簡易檢索 / 詳目顯示

研究生: 彭裕翔
Yu-hsiang Peng
論文名稱: 氧化鋅奈米柱/奈米鑽石薄膜複合結構之光檢測器特性研究
Bi-layer structure of ZnO Nanorod/Nano Diamond Film for photodetector
指導教授: 黃柏仁
Bohr-ran Huang
口試委員: 陳良益
Liang-Yih Chen
洪上超
Shang-Chao Hung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 137
中文關鍵詞: 奈米鑽石氧化鋅光檢測器
外文關鍵詞: Nanodiamond, ZnO nanorod, Photodetector
相關次數: 點閱:195下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討以不同氧流量成長奈米鑽石薄膜且以退火熱處理改變薄膜品質,之後再成長氧化鋅奈米柱於以上參數所成長之奈米鑽石薄膜上,最後以不同溫度進行二次退火,再以FE-SEM、AFM、Raman、XRD、PL、Photodetector等分析判定薄膜品質。首先用微波電漿化學氣相系統(MPCVD)成長奈米鑽石薄膜,利用不同氧流量進行成長改變薄膜品質,在薄膜成長完成後以Thermal CVD進行不同溫度之退火熱處理,熱處理完成後再以水熱法成長氧化鋅奈米柱於奈米鑽石薄膜上,最後再將複合結構進行二次退火熱處理。
    氧流量有清除雜質之功能,可提升品質,由實驗結果可得到氧流量15 sccm品質為較佳,光檢測器分析之亮暗響應度(Switch ratio)為1.15。適當溫度退火可以使雜質以及非晶碳被燒解掉,留下品質更好的鑽石薄膜,實驗結果得知500℃之退火溫度最適當,光檢測器分析之亮暗響應度為1.42。因為鑽石薄膜係由小顆粒組成,可限制氧化鋅奈米柱往橫向成長,而有利於奈米柱垂直成長,因此將氧化鋅奈米柱與奈米鑽石薄膜結合,進行光檢測器量測可獲得比單純氧化鋅奈米柱之亮暗響應度更高,可到達38.9。再將複合結構進行退火熱處理,希望能將氧化鋅奈米柱上的缺陷燒解掉,而得到更佳的品質,由結果可看出退火溫度150℃時可以得到較好的複合結構,其光檢測測器分析之亮暗響應度可到達249.6。


    In this study, nanocrystalline diamond films were fabricated with different oxygen flow and then were annealed with temperature of 400℃, 500℃and 600℃ to get different kind of film quality. Then ZnO nanorods were coated on nanodiamond film by the hydrothermal technique. Finally, the bi-layer ZnO nanorod/nanodiamond films were annealed at 150℃and 200℃.
    Oxygen can remove impurity and enhance the nanodiamond film quality in the growth process. In this study, oxygen flow of 15 sccm have the best film quality, the photo switch ratio(IPhoto/IDark) is 1.15. It is indicated that impurity and amorphous carbon with appropriate annealing treatment(500℃) possessed the better quality of the nanodiamond film and good IPhoto/IDark of 1.42. It is indicated that bilayer ZnO nanorod/nanodiamond film possessed better IPhoto/IDark(38.9) than those of ZnO nanorods since it might be due to the effect of the nanostructure of the nanodiamond films and/or the interface that could enhance the growth and the quality of ZnO nanorods. It is indicated that the bilayer ZnO nanorod/nanodiamond films got the optimal IPhoto/IDark(249.6) after the annealing treatment of 150℃.

