a-IGZO TFT, " Journal of Electrical Engineering & Technology, vol. 6, no. 4, pp. 539-542, 2011.
    [47] Nannan Lv , Zening Wang , Mengjun Du, Huaisheng Wang , Dongli Zhang , Member, IEEE, Man Wong , Senior Member, IEEE, and Mingxiang Wang , Senior Member, IEEE, " Effect of Nitrogen Doping on Elevated-Metal Metal-Oxide (EMMO) Thin-Film Transistors, " IEEE Transactions on Electron Devices, vol. 69 no 8, pp. 4271–4276 2022
    [48] Ching-Lin Fan, Fan-Ping Tseng and Chiao-Yuan Tseng, " Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO2 Gate Dielectrics by CF4 Plasma Treatment, " Materials, vol.11 no 5, pp. 824 2018
    [49] Sunil Babu Eadi, Hyun-Jin Shin, P. Senthil Kumar, Ki-Woo Song, R. Yuvakkumar, Hi-Deok Lee " Fluorine-implanted indium-gallium-zinc oxide (IGZO) chemiresistor sensor
    for high-response NO2 detection, " Chemosphere, vol.284, pp.131287 2021.
    [50] Ching-Lin Fan, Fan-Ping Tseng and Chiao-Yuan Tseng, " Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO2 Gate Dielectrics by CF4 Plasma Treatment, " Materials, vol.11 no 5, pp. 824 2018.
    [51] Jong Cheon Park a , Ok Geun Jeong a , Jin Kon Kim b , Young-Hoon Yun c , Stephen J. Pearton d , Hyun Cho, " Comparison of chlorine- and fluorine-based inductively coupled plasmas for dry etching of InGaZnO4 films, " Thin Solid Films, vol. 546, pp.136–140 2013.
    [52] S. Kim, Y. W. Jeon, Y. Kim, D. Kong, H. K. Jung, M. K. Bae, J. H. Lee, B. D. Ahn, S. Y. Park, J. H. Park, J. Park, H. I. Kwon, D. M. Kim, " Impact of Oxygen Flow Rate on the Instability Under Positive Bias Stresses in DC-Sputtered Amorphous InGaZnO Thin-Film Transistors, " IEEE Electron Device Letters, vol. 33, no. 1, p. 6087997, Jan 2012.
    [53] X. Zhou, Y. Shao, L. Zhang, H. Lu, H. He, D. Han, Y. Wang, S. Zhang, " Oxygen Interstitial Creation in a-IGZO Thin-Film Transistors under Positive Gate-Bias Stress, " IEEE Electron Device Letters, vol. 38, no. 9, pp. 1252-1255, Sept 2017.
    [54] C. C. Lo, T. E. Hsieh, " The Influences of Oxygen Incorporation on the Defect Trap States of a-IGZO Thin-film Transistors, " The Electrochemical Society, vol. 45, no. 7, pp. 239-243, 2012.
    [55] B. C. You, S. J. Wang, R. M. Ko2, J. H. Wu, C. E. Lin, " Enhanced electrical performance and reliability of Ti-IGZO thinfilm transistors with Hf1-xAlxO gate dielectrics, " Japanese Journal of Applied Physics, vol. 59, 2019.
    [56] C. H. Hunga, S. J. Wanga, P. Y. Liua, C. H. Wuc, H. P. Yana, N. S. Wua, T. H. Lin, " Improving the electrical and hysteresis performance of amorphous igzo thinfilm transistors using co-sputtered zirconium silicon oxide gate dielectrics, " Materials Science in Semiconductor Processing, vol. 67, pp. 84-91, 2017.
    [57] J. Raja, K. Jang, H. H. Nguyen, T. T. Trinh, W. Choi, J. Yi, " Enhancement of electrical stability of a-IGZO TFTs by improving the surface morphology and packing density of active channel, " Current Applied Physics, vol. 13, pp. 246-251, 2013.
    [58] S. Choi, J. Y. Kim, H. Kang, D. Ko, J. Rhee, S. J. Choi, D. M. Kim, D. H. Kim, " Effect of Oxygen Content on Current Stress-Induced Instability in Bottom-Gate Amorphous InGaZnO Thin-Film Transistors, " Materials, vol. 12, no. 19, 2019.
    [59] D. H. Kim, Y. S. Rim, K. H. Kim, " Properties of IZTO Thin Films Prepared by Using a Hetero-Target Sputtering System, " Journal of the Korean Physical Society, vol. 54, no. 3, pp. 1309-1314, 2009.
    [60] J. T. Jang, J. Park, B. D. Ahn, D. M. Kim, S. J. Choi, H. S. Kim, D. H. Kim, " Effect of direct current sputtering power on the behavior of amorphous indiumgallium-zinc-oxide thin-film transistors under negative bias illumination stress: A combination of experimental analyses and device simulation, " Applied Physics Letters, vol. 106, p. 123505, 2015.
    [61] Hai Q. Chiang, Brian R. McFarlane, David Hong, Rick E. Presley, John F. Wager, " Processing effects on the stability of amorphous indium gallium zinc oxide thin-film transistors, " Journal of Non-Crystalline Solids, vol. 354, pp. 2826-2830, 2008
    [62] B. Kim, E. Chong, D. H. Kim, Y. W. Jeon, D. H. Kim, S. Y. Lee, " Origin of threshold voltage shift by interfacial trap density in amorphous InGaZnO thin film transistor under temperature induced stress, " Applied Physics Letters, vol. 99, p. 062108, 2011.
    [63] M. Moreira, E. Carlos, C. Dias, J. Deuermeier, M. Pereira, P. Barquinha, R. Branquinho, R. Martins, E. Fortunato, " Tailoring IGZO Composition for Enhanced Fully Solution-Based Thin Film Transistors, " Nanomaterials, vol. 9, no. 9, 2019.
    [64] Jie Zhang, Adam Charnas, Zehao Lin, Dongqi Zheng, Zhuocheng Zhang, Pai-Ying Liao, Dmitry Zemlyanov, and Peide D. Ye " Fluorine-passivated In2O3 thin film transistors with improved electrical performance via low-temperature CF4/N2O plasma, " Applied Physics Letters, vol. 121, no. 17, pp.172101 2022.
    [65] C. C. Lo, T. E. Hsieh, " The Influences of Oxygen Incorporation on the Defect Trap States of a-IGZO Thin-film Transistors, " The Electrochemical Society, vol. 45, no. 7, pp. 239- 243, 2012.
    [66] B. C. You, S. J. Wang, R. M. Ko2, J. H. Wu, C. E. Lin, " Enhanced electrical performance and reliability of Ti-IGZO thinfilm transistors with Hf1-xAlxO gate dielectrics, " Japanese Journal of Applied Physics, vol. 59, 2019.
    [67] C. H. Hunga, S. J. Wanga, P. Y. Liua, C. H. Wuc, H. P. Yana, N. S. Wua, T. H. Lin, " Improving the electrical and hysteresis performance of amorphous igzo thinfilm transistors using co-sputtered zirconium silicon oxide gate dielectrics, " Materials Science in Semiconductor Processing, vol. 67, pp. 84-91, 2017

    無法下載圖示 全文公開日期 2028/08/23 (校內網路)
    全文公開日期 2028/08/23 (校外網路)
    全文公開日期 2028/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE