簡易檢索 / 詳目顯示

研究生: Kefale Wagaw Yizengaw
Kefale Wagaw Yizengaw
論文名稱: 銥參雜於氧空缺赤鐵礦表面對於二氧化碳與甲烷轉化之影響:密度泛函理論計算結合微觀動力學模擬研究
Theoretical Insights into Activation and Conversion of Methane and Carbon Dioxide over Single Iridium-Doped Hematite with Surface Oxygen Vacancy - A Combined DFT and Microkinetic Studies
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 江志強
陳良益
蔡明剛
江志強
江志強
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 134
中文關鍵詞: 單原子摻雜赤鐵礦C-O耦合C-C耦合C-N耦合甲醇尿素催化劑回收氧空位
外文關鍵詞: Single atom doping;, Hematite, C–O coupling, C–C coupling, C–N coupling, Methanol, Urea, Catalyst recovery, Oxygen vacancy
相關次數: 點閱:243下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化碳和甲烷是廣為人知的溫室氣體,對全球變暖和氣候變化有顯著的影響。為了減緩其影響,將這些豐富的C1原料轉化為增值化學品至關重要。然而,現有的催化劑,主要是貴金屬氧化物,如二氧化銥,由於可行性限制而面臨商業化挑戰。克服高反應溫度、選擇性差、產率低和成本低效等障礙對於推進二氧化碳和甲烷轉換技術至關重要。
    為此,我提出了一種新的方法,其中包括開發一種低成本的催化劑,其性能與貴金屬氧化物相當,特別是IrO2(110)。這種創新的催化劑設計為,在赤鐵礦上進行了單金屬原子掺雜,產生具有單金屬氧空位的表面。通過密度泛函理論(DFT)計算和微觀動力學研究的結合,已經探索了其在甲烷、二氧化碳和氨吸附及共轉化中的催化活性。
    該研究的第一部分通過DFT + U方法探討了α-Fe2O3(110)和M/α-Fe2O3(110)表面(M = Ag、Ir、Cu或Co)上的甲烷活化。在這些表面中,Ir/α-Fe2O3(110)被證明是一種強效的C–H鍵催化劑,通過電子密度差異(EDD)、態密度(DOS)和Bader電荷計算確認了協同CH…O和Agostic相互作用。在Ir/α-Fe2O3(110)表面上增加氧空位(OV)顯示了能提高甲烷吸附能和C–H鍵活化,使其成為CH4脫氫的潛在催化劑。
    研究的第二部分探討了一種單銥原子掺雜和單氧原子缺陷赤鐵礦(110)表面催化劑。該催化劑具有同時活化二氧化碳和甲烷的能力,能進行直接C–O耦合。通過表面重分布表現出這種協同效應。微觀動力學研究強調了C–O耦合過程中氧缺陷位點上CH3*穩定性的作用。這些結果為催化劑設計最佳化帶來了希望。
    在隨後的研究中,我開發了一種催化劑表面的再生系統,解決了從二氧化碳和甲烷生產甲醇過程中的污染問題。該研究介紹了通過直接C–C耦合CO和CH2進行醋酸乙烯醇生產作為催化劑表面再生方法


    Carbon dioxide (CO2) and methane (CH4) are pivotal greenhouse gases, contributing significantly to global warming and climate change. To mitigate their impact, converting these abundant C1 feedstocks into value-added chemicals is crucial. However, existing catalysts, primarily noble metal oxides like iridium oxide (IrO2), pose commercialization challenges due to feasibility constraints. Overcoming obstacles such as high reaction temperatures, poor selectivity, low yields, and cost inefficiency is essential for advancing CO2 and CH4 conversion technologies.
    In response, a novel approach has been proposed involving a low-cost catalyst with comparable performance to noble metal oxides, specifically IrO2(110). This innovative catalyst design employs single metal atom doping on hematite, featuring a surface with a single atom oxygen vacancy. Through a combination of density functional theory (DFT) calculations and microkinetic studies, its catalytic activity in methane, carbon dioxide, and ammonia adsorption and co-conversion has been explored.
    The study's first segment scrutinizes methane activation on α-Fe2O3(110) and M/α-Fe2O3(110) surfaces (M = Ag, Ir, Cu, or Co) using the DFT + U method. Among these surfaces, Ir/α-Fe2O3(110) emerges as a potent catalyst for C–H activation, exhibiting cooperative CH…O and agostic interactions confirmed through electron density difference (EDD), density of states (DOS), and Bader charge calculations. Oxygen vacancy (OV) augmentation on the Ir/α-Fe2O3(110) surface demonstrates improved CH4 adsorption energy and C–H bond activation, rendering it a prime candidate for CH4 dehydrogenation.
    The second part of the study investigates a single iridium atom-doped and single oxygen atom-defect hematite (110) surface catalyst. This catalyst exhibits the capacity for direct C–O coupling by simultaneously activating CO2 and CH4. Synergistic effects of this simultaneous activation are evident through surface redistribution, with microkinetic studies underscoring the role of CH3* stability on the oxygen defect site during C–O coupling. These mechanistic insights hold promise for catalyst design optimization.
    In the subsequent study, a regeneration system for the catalyst surface is developed, addressing contamination issues during methanol production from CO2 and CH4. The study introduces direct C–C coupling of CO and CH2 for vinyl alcohol production as a catalyst surface regeneration approach.
    Finally, the thermocatalytic synthesis of urea and water from CO2 and ammonia is explored as a significant avenue. The study proposes the Ir/α-Fe2O3(110)-OV catalyst surface for urea production, highlighting promising performance. Urea desorption energy and C–N coupling barriers are evaluated, offering insights into sustainable urea synthesis with complete catalyst surface recovery.
    In summary, this research underscores innovative pathways for CO2 and CH4 conversion into value-added chemicals. By designing efficient catalysts and unraveling their mechanisms, the study contributes to advancing sustainable chemical synthesis processes.