    中文摘要 英文摘要 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究動機 第二章 文獻回顧 2.1 鑽石薄膜種類與特性簡介 2.1.1 類鑽碳薄膜 2.1.2 奈米鑽石薄膜 2.2 奈微米鑽石成核機制與特性 2.3 奈米鑽石之成長方法 2.3.1 微波電漿化學氣相沉積法(Microwave Plasma Chemical Vapor Deposition System) 2.3.2 熱燈絲化學氣相沉積法(Hot filament CVD system) 2.3.3 射頻電將放電法(RF plasma glow discharge system) 2.4 氧化鋅奈米柱之特性簡介 2.5 氧化鋅奈米柱成長機制 2.5.1 水熱法成長機制 2.5.2 VLS法成長機制 2.6 光檢測器理論 第三章 實驗方法 3.1 實驗設計與流程 3.2 奈米鑽石薄膜之成長 3.2.1 基板清洗 3.2.2 以鑽石粉末震盪製備種子層 3.2.3 以微波電漿化學氣相沉積法(Microwave Plasma Chemical Vapor Deposition System)成長奈米鑽石薄膜 3.3 水熱法成長氧化鋅奈米柱 3.4 退火熱處理 3.4.1 鑽石薄膜之退火熱處理 3.4.2 鑽石薄膜/氧化鋅奈米柱複合結構之退火熱處理 3.5 分析方法及儀器介紹 3.6.1 掃描式電子顯微鏡(FE-SEM) 3.6.2原子力顯微鏡(Atomic Force Microscope,AFM) 3.6.3 顯微拉曼光譜儀(Micro-Raman) 3.6.4 X射線繞射儀 (X-ray diffraction,XRD) 3.6.5 光激發螢光光譜儀(Photoluminescence,PL) 3.6.6 光檢測器製作(Photodetector,PD) 第四章 結果與討論 4.1 以不同氧流量成長奈米鑽石之製備與特性分析 4.1.1 表面型態分析 4.1.2 拉曼光譜儀分析 4.1.3 X-ray繞射儀分析 4.1.4 光激發螢光頻譜儀分析 4.1.5 不同氧流量成長奈米鑽石之光檢測器分析 4.1.6 不同氧流量成長奈米鑽石之比較 4.2 不同溫度退火後之奈米鑽石之特性分析 4.2.1 表面型態分析 4.2.2 拉曼光譜儀分析 4.2.3 X光繞射儀分析 4.2.4 光激發螢光頻譜儀分析 4.2.5 不同溫度退火後奈米鑽石之光檢測器分析 4.2.6 不同溫度退火後奈米鑽石之比較 4.3 成長氧化鋅奈米柱之特性分析 4.3.1 表面型態分析 4.3.2 拉曼光譜儀分析 4.3.3 X光繞射儀分析 4.3.4 光激發螢光頻譜儀分析 4.3.5 氧化鋅奈米柱之光檢測器分析 4.3.6 氧化鋅奈米柱之比較 4.4 氧化鋅奈米柱/奈米鑽石薄膜複合結構之製備與特性分析 4.4.1 表面型態分析 4.4.2 拉曼光譜儀分析 4.4.3 X光繞射儀分析 4.4.4 光激發螢光頻譜儀分析 4.4.5 氧化鋅奈米柱/奈米鑽石薄膜複合結構之光檢測器分析 4.4.6 氧化鋅奈米柱/奈米鑽石薄膜複合結構之比較 4.5 不同退火溫度對氧化鋅奈米柱/奈米鑽石薄膜複合結構之特性分析 4.5.1 表面型態分析 4.5.2 拉曼光譜儀分析 4.5.3 X光繞射儀分析 4.5.4 光激發螢光頻譜儀分析 4.5.5 不同退火溫度對氧化鋅奈米柱/奈米鑽石薄膜之光檢測器分析 4.5.6 不同退火溫度對氧化鋅奈米柱/奈米鑽石薄膜之比較 第五章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻

    [1] zh.wikipedia.org/ wiki/奈米材料
    [2] Butler,J.E., et al.,"Understanding the chemical vapor deposition of diamond:
    recent progress". Journal of Physics-Condensed Matter, 2009. 21 (36): p. -
    [3] Joseph, P.T., et al.,"Tranparent ultrananocrystalline diamond films on
    quartz
    substrate". Diamond and Related Materials, 2008. 17(4-5): p. 476-480.
    [4] Khomich, A.V.., et al.,"Effect of high temperature annealing on optical and
    thermal properties of CVD diamond". Diamond and Related Materials, 2001.
    10(3-7):p.546-551.
    [5] 蔡宗霖, "以Ⅱ-Ⅵ量子點修飾氧化鋅奈米柱之光電性質分析", 碩士論文, 化
    學工程系, 國立台灣科技大學,台北,(2008).
    [6] Jun-Cheng Lin, Bohr-Ran Huang, and Tzu-Ching Lin, "Bilayer-Structure of ZnO
    Nanorod/Nanodiamond Film Based Ultraviolet Photodetectors", Journal of The
    Electrochemical Society, 160(8) H509-H512 (2013).
    [7] G.H Johnson, A.R. Badzizn and M.W. Geis,"Diamond and Diamondlike Materials
    Synthesis",MRS,Pittsburgh (1998).