    Table of Contents Theoretical Insights into Activation and Conversion of Methane and Carbon Dioxide over Single Iridium-Doped Hematite with Surface Oxygen Vacancy - A Combined DFT and Microkinetic Studies i Abstract 4 Acknowledgment 7 List of Figures 12 Index of Tables 14 List of Abbreviations 15 1.1 Background of the study 16 1.1.1. Methane and Carbon dioxide 18 1.1.2. Methane conversion 21 1.1.3. Carbon dioxide conversion 24 1.1.4. Methane and Carbon dioxide co-conversion 25 1.1.5. Hematite oxide 25 1.1.6. Iridium dioxide 28 1.1.7. Single atom catalysts (SACs) 29 1.1.8. Microkinetic simulation 31 1.1.9. Present study 35 Chapter 2. Remarkable performance of Single Iridium Atom Supported on Hematite for Methane Activation: Density Functional Theory Study 36 2.1. Introduction 36 2.2. Density Functional Theory Methods 37 2.2.1. Supercell approach 37 2.2.2. Brillouin zone sampling 38 2.2.3. Geometry Optimization 38 2.2.3. Finding the transition state 39 2.2.4. Vibration frequency calculation 40 2.2.5. Computational Details 40 2.2.6. Bulk model 43 2.2.7. Surface Model 46 2.3. Results and discussion 47 2.3.1. Methane adsorption on M/α-Fe2O3(110) surface (M =Ag, Ir, Cu, or Co) 47 2.3.2. Methane adsorption on Ir/α-Fe2O3(110)-OV surface 52 2.3.3. Electronic Properties Analysis 53 2.3.4. Methane activation on the α-Fe2O3(110), Ir/α-Fe2O3(110), and Ir/α-Fe2O3(110)-OV surfaces 56 2.4. Conclusions 59 Chapter 3: Theoretical Study of Co-Conversion of Carbon Dioxide and Methane on Single Iridium-Doped Hematite with Surface Oxygen Vacancy. 60 3.1. Introduction 60 3.2. Computational Details 61 3.3. Results and discussion 63 3.3.1. Carbon dioxide adsorption 63 3.3.2. Co-adsorption of CO2 and CH4 on Fe2O3 (110)-OV surface 66 3.3.3. Synergistic carbon dioxide and methane activation 68 3.3.4. Mechanistic investigation 70 3.3.5. Microkinetic analysis 76 3.4. Conclusions 80 Chapter 4: Deactivation and regeneration of an Ir-doped Fe2O3(110)-OV surface for methanol production from the co-conversion reaction of CO2 and CH4. 81 4.1. Introduction 81 4.2. Computational details 82 4.3. Results and discussion 84 4.3.1. Carbon monoxide desorption 84 4.3.2. Methane co-adsorption on Ir/α-Fe2O3(110)-OV surface 85 4.3.3. Mechanistic investigation 86 4.3.4. Microkinetic analysis 93 4.4. Conclusions 99 Chapter 5. Theoretical Study of C–N Bond Formation in Thermocatalytic Urea Production from Carbon Dioxide and Ammonia on Single Iridium-Doped Hematite with Surface Oxygen Vacancy 100 5.1. Introduction 100 5.2. Computational details 101 5.3. Results and Discussion 103 5.3.1. Ammonia and Carbon Dioxide Co-adsorption 103 5.3.2. Coupling of ammonia and carbon dioxide 105 5.3.3. The second ammonia Co-adsorption and urea synthesis 110 5.4. Conclusions 113 Chapter 6. Summary 114 6. Reference 117

    (1) Smil, V. Energy in world history; Routledge, 2019.
    (2) Grubler, A. Energy transitions research: Insights and cautionary tales. Energy Policy 2012, 50, 8-16. DOI: 10.1016/j.enpol.2012.02.070.
    (3) Amos, R. An accurate ab initio study of the multipole moments and polarizabilities of methane. Molecular Physics 1979, 38 (1), 33-45.
    (4) Luo, Y.-R. Comprehensive handbook of chemical bond energies; CRC press, 2007.
    (5) Paganini, M. C.; Chiesa, M.; Martino, P.; Giamello, E.; Garrone, E. EPR study of the surface basicity of calcium oxide. 2: The interaction with alkanes. Journal of Physical Chemistry B 2003, 107 (11), 2575-2580. DOI: 10.1021/jp0269672.
    (6) Zhan, C.-G.; Nichols, J. A.; Dixon, D. A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. The Journal of Physical Chemistry A 2003, 107 (20), 4184-4195.
    (7) Karl, T. R.; Trenberth, K. E. Modern global climate change. Science 2003, 302 (5651), 1719-1723. DOI: DOI 10.1126/science.1090228.
    (8) Hu, D.; Ordomsky, V. V.; Khodakov, A. Y. Major routes in the photocatalytic methane conversion into chemicals and fuels under mild conditions. Appl Catal B-Environ 2021, 286. DOI: ARTN 119913
    10.1016/j.apcatb.2021.119913.
    (9) North, M. What is CO2? Thermodynamics, basic reactions and physical chemistry. In Carbon Dioxide Utilisation, Elsevier, 2015; pp 3-17.
    (10) Trogler, W. C. The environmental chemistry of trace atmospheric gases. ACS Publications: 1995.
    (11) Aydin, G.; Karakurt, I.; Aydiner, K. Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety. Energy Policy 2010, 38 (9), 5072-5080. DOI: 10.1016/j.enpol.2010.04.035.
    (12) Horn, R.; Schlogl, R. Methane Activation by Heterogeneous Catalysis. Catalysis Letters 2015, 145 (1), 23-39. DOI: 10.1007/s10562-014-1417-z.
    (13) Schwach, P.; Pan, X.; Bao, X. Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chem Rev 2017, 117 (13), 8497-8520. DOI: 10.1021/acs.chemrev.6b00715 .
    (14) Hu, D.; Ordomsky, V. V.; Khodakov, A. Y. Major routes in the photocatalytic methane conversion into chemicals and fuels under mild conditions. Applied Catalysis B-Environmental 2021, 286, 119913. DOI: ARTN 11991310.1016/j.apcatb.2021.119913.
    (15) Sehested, J. Four challenges for nickel steam-reforming catalysts. Catalysis Today 2006, 111 (1-2), 103-110. DOI: 10.1016/j.cattod.2005.10.002.
    (16) Wilhelm, D. J.; Simbeck, D. R.; Karp, A. D.; Dickenson, R. L. Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel Processing Technology 2001, 71 (1-3), 139-148. DOI: Doi 10.1016/S0378-3820(01)00140-0.
    (17) Kondratenko, E. V.; Peppel, T.; Seeburg, D.; Kondratenko, V. A.; Kalevaru, N.; Martin, A.; Wohlrab, S. Methane conversion into different hydrocarbons or oxygenates: current status and future perspectives in catalyst development and reactor operation. Catalysis Science & Technology 2017, 7 (2), 366-381. DOI: 10.1039/c6cy01879c.
    (18) Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; Van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 2017, 356 (6337), 523-527.
    (19) Palagin, D.; Sushkevich, V. L.; van Bokhoven, J. A. Water Molecules Facilitate Hydrogen Release in Anaerobic Oxidation of Methane to Methanol over Cu/Mordenite. Acs Catalysis 2019, 9 (11), 10365-10374. DOI: 10.1021/acscatal.9b02702.
    (20) Zhu, J.; Sushkevich, V. L.; Knorpp, A. J.; Newton, M. A.; Mizuno, S. C. M.; Wakihara, T.; Okubo, T.; Liu, Z. D.; van Bokhoven, J. A. Cu-Erionite Zeolite Achieves High Yield in Direct Oxidation of Methane to Methanol by Isothermal Chemical Looping. Chemistry of Materials 2020, 32 (4), 1448-1453. DOI: 10.1021/acs.chemmater.9b04223.
    (21) Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy & environmental science 2013, 6 (11), 3112-3135.
    (22) Wang, J. J.; Li, G. N.; Li, Z. L.; Tang, C. Z.; Feng, Z. C.; An, H. Y.; Liu, H. L.; Liu, T. F.; Li, C. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Science Advances 2017, 3 (10), e1701290. DOI: ARTN e170129010.1126/sciadv.1701290.
    (23) Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 2017, 355 (6331), 1296-1299.
    (24) Paunovic, V.; Zichittella, G.; Mitchell, S.; Hauert, R.; Perez-Ramirez, J. Selective Methane Oxybromination over Nanostructured Ceria Catalysts. Acs Catalysis 2018, 8 (1), 291-303. DOI: 10.1021/acscatal.7b03074.
    (25) Ding, S. P.; Hulsey, M. J.; Perez-Ramirez, J.; Yang, N. Transforming Energy with Single-Atom Catalysts. Joule 2019, 3 (12), 2897-2929. DOI: 10.1016/j.joule.2019.09.015.
    (26) Bej, B.; Pradhan, N. C.; Neogi, S. Production of hydrogen by steam reforming of ethanol over alumina supported nano-NiO/SiO2 catalyst. Catalysis Today 2014, 237, 80-88. DOI: 10.1016/j.cattod.2014.01.019.
    (27) Zawadzki, A.; Bellido, J. D. A.; Lucredio, A. F.; Assaf, E. M. Dry reforming of ethanol over supported Ni catalysts prepared by impregnation with methanolic solution. Fuel Processing Technology 2014, 128, 432-440. DOI: 10.1016/j.fuproc.2014.08.006.
    (28) Zhao, S. L.; Cai, W. J.; Li, Y.; Yu, H.; Zhang, S. Y.; Cui, L. Syngas production from ethanol dry reforming over Rh/CeO2 catalyst. Journal of Saudi Chemical Society 2018, 22 (1), 58-65. DOI: 10.1016/j.jscs.2017.07.003.
    (29) Zhao, Y.; Wang, H.; Han, J.; Zhu, X.; Mei, D.; Ge, Q. Simultaneous activation of CH4 and CO2 for concerted C–C coupling at oxide–oxide interfaces. ACS Catalysis 2019, 9 (4), 3187-3197.
    (30) Bagheri, S.; Muhd Julkapli, N.; Bee Abd Hamid, S. Titanium dioxide as a catalyst support in heterogeneous catalysis. ScientificWorldJournal 2014, 2014, 727496. DOI: 10.1155/2014/727496.
    (31) Védrine, J. C. Heterogeneous catalysis on metal oxides. Catalysts 2017, 7 (11), 341.
    (32) Fierro, J. L. G. Metal oxides: chemistry and applications; CRC press, 2005.
    (33) Schwertmann, U.; Cornell, R. M. Iron oxides in the laboratory: preparation and characterization; John Wiley & Sons, 2008.
    (34) Machala, L.; Tucek, J.; Zboril, R. Polymorphous transformations of nanometric iron (III) oxide: a review. Chemistry of materials 2011, 23 (14), 3255-3272.
    (35) Babay, S.; Mhiri, T.; Toumi, M. Synthesis, structural and spectroscopic characterizations of maghemite γ-Fe2O3 prepared by one-step coprecipitation route. Journal of Molecular Structure 2015, 1085, 286-293.
    (36) Zboril, R.; Mashlan, M.; Petridis, D. Iron(III) oxides from thermal processes-synthesis, structural and magnetic properties, Mossbauer spectroscopy characterization, and applications. Chemistry of Materials 2002, 14 (3), 969-982. DOI: 10.1021/cm0111074.
    (37) Teja, A. S.; Koh, P. Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in Crystal Growth and Characterization of Materials 2009, 55 (1-2), 22-45. DOI: 10.1016/j.pcrysgrow.2008.08.003.
    (38) Wu, W.; Xiao, X. H.; Zhang, S. F.; Zhou, J. A.; Fan, L. X.; Ren, F.; Jiang, C. Z. Large-Scale and Controlled Synthesis of Iron Oxide Magnetic Short Nanotubes: Shape Evolution, Growth Mechanism, and Magnetic Properties. J Phys Chem C 2010, 114 (39), 16092-16103. DOI: 10.1021/jp1010154.
    (39) Zhang, Z.; Boxall, C.; Kelsall, G. Photoelectrophoresis of colloidal iron oxides 1. Hematite (α-Fe2O3). In Colloids in the Aquatic Environment, Elsevier, 1993; pp 145-163.
    (40) Boxall, C.; Kelsall, G.; Zhang, Z. Photoelectrophoresis of colloidal iron oxides. Part 2.—Magnetite (Fe3O4). Journal of the Chemical Society, Faraday Transactions 1996, 92 (5), 791-802.
    (41) Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W. S. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 2015, 16 (2), 023501. DOI: 10.1088/1468-6996/16/2/023501
    (42) Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. The Journal of Physical Chemistry Letters 2012, 3 (3), 399-404. DOI: 10.1021/jz2016507.
    (43) Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis 2012, 2 (8), 1765-1772. DOI: 10.1021/cs3003098.
    (44) Stoerzinger, K. A.; Qiao, L.; Biegalski, M. D.; Shao-Horn, Y. Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2. The Journal of Physical Chemistry Letters 2014, 5 (10), 1636-1641. DOI: 10.1021/jz500610u.
    (45) Sun, W.; Song, Y.; Gong, X.-Q.; Cao, L.-m.; Yang, J. An efficiently tuned d-orbital occupation of IrO2 by doping with Cu for enhancing the oxygen evolution reaction activity. Chemical Science 2015, 6 (8), 4993-4999, 10.1039/C5SC01251A. DOI: 10.1039/C5SC01251A.