    [8] Gordon Davies, Simon C. Lawson, Alan T. Collins, Alison MAainwood, and
    Sarah J. Sharp, "Vacancy-related centers in diamond",Diamond Relat.Mater,
    p13157(1992).
    [9] 陳培麗,"鑽石與類鑽薄膜簡介", 科儀新知,pp83-91 (1991).
    [10] M.A. Tamor, W.C Vassell, "Raman "fingerprinting" of amorphous carbon
    films",J.Appl.phys.,p.3823 (1994).
    [11] D.W. Han, S.M. Jeong, H.K. Baik, S.J. Lee, N.C. Yang, D.H. Suh, "Electron
    injection enhancement by diamond-like carbon film in organic
    electroluminescence devices",Thin Solid Films,p190 (2002).
    [12] Pawer,K.W.Nugent,Y.Lifshitz,G.D.Lempert,E.Grossman,J.Kulik,I.Avigal,R.Kalis
    h,"Systematic variation of the Raman spectra of DLC films as a function of
    sp2:sp3 compsosition",diamond and Related Materials,p.433 (1996).
    [13] J.C. Angus and C.C.Hayman,"Low-Pressure,Metable Growth of Diamond and
    Diamondlike Phases",Science,241 913-921 (1998).
    [14] I. Garnev and V. Orlinov, "Evaluation and Parametric Modeling of Abrasive
    Wear Resistance of Ion-Plated Thin DLC Film",Diamond Relat.Mater.,4
    1041-1015 (1995).
    [15] J.J. Cuomo, D.L. Pappas, J. Bruley, J.P. Doyle and K.L. Saenger,"Vapor
    Deposition Process for Amorphous Carbon Films with sp3 Fractions Approching
    Diamond", J. Appl. Phys., 70 [3] 1706-1711 (1991).
    [16] P.C. Kelires, C.H. Lee and W.R. Lambrecht, "Strucrural Studies and
    Electronic Properties of Diamond-Like Amorphous Carbon", J.Non-
    Cryst.Solids,164/166 1131-1134 (1993).
    [17] C.Y. Hsu, L.Y. Chen and F.C.N. Hong, "Properties of Diamond-Like Carbon
    Films Deposited by Ion Plating with a Pulsed Subtrate Bias", Diamond
    Relat.Mater., 7,(6),884-891(1998).
    [18] J. Robertson, "Deposition Mechanism of Cubic Boron Nitride", Diamond
    Relat.Mater.,5 519-524 (1996).
    [19] J. Robertson, "The Deposition Mechanism of Diamond-Like a-C and a-C:h",
    Diamond Relat.Mater.,3 361-368 (1994).
    [20] J. Robertson, "Deposition Mechanism of a-C and a-C:H", J.
    Non-Cryst.Solids,164/166 1115-1118 (1993).
    [21] J. Robertson, "The Deposition Mechanism of Diamond-Like a-C and
    a-C:H",Diamond Relat. Mater.,3 (1994) 361.
    [22] Y. Catherine, in R.E. "Clausing (ed.) Diamond and Diamond-Like Carbon",
    Plenum, New York, (1991) 193.
    [23] A. Von Keudell, W.Moller and R. Hytry, "Deposition of Dense Hydrocarbon
    Flims from a Non-Biased Microwave Plasma",Appl. Phys. Rev., 62(1993) 937.
    [24] 牟中原、陳家俊,科學發展第28卷第4期,民89.04,頁281-288。
    [25] 林景正、賴宏仁,工業材料第153期,民88.09,頁102-108。
    [26] 蘇品書,超微粒子材料技術,民88.06。
    [27] 呂英治、洪敏雄,儀器新知第22卷第6期,民90.06,頁21.26。
    [28] Jong-Hee Park, T.S. sudarshan, "Chemical vapor deposition", The materials
    information society (1989).
    [29] R.F. Davis Noyes, "Diamond Films and Coating", Moyes publication, p.69
    (1993).
    [30] Prasanta Kumar Datta, James Sinclair Gray,"Royal Society of Chemistry
    (Great Britain)", Surface Engineering: Fundamentals of coating, Royal
    Society of Chemistry,p.219 (1993).
    [31] Sumio Iijima, Yumi Aikawa, and Kazuhiro Baba, "Early formation of chemical
    vapor deposition diamond films",Appl. Phys. Lett.,p.2646 (1997).