    (46) Kadakia, K. S.; Jampani, P. H.; Velikokhatnyi, O. I.; Datta, M. K.; Park, S. K.; Hong, D. H.; Chung, S. J.; Kumta, P. N. Nanostructured F doped IrO2 electro-catalyst powders for PEM based water electrolysis. Journal of Power Sources 2014, 269 (0), 855-865. DOI: http://dx.doi.org/10.1016/j.jpowsour.2014.07.045.
    (47) Song, Y.; Yang, J.; Gong, X.-Q. Prediction of Ir0.5M0.5O2 (M = Cr, Ru or Pb) Mixed Oxides as Active Catalysts for Oxygen Evolution Reaction from First-Principles Calculations. Topics in Catalysis 2015, 1-7. DOI: 10.1007/s11244-015-0404-y.
    (48) Chandra, D.; Abe, N.; Takama, D.; Saito, K.; Yui, T.; Yagi, M. Open Pore Architecture of an Ordered Mesoporous IrO2 Thin Film for Highly Efficient Electrocatalytic Water Oxidation. ChemSusChem 2015, 8 (5), 795-799. DOI: 10.1002/cssc.201402911.
    (49) Hansen, H. A.; Man, I. C.; Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Rossmeisl, J. Electrochemical chlorine evolution at rutile oxide (110) surfaces. Physical Chemistry Chemical Physics 2010, 12 (1), 283-290, 10.1039/B917459A. DOI: 10.1039/B917459A.
    (50) Moser, M.; Mondelli, C.; Amrute, A. P.; Tazawa, A.; Teschner, D.; Schuster, M. E.; Klein-Hoffman, A.; López, N.; Schmidt, T.; Pérez-Ramírez, J. HCl Oxidation on IrO2-Based Catalysts: From Fundamentals to Scale-Up. ACS Catalysis 2013, 3 (12), 2813-2822. DOI: 10.1021/cs400553t.
    (51) Kawar, R. K.; Chigare, P. S.; Patil, P. S. Substrate temperature dependent structural, optical and electrical properties of spray deposited iridium oxide thin films. Applied Surface Science 2003, 206 (1–4), 90-101. DOI: http://dx.doi.org/10.1016/S0169-4332(02)01191-1.
    (52) Nishio, K.; Watanabe, Y.; Tsuchiya, T. Preparation and properties of electrochromic iridium oxide thin film by sol-gel process. Thin Solid Films 1999, 350 (1–2), 96-100. DOI: http://dx.doi.org/10.1016/S0040-6090(99)00290-4.
    (53) Jaw-Chyng, L.; Shuchi, C. Fabrication and Characterization of IrO2-Based Microsensors for Fast Detection of Carbon Dioxide. Japanese Journal of Applied Physics 1997, 36 (4R), 2292.
    (54) Kinlen, P. J.; Heider, J. E.; Hubbard, D. E. A solid-state pH sensor based on a Nafion-coated iridium oxide indicator electrode and a polymer-based silver chloride reference electrode. Sensors and Actuators B: Chemical 1994, 22 (1), 13-25. DOI: http://dx.doi.org/10.1016/0925-4005(94)01254-7.
    (55) Wipf, D. O.; Ge, F.; Spaine, T. W.; Baur, J. E. Microscopic Measurement of pH with Iridium Oxide Microelectrodes. Analytical Chemistry 2000, 72 (20), 4921-4927. DOI: 10.1021/ac000383j.
    (56) Chen, Y. M.; Huang, Y. S.; Lee, K. Y.; Tsai, D. S.; Tiong, K. K. Characterization of IrO2/CNT nanocomposites. Journal of Materials Science: Materials in Electronics 2011, 22 (7), 890-894. DOI: 10.1007/s10854-010-0231-7.
    (57) Over, H. Surface Chemistry of Ruthenium Dioxide in Heterogeneous Catalysis and Electrocatalysis: From Fundamental to Applied Research. Chemical Reviews 2012, 112 (6), 3356-3426. DOI: 10.1021/cr200247n.
    (58) He, Y. B.; Stierle, A.; Li, W. X.; Farkas, A.; Kasper, N.; Over, H. Oxidation of Ir(111): From O−Ir−O Trilayer to Bulk Oxide Formation. The Journal of Physical Chemistry C 2008, 112 (31), 11946-11953. DOI: 10.1021/jp803607y.
    (59) Chung, W.-H.; Tsai, D.-S.; Fan, L.-J.; Yang, Y.-W.; Huang, Y.-S. Surface oxides of Ir(111) prepared by gas-phase oxygen atoms. Surface Science 2012, 606 (23–24), 1965-1971. DOI: http://dx.doi.org/10.1016/j.susc.2012.08.020.
    (60) Chung, W.-H.; Wang, C.-C.; Tsai, D.-S.; Jiang, J.-C.; Cheng, Y.-C.; Fan, L.-J.; Yang, Y.-W.; Huang, Y.-S. Deoxygenation of IrO2(1 1 0) surface: Core-level spectroscopy and density functional theory calculation. Surface Science 2010, 604 (2), 118-124. DOI: http://dx.doi.org/10.1016/j.susc.2009.10.027.
    (61) Patil, P. S.; Chigare, P. S.; Sadale, S. B.; Seth, T.; Amalnerkar, D. P.; Kawar, R. K. Thickness-dependent properties of sprayed iridium oxide thin films. Materials Chemistry and Physics 2003, 80 (3), 667-675. DOI: http://dx.doi.org/10.1016/S0254-0584(03)00132-9.
    (62) Sen, F. IrO 2 Surface and Nanostructure Stability from First Principles and Variable Charge Force Field Calculations. In 227th ECS Meeting (May 24-28, 2015), 2015; Ecs.
    (63) Han, L.; Liu, X.; Chen, J.; Lin, R.; Liu, H.; Lu, F.; Bak, S.; Liang, Z.; Zhao, S.; Stavitski, E.; et al. Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation. Angew Chem Int Ed Engl 2019, 58 (8), 2321-2325. DOI: 10.1002/anie.201811728 .
    (64) Zhang, L.; Zhao, Z. J.; Wang, T.; Gong, J. Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide. Chem Soc Rev 2018, 47 (14), 5423-5443. DOI: 10.1039/c8cs00016f .
    (65) Li, D.; Li, X.; Gong, J. Catalytic Reforming of Oxygenates: State of the Art and Future Prospects. Chem Rev 2016, 116 (19), 11529-11653. DOI: 10.1021/acs.chemrev.6b00099 .
    (66) Yang, F.; Song, P.; Liu, X.; Mei, B.; Xing, W.; Jiang, Z.; Gu, L.; Xu, W. Highly Efficient CO(2) Electroreduction on ZnN(4) -based Single-Atom Catalyst. Angew Chem Int Ed Engl 2018, 57 (38), 12303-12307. DOI: 10.1002/anie.201805871.
    (67) Chen, A. L.; Yu, X. J.; Zhou, Y.; Miao, S.; Li, Y.; Kuld, S.; Sehested, J.; Liu, J. Y.; Aoki, T.; Hong, S.; et al. Structure of the catalytically active copper-ceria interfacial perimeter. Nature Catalysis 2019, 2 (4), 334-341. DOI: 10.1038/s41929-019-0226-6.
    (68) Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301 (5635), 935-938. DOI: 10.1126/science.1085721 From NLM PubMed-not-MEDLINE.
    (69) Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 2011, 3 (8), 634-641. DOI: 10.1038/nchem.1095 .
    (70) Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated Metal Atom Geometries as a Strategy for Selective Heterogeneous Hydrogenations. Science 2012, 335 (6073), 1209-1212. DOI: 10.1126/science.1215864.
    (71) Wang, Y. G.; Mei, D.; Glezakou, V. A.; Li, J.; Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat Commun 2015, 6 (1), 6511. DOI: 10.1038/ncomms7511.
    (72) Liu, P.; Zhao, Y.; Qin, R.; Mo, S.; Chen, G.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D.; et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352 (6287), 797-801. DOI: 10.1126/science.aaf5251.
    (73) Li, L.; Chang, X.; Lin, X.; Zhao, Z. J.; Gong, J. Theoretical insights into single-atom catalysts. Chem Soc Rev 2020, 49 (22), 8156-8178. DOI: 10.1039/d0cs00795a.
    (74) Jeong, H.; Lee, G.; Kim, B. S.; Bae, J.; Han, J. W.; Lee, H. Fully Dispersed Rh Ensemble Catalyst To Enhance Low-Temperature Activity. J Am Chem Soc 2018, 140 (30), 9558-9565. DOI: 10.1021/jacs.8b04613.
    (75) Liu, J.; Lucci, F. R.; Yang, M.; Lee, S.; Marcinkowski, M. D.; Therrien, A. J.; Williams, C. T.; Sykes, E. C.; Flytzani-Stephanopoulos, M. Tackling CO Poisoning with Single-Atom Alloy Catalysts. J Am Chem Soc 2016, 138 (20), 6396-6399. DOI: 10.1021/jacs.6b03339.
    (76) Moses-DeBusk, M.; Yoon, M.; Allard, L. F.; Mullins, D. R.; Wu, Z.; Yang, X.; Veith, G.; Stocks, G. M.; Narula, C. K. CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3 (010) surface. Journal of the American Chemical Society 2013, 135 (34), 12634-12645.
    (77) Shan, J.; Liu, J.; Li, M.; Lustig, S.; Lee, S.; Flytzani-Stephanopoulos, M. NiCu single atom alloys catalyze the CH bond activation in the selective non-oxidative ethanol dehydrogenation reaction. Applied Catalysis B: Environmental 2018, 226, 534-543.
    (78) Kwon, Y.; Kim, T. Y.; Kwon, G.; Yi, J.; Lee, H. Selective Activation of Methane on Single-Atom Catalyst of Rhodium Dispersed on Zirconia for Direct Conversion. J Am Chem Soc 2017, 139 (48), 17694-17699. DOI: 10.1021/jacs.7b11010.
    (79) Harrath, K.; Yu, X. H.; Xiao, H.; Li, J. The Key Role of Support Surface Hydrogenation in the CH4 to CH3OH Selective Oxidation by a ZrO2-Supported Single-Atom Catalyst. Acs Catalysis 2019, 9 (10), 8903-8909. DOI: 10.1021/acscatal.9b02093.
    (80) Guo, X.; Fang, G.; Li, G.; Ma, H.; Fan, H.; Yu, L.; Ma, C.; Wu, X.; Deng, D.; Wei, M.; et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 2014, 344 (6184), 616-619. DOI: 10.1126/science.1253150.
    (81) Tang, P.; Zhu, Q. J.; Wu, Z. X.; Ma, D. Methane activation: the past and future. Energ Environ Sci 2014, 7 (8), 2580-2591. DOI: 10.1039/c4ee00604f.
    (82) Schwach, P.; Pan, X. L.; Bao, X. H. Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chem Rev 2017, 117 (13), 8497-8520. DOI: 10.1021/acs.chemrev.6b00715.
    (83) McFarland, E. Chemistry. Unconventional chemistry for unconventional natural gas. Science 2012, 338 (6105), 340-342. DOI: 10.1126/science.1226840 .
    (84) Kerr, R. A. Energy. Natural gas from shale bursts onto the scene. Science 2010, 328 (5986), 1624-1626. DOI: 10.1126/science.328.5986.1624 .
    (85) Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M.; et al. Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen. Science 2014, 344 (6184), 616-619. DOI: 10.1126/science.1253150.
    (86) Wang, Y. L.; Hu, P.; Yang, J.; Zhu, Y. A.; Chen, C. C-H bond activation in light alkanes: a theoretical perspective. Chem Soc Rev 2021, 50 (7), 4299-4358. DOI: 10.1039/d0cs01262a.
    (87) Wu, S. Q.; Wang, L. Z.; Zhang, J. L. Photocatalytic non-oxidative coupling of methane: Recent progress and future. J Photoch Photobio C 2021, 46. DOI: ARTN 10040010.1016/j.jphotochemrev.2020.100400.
    (88) Meng, X.; Cui, X.; Rajan, N. P.; Yu, L.; Deng, D.; Bao, X. Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis. Chem-Us 2019, 5 (9), 2296-2325.
    (89) Tomkins, P.; Ranocchiari, M.; van Bokhoven, J. A. Direct Conversion of Methane to Methanol under Mild Conditions over Cu-Zeolites and beyond. Accounts Chem Res 2017, 50 (2), 418-425. DOI: 10.1021/acs.accounts.6b00534.
    (90) Li, S. K.; Ahmed, R.; Yi, Y. H.; Bogaerts, A. Methane to Methanol through Heterogeneous Catalysis and Plasma Catalysis. Catalysts 2021, 11 (5). DOI: ARTN 59010.3390/catal11050590.
    (91) Wang, C. C.; Siao, S. S.; Jiang, J. C. C-H Bond Activation of Methane via sigma-d Interaction on the IrO2(110) Surface: Density Functional Theory Study. J Phys Chem C 2012, 116 (10), 6367-6370. DOI: 10.1021/jp300689j.