    [32] 楊豐榮,"藉由微波電漿數化學氣相沉積法可任意控制鑽石晶行方向性之研
    究",碩士論文, 國立台北科技大學機電整合研究所, 台北, 2008。
    [33] S.Matusumoto, Y.Sato, M.Kamo, and N.Setaka,"Vapor Depositiion of Diamond
    Particles from Methane",Japanese J.Appl. Phys.Lett,p.1562 (1992).
    [34] Jitendra N.Tiwari, Rajanish N.Tiwari, Gyan Singh, Kun-Lin Lin,"Direct
    Synthesis of Vertically Interconnected 3-D Graphitic Nanosheets on
    Hemispherical Carbon Particles by Microwave Plasma
    CVD",Plasmonics,pp.67-73 (2011).
    [35] Suneet Arora, V.D. Vankar," Field emission characteristics of
    microcrystalline diamond films:Effect of surface coverage and
    thickness",Thin Solid Films,p.1963 (2006).
    [36] S. Matsumoto, M. Hino, T. Kobayashi, "Synthesis of Diamond Films in a RF
    induction Thermal Plasma", Appl. Phys. Lett,p.737 (1987).
    [37] Tao Wang, Li Xiang," Deposition of diamond/β-SiC/cobalt silicide composite
    interlayers to improve adhesion of diamond coating on WC–Co substrates by
    DC-Plasma Assisted HFCVD", Surface & Coatings Technology 205 3027–3034
    (2011).
    [38] D.E. Meyer, R.O. Dillon, J.A. Woolam, "Radio-frequency Plasma Chemical
    Vapor Deposition Growth of Diamond", J. Vac. Sci. Technol.p.2325 (1989).
    [39] S.J. Kim, B.K Jul, Y.H. Lee, B.S. Park, IEEE,p.526 (1996).
    [40] G. Fedosenko, J. EngemannU, D. Korzec, " Deposition of diamond-like
    carbon films by a hollow cathode multi-jet rf plasma system", Surface and
    Coatings Technology 133-134 (2000) 535-539.
    [41] J.I. Pankove, "Optical Progress in Semiconductors", Dover, New York,1975.
    [42] Z.L. Wang, "ZnO nanowire and nanobelt platform for nanotechnology",
    Materials Science and Engineering R, 64 (2009) 33-71.
    [43] D. Bao, H. Gu, and A. Kuang, "Sol-gel-derived c-axis oriented ZnO thin
    films",Thin Solid Films, 312 (1998) 37-39.
    [44] F.D. Paraguay, J. Morales, W.L. Estrada, E.Andrade, andM.M. Yoshida,
    "Influence of Al, In, Cu, Fe and Sn dopants in the microstructure of zinc
    oxide thin films obtained by spray pyrolysis", Thin Solid Films, 366 (2000)
    16-27.
    [45] R. Wang,L.H. King, and A. Wang, "Highly conducting transparent thin films
    based on zinc oxide", Journal of Materials Research, 11 (1996) 1659-1664.
    [46] K. Vanheusden, W.L. Warren,C.H Seager, D.R. Tallant, and J.A. Voigt,
    J.Appl.Phys. 79,10, (1996).
    [47] G. Cao, "Nanostructures and nanomaterials: synthesis, properties, and
    application", Imperial College Press, 1st edition 2004.
    [48] W.J. Li, E.W. Shi, .W.Z. Zhong, and Z.W. Yin, "Growth mechanism and growth
    habit of oxide crystals", Journal of Crystal Growth, 203 (1999).
    [49] A. Sugunan, H.C. Warad, M. Boman, and J. Dutta, "Zinc oxide nanowires in
    chemical bath on seeded substrates:Role of hexamine", Journal of Sol-gel
    Science and Technology, 39 (2006) 49-56.
    [50] R.S. Wanger and W.C. Ellis, "Vapor-Liquid-Solid mechanism of single crystal
    growth", Applied Physics Letters, 4 (1964) 89-91.
    [51] N. Wang, Y. Cai, and R.Q. Zhang, "Growth of nanowires", Materials Science
    and Engineering R, 60 (2008) 1-51.
    [52] M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H.Kind, E. Weber, R.
    Russo, and P.D. Yang, "Room-temperature ultraviolet nanowire nanolasers",
    Science, 292 (2001) 1897-1899.
    [53] Kewei Liu , Makoto Sakurai and Masakazu Aono, " ZnO-Based Ultraviolet
    Photodetectors", Sensors (2010) 10 8604-8634.
    [54] Razeghi, M.; Rogalski, A. Semiconductor Ultraviolet Detectors. J. Appl.