    (92) Pham, T. L. M.; Leggesse, E. G.; Jiang, J. C. Ethylene formation by methane dehydrogenation and C-C coupling reaction on a stoichiometric IrO2 (110) surface - a density functional theory investigation. Catal Sci Technol 2015, 5 (8), 4064-4071. DOI: 10.1039/c5cy00118h.
    (93) Pham, T. L. M.; Nachimuthu, S.; Kuo, J. L.; Jiang, J. C. A DFT study of ethane activation on IrO2(110) surface by precursor-mediated mechanism. Applied Catalysis a-General 2017, 541, 8-14. DOI: 10.1016/j.apcata.2017.04.018.
    (94) Liang, Z.; Li, T.; Kim, M.; Asthagiri, A.; Weaver, J. F. Low-temperature activation of methane on the IrO2(110) surface. Science 2017, 356 (6335), 298-301. DOI: 10.1126/science.aam9147.
    (95) Martin, R.; Kim, M.; Franklin, A.; Bian, Y. X.; Asthagiri, A.; Weaver, J. F. Adsorption and oxidation of propane and cyclopropane on IrO2(110). Phys Chem Chem Phys 2018, 20 (46), 29264-29273. DOI: 10.1039/c8cp06125d.
    (96) Bian, Y. X.; Kim, M.; Li, T.; Asthagiri, A.; Weaver, J. F. Facile Dehydrogenation of Ethane on the IrO2(110) Surface. J Am Chem Soc 2018, 140 (7), 2665-2672. DOI: 10.1021/jacs.7b13599.
    (97) Tsuji, Y.; Yoshizawa, K. Mixed-Anion Control of C-H Bond Activation of Methane on the IrO2 Surface. J Phys Chem C 2020, 124 (31), 17058-17072. DOI: 10.1021/acs.jpcc.0c04541.
    (98) Tsuji, Y.; Yoshizawa, K. Adsorption and Activation of Methane on the (110) Surface of Rutile-type Metal Dioxides. J Phys Chem C 2018, 122 (27), 15359-15381. DOI: 10.1021/acs.jpcc.8b03184.
    (99) Xu, J. Y.; Cao, X. M.; Hu, P. Improved Prediction for the Methane Activation Mechanism on Rutile Metal Oxides by a Machine Learning Model with Geometrical Descriptors. J Phys Chem C 2019, 123 (47), 28802-28810. DOI: 10.1021/acs.jpcc.9b08939.
    (100) Liu, Y. C.; Yeh, C. H.; Lo, Y. F.; Nachimuthu, S.; Lin, S. D.; Jiang, J. C. In situ spectroscopic and theoretical investigation of methane activation on IrO2 nanoparticles: Role of Ir oxidation state on C-H activation. J Catal 2020, 385, 265-273. DOI: 10.1016/j.jcat.2020.03.018.
    (101) Yeh, C. H.; Pham, T. M. L.; Nachimuthu, S.; Jiang, J. C. Effect of External Electric Field on Methane Conversion on IrO2 (110) Surface: A Density Functional Theory Study. Acs Catalysis 2019, 9 (9), 8230-8242. DOI: 10.1021/acscatal.9b01910.
    (102) Zhang, R. G.; Wang, G. R.; Wang, B. J.; Ling, L. X. Insight into the Effect of Promoter Mn on Ethanol Formation from Syngas on a Mn-Promoted MnCu(211) Surface: A Comparison with a Cu(211) Surface. J Phys Chem C 2014, 118 (10), 5243-5254. DOI: 10.1021/jp409447u.
    (103) Zhang, R. G.; Wang, G. R.; Wang, B. J. Insights into the mechanism of ethanol formation from syngas on Cu and an expanded prediction of improved Cu-based catalyst. J Catal 2013, 305, 238-255. DOI: 10.1016/j.jcat.2013.05.028.
    (104) Jiang, Z.; Wu, Z.; Fang, T.; Yi, C. Enhancement CH bond activation of methane via doping Pd, Pt, Rh and Ni on Cu(1 1 1) surface: A DFT study. Chemical Physics Letters 2019, 715, 323-329. DOI: https://doi.org/10.1016/j.cplett.2018.12.001.
    (105) Meng, Y. Y.; Ding, C. M.; Gao, X. F.; Ma, L. C.; Zhang, K.; Wang, J. W.; Li, Z. Adsorption of Pd on the Cu(111) surface and its catalysis of methane partial oxidation: A density functional theory study. Appl Surf Sci 2020, 513. DOI: ARTN 14572410.1016/j.apsusc.2020.145724.
    (106) Ola, O.; Maroto-Valer, M. M. Transition metal oxide based TiO2 nanoparticles for visible light induced CO2 photoreduction. Appl Catal a-Gen 2015, 502, 114-121. DOI: 10.1016/j.apcata.2015.06.007.
    (107) Murzin, P. D.; Murashkina, A. A.; Emeline, A. V.; Bahnemann, D. W. Effect of Sc3+/V5+ Co-Doping on Photocatalytic Activity of TiO2. Topics in Catalysis 2020. DOI: 10.1007/s11244-020-01292-1.
    (108) Rusinque, B.; Escobedo, S.; de Lasa, H. Photoreduction of a Pd-Doped Mesoporous TiO2 Photocatalyst for Hydrogen Production under Visible Light. Catalysts 2020, 10 (1). DOI: ARTN 7410.3390/catal10010074.
    (109) Eisenberg, H. R.; Baer, R. Exothermic Mechanism for the Abstraction of Hydrogen from Methane on Li-Doped MgO. J Phys Chem C 2015, 119 (1), 196-215. DOI: 10.1021/jp505977s.
    (110) Guo, F.; Ran, J. Y.; Niu, J. T.; Qiu, H. Y.; Ou, Z. L. Comparative density functional theory study of carbon formation and removal mechanism on Rh modified Ni-based catalyst in the CH4/CO2 reforming. Int J Energ Res 2021, 45 (7), 10100-10111. DOI: 10.1002/er.6501.
    (111) Li, B.; Metiu, H. Dissociation of Methane on La2O3 Surfaces Doped with Cu, Mg, or Zn. The Journal of Physical Chemistry C 2011, 115 (37), 18239-18246. DOI: 10.1021/jp2049603.
    (112) Tang, W.; Hu, Z. P.; Wang, M. J.; Stucky, G. D.; Metiu, H.; McFarland, E. W. Methane complete and partial oxidation catalyzed by Pt-doped CeO2. J Catal 2010, 273 (2), 125-137. DOI: 10.1016/j.jcat.2010.05.005.
    (113) Mayernick, A. D.; Janik, M. J. Methane activation and oxygen vacancy formation over CeO2 and Zr, Pd substituted CeO2 surfaces. J Phys Chem C 2008, 112 (38), 14955-14964. DOI: 10.1021/jp805134s.
    (114) Su, Y. Q.; Filot, I. A. W.; Liu, J. X.; Henseng, E. J. M. Stable Pd-Doped Ceria Structures for CH4 Activation and CO Oxidation. Acs Catal 2018, 8 (1), 75-80. DOI: 10.1021/acscatal.7b03295.
    (115) Akhavan, O. Thickness dependent activity of nanostructured TiO2/α-Fe2O3 photocatalyst thin films. Appl Surf Sci 2010, 257 (5), 1724-1728. DOI: https://doi.org/10.1016/j.apsusc.2010.09.005.
    (116) Shi, F.; Tse, M. K.; Pohl, M.-M.; Brückner, A.; Zhang, S.; Beller, M. Tuning Catalytic Activity between Homogeneous and Heterogeneous Catalysis: Improved Activity and Selectivity of Free Nano-Fe2O3 in Selective Oxidations. Angewandte Chemie International Edition 2007, 46 (46), 8866-8868, DOI: https://doi.org/10.1002/anie.200703418
    (117) Liang, J.; Zhang, Q. H.; Wu, H. L.; Meng, G. Y.; Tang, Q. H.; Wang, Y. Iron-based heterogeneous catalysts for epoxidation of alkenes using molecular oxygen. Catal Commun 2004, 5 (11), 665-669. DOI: 10.1016/j.catcom.2004.08.010.
    (118) Liu, Z. Y.; Lustemberg, P.; Gutierrez, R. A.; Carey, J. J.; Palomino, R. M.; Vorokhta, M.; Grinter, D. C.; Ramirez, P. J.; Matolin, V.; Nolan, M.; et al. In Situ Investigation of Methane Dry Reforming on Metal/Ceria(111) Surfaces: Metal-Support Interactions and C-H Bond Activation at Low Temperature. Angew Chem Int Edit 2017, 56 (42), 13041-13046. DOI: 10.1002/anie.201707538.
    (119) O'Connor, N. J.; Jonayat, A. S. M.; Janik, M. J.; Senftle, T. P. Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nat Catal 2018, 1 (7), 531-539. DOI: 10.1038/s41929-018-0094-5.
    (120) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Physical review B 1976, 13 (12), 5188.
    (121) Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Physical Review B 1993, 47 (1), 558.
    (122) Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 1996, 6 (1), 15-50. DOI: Doi 10.1016/0927-0256(96)00008-0.
    (123) Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Physical Review B 2011, 83 (19), 195131.
    (124) Klimes, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J Phys Condens Matter 2010, 22 (2), 022201. DOI: 10.1088/0953-8984/22/2/022201 .
    (125) Klimes, J.; Michaelides, A. Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. J Chem Phys 2012, 137 (12), 120901. DOI: 10.1063/1.4754130 .
    (126) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999, 59 (3), 1758-1775. DOI: DOI 10.1103/PhysRevB.59.1758.
    (127) Arroyo-de Dompablo, M.; Morales-García, A.; Taravillo, M. DFT+ U calculations of crystal lattice, electronic structure, and phase stability under pressure of TiO2 polymorphs. The Journal of chemical physics 2011, 135 (5), 054503.
    (128) Castleton, C. W.; Lee, A.; Kullgren, J. Benchmarking density functional theory functionals for polarons in oxides: Properties of CeO2. The Journal of Physical Chemistry C 2019, 123 (9), 5164-5175.
    (129) Wang, Y.; Ge, H.; Chen, Y.; Meng, X.; Ghanbaja, J.; Horwat, D.; Pierson, J. Wurtzite CoO: a direct band gap oxide suitable for a photovoltaic absorber. Chemical Communications 2018, 54 (99), 13949-13952.
    (130) Sagadevan, S.; Pal, K.; Chowdhury, Z. Z. Fabrication of CuO nanoparticles for structural, optical and dielectric analysis using chemical precipitation method. Journal of Materials Science: Materials in Electronics 2017, 28 (17), 12591-12597.
    (131) Ping, Y.; Galli, G.; Goddard III, W. A. Electronic structure of IrO2: the role of the metal d orbitals. The Journal of Physical Chemistry C 2015, 119 (21), 11570-11577.
    (132) Zhao, C.; Li, B.; Zhou, X.; Chen, J.; Tang, H. Comparative Study on Electronic Structure and Optical Properties of α-Fe2O3, Ag/α-Fe2O3 and S/α-Fe2O3. Metals 2021, 11 (3), 424.
    (133) Tripkovic, V.; Hansen, H. A.; Vegge, T. From 3D to 2D Co and Ni oxyhydroxide catalysts: Elucidation of the active site and influence of doping on the oxygen evolution activity. Acs Catal 2017, 7 (12), 8558-8571.
    (134) Tang, Y.; Zhao, S.; Long, B.; Liu, J.-C.; Li, J. On the nature of support effects of metal dioxides MO2 (M= Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: importance of quantum primogenic effect. The Journal of Physical Chemistry C 2016, 120 (31), 17514-17526.
    (135) Li, W.; Srinivasan, S. G.; Salahub, D.; Heine, T. Ni on the CeO 2 (110) and (100) surfaces: adsorption vs. substitution effects on the electronic and geometric structures and oxygen vacancies. Phys Chem Chem Phys 2016, 18 (16), 11139-11149.
    (136) Jamal, M.; Nishat, S. S.; Sharif, A. Effects of transition metal (Fe, Co & Ni) doping on structural, electronic and optical properties of CuO: DFT+ U study. Chemical Physics 2021, 545, 111160.
    (137) Méndez-Galván, M.; Celaya, C. A.; Jaramillo-Quintero, O. A.; Muniz, J.; Díaz, G.; Lara-García, H. A. Tuning the band gap of M-doped titanate nanotubes (M= Fe, Co, Ni, and Cu): an experimental and theoretical study. Nanoscale Advances 2021, 3 (5), 1382-1391.
    (138) Qin, L.; Cheng, Z.; Guo, M. Q.; Xu, M. Y.; Fan, J. A.; Fan, L. S. Impact of 1% Lanthanum Dopant on Carbonaceous Fuel Redox Reactions with an Iron-Based Oxygen Carrier in Chemical Looping Processes. Acs Energy Lett 2017, 2 (1), 70-74. DOI: 10.1021/acsenergylett.6b00511.