    Phys.,(1996) 79 7433-7473.
    [55] Liu, K.W.; Ma, J.G.; Zhang, J.Y.; Lu, Y.M.; Jiang, D.Y.; Li, B.H.; Zhao,
    D.X.;Zhang, Z.Z.; Yao, B.; Shen, D.Z. "Ultraviolet Photoconductive Detector
    with High Visible Rejection and Fast Photoresponse Based on ZnO Thin Film".
    Solid-State Electronics 2007, 51, 757-761.
    [56] Gao, W.; Khan, A.; Berger, P.R.; Hunsperger, R.G.; Zydzik, G.; O’Bryan,
    H.M.;Sivco, D.; Cho, A.Y. "In0.53Ga0.47As Metal-Semiconductor-Metal
    Photodiodes with Ransparent Cadmium Tin Oxide Schottky Contacts". Appl.
    Phys. Lett(1994) 65 1930-1932.
    [57] Su, Y.K.; Chiou, Y.Z.; Juang, F.S.; Chang, S.J.; Sheu, J.K. "GaN and InGaN
    Metal-Semiconductor-Metal Photodetectors with Different Schottky Contact
    Metals". Jpn. J. Appl. Phys (2001) 40 2996-2999.
    [58] Nakano, M.; Makino, T.; Tsukazaki, A.; Ueno, K.; Ohtomo, A.; Fukumura,
    T.Yuji, H. Akasaka, S. Tamura, K. Nakahara, K. Tanabe, T. Kamisawa, A.
    Kawasaki, M. "Transparent Polymer Schottky Contact for a High Performance
    Visible-Blind Ultraviolet Photodiode Based on ZnO", Appl. Phys. Lett. (2008)
    93 123309.
    [59] Richard L. CmCree, "Raman Spectroscopy for Chemical Analysis", John Wiley
    and Sons,NY,pp.1-5 (2000).
    [60] http://chemlab.jlu.edu.cn/Guojiajingpinke/wuli/shyjchzhsh/xshexian.htm.
    [61] L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Cheng,"
    Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays",
    APPLIED PHYSICS LETTERS 94, 203106 (2009).
    [62] O. Groning, O.M. Kuttel, C.H. Emmenegger, P. Groning and
    L.Schlapbach,"Field emission properties of carbon nanotubes", J. Vac. Sci.
    technol,p.665(2000).
    [63] Khomich, A.V, et al., "Effect of high temperature annealing on optical and
    thermal properties of CVD diamond". Diamond and Related Materials, 2001.
    10(3-7): p.546-551.
    [64] C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M.
    Kaidashev, M. Lorenz, and M. Grundmann, "Raman scattering in ZnO thin films
    doped with Fr, Sb,Al,Ga, and Li", Applied Physics Letters, 83(2003) 1974-
    1977.
    [65] C. A. Arguello, D. L Rousseau, and S. P. Porto, "First-order Raman effect
    in wurtzite-type crystals", Physical Review, 181(1969) 1351-1363.
    [66] T.C. Damen, S.P.S. Porto, B. Tell,"Raman effect in zinc oxide",Physical
    Review,142 (1966) 570-574.
    [67] Y. J. Xing, Z. H.Xi, Z.Q.Xue, X. D. Zhang, J.H.Song, R. M. Wang, J. Xu, Y.
    Song, S. L. Zang, and D. P. Yu,"Optical properties of the ZnO nanotubes
    synthesized via vapor phase growth", Applied Physics Letters, 83 (2003)
    1689-1692.
    [68] Y.Wang, X. Li, N. Wang, X. Quan, and Y. Chen, "Controllable synthesis of
    ZnO nanoflowers and their morphology-dependent photocatalytic activities",
    Spearation and Purification Technology, 62 (2008) 727-732.
    [69] Powder Diffraction File, "Joint Committee on Poeder Diffraction Standards",
    ICDD,Swarthmore, PA, 1996, Card 36-1451 (ZnO).
    [70] 李建宏,"氧化鋅奈米柱陣列成長特性",博士論文,材料科學及工程研究所,國
    立成功大學,台南,(2009).
    [71] Huimin Liu, David S. Dandy, Diamond chemical vapor deposition, Noyes
    publications,(1996).
    [72] X.Jiang, W.J. Zhang, M. Paul, and Kazuhiro Baba, "Early formation of
    chemical ion bombardment during deposition", Appl. Phy. Lett, p.1927(1997).

    QR CODE