    (139) Haas, P.; Tran, F.; Blaha, P. Calculation of the lattice constant of solids with semilocal functionals. Physical Review B 2009, 79 (8), 085104.
    (140) Eguchi, H.; Tsumuraya, K.; Nagano, T.; KIHARA, S. Introduction to Solid State Physics 7th edition Introduction to Solid State Physics 7th edition 57, 1996. Materials transactions, JIM 1999, 40 (11), 1198-1204.
    (141) Physics, A. I. o.; Gray, D. E. American Institute of Physics Handbook: 3d Ed; McGraw-Hill, 1972.
    (142) Kraushofer, F.; Jakub, Z.; Bichler, M.; Hulva, J.; Drmota, P.; Weinold, M.; Schmid, M.; Setvin, M.; Diebold, U.; Blaha, P. Atomic-scale structure of the hematite α-Fe2O3 (11̅02)“R-Cut” surface. The Journal of Physical Chemistry C 2018, 122 (3), 1657-1669.
    (143) Dzade, N. Y.; Roldan, A.; de Leeuw, N. H. A Density Functional Theory Study of the Adsorption of Benzene on Hematite (alpha-Fe2O3) Surfaces. Minerals-Basel 2014, 4 (1), 89-115. DOI: 10.3390/min4010089.
    (144) Henkelman, G.; Uberuaga, B. P.; Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 2000, 113 (22), 9901-9904. DOI: Pii [S0021-9606(00)71246-3] Doi 10.1063/1.1329672.
    (145) Yeh, C.-H.; Ji, B.-C.; Nachimuthu, S.; Jiang, J.-C. A computational study of CO oxidation on IrO2 (1 1 0) surface. Applied Surface Science 2021, 539, 148244.
    (146) Wang, K. T.; Nachimuthu, S.; Jiang, J. C. Temperature-programmed desorption studies of NH(3) and H(2)O on the RuO(2)(110) surface: effects of adsorbate diffusion. Phys Chem Chem Phys 2018, 20 (37), 24201-24209. DOI: 10.1039/c8cp02568a .
    (147) Nachimuthu, S.; Chen, T. R.; Yeh, C. H.; Hong, L. S.; Jiang, J. C. Combined Density Functional Theory and Microkinetics Study to Predict Optimum Operating Conditions of Si(100) Surface Carbonization by Acetylene for High Power Devices. J Phys Chem Lett 2021, 12 (19), 4558-4568. DOI: 10.1021/acs.jpclett.1c01044 .
    (148) Pozun, Z. D.; Henkelman, G. Hybrid density functional theory band structure engineering in hematite. J Chem Phys 2011, 134 (22), 224706. DOI: 10.1063/1.3598947.
    (149) Xia, C.; Jia, Y.; Tao, M.; Zhang, Q. Tuning the band gap of hematite α-Fe2O3 by sulfur doping. Physics Letters A 2013, 377 (31-33), 1943-1947.
    (150) Khalil, M.; Yu, J. J.; Liu, N.; Lee, R. L. Hydrothermal synthesis, characterization, and growth mechanism of hematite nanoparticles. J Nanopart Res 2014, 16 (4). DOI: ARTN 236210.1007/s11051-014-2362-x.
    (151) Tang, J. J.; Liu, B. Reactivity of the Fe2O3(0001) Surface for Methane Oxidation: A GGA plus U Study. J Phys Chem C 2016, 120 (12), 6642-6650. DOI: 10.1021/acs.jpcc.6b00374.
    (152) Noh, M. F. M.; Ullah, H.; Arzaee, N. A.; Ab Halim, A.; Rahim, M. A. F. A.; Mohamed, N. A.; Safaei, J.; Nasir, S. N. F. M.; Wang, G.; Teridi, M. A. M. Rapid fabrication of oxygen defective α-Fe2O3(110) for enhanced photoelectrochemical activities. Dalton Transactions 2020, 49 (34), 12037-12048.
    (153) Wang, C.-C.; Siao, S. S.; Jiang, J.-C. C–H bond activation of methane via σ–d interaction on the IrO2 (110) surface: density functional theory study. The Journal of Physical Chemistry C 2012, 116 (10), 6367-6370.
    (154) Su, Y. Q.; Filot, I. A. W.; Liu, J. X.; Hensen, E. J. M. Stable Pd-Doped Ceria Structures for CH(4) Activation and CO Oxidation. ACS Catal 2018, 8 (1), 75-80. DOI: 10.1021/acscatal.7b03295.
    (155) Meng, Y.; Ding, C.; Gao, X.; Zhang, K.; Wang, J.; Li, Z. Adsorption of Pd on the Cu (1 1 1) surface and its catalysis of methane partial oxidation: A density functional theory study. Applied Surface Science 2020, 513, 145724.
    (156) Nachimuthu, S.; Lai, H.-J.; Chen, Y.-C.; Jiang, J.-C. Comparable catalytic activity of a low-cost catalyst IrO2/TiO2 for methane conversion–A density functional theory study. Applied Surface Science 2022, 577, 151938.
    (157) Tsuji, Y.; Yoshizawa, K. Adsorption and activation of methane on the (110) surface of rutile-type metal dioxides. The Journal of Physical Chemistry C 2018, 122 (27), 15359-15381.
    (158) O’Connor, N. J.; Jonayat, A.; Janik, M. J.; Senftle, T. P. Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nature Catalysis 2018, 1 (7), 531-539.
    (159) Zhao, Y.; Yang, K. R.; Wang, Z.; Yan, X.; Cao, S.; Ye, Y.; Dong, Q.; Zhang, X.; Thorne, J. E.; Jin, L. Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proceedings of the National Academy of Sciences 2018, 115 (12), 2902-2907.
    (160) González, S.; Viñes, F.; García, J. F.; Erazo, Y.; Illas, F. A DF-vdW study of the CH4 adsorption on different Ni surfaces. Surface science 2014, 625, 64-68.
    (161) Tillotson, M. J.; Brett, P. M.; Bennett, R. A.; Grau-Crespo, R. Adsorption of organic molecules at the TiO2(110) surface: The effect of van der Waals interactions. Surface Science 2015, 632, 142-153. DOI: 10.1016/j.susc.2014.09.017.
    (162) Liu, X.; Xu, M.; Wan, L.; Zhu, H.; Yao, K.; Linguerri, R.; Chambaud, G.; Han, Y.; Meng, C. Superior catalytic performance of atomically dispersed palladium on graphene in CO oxidation. Acs Catalysis 2020, 10 (5), 3084-3093.
    (163) Schreiber, M. W.; Plaisance, C. P.; Baumgärtl, M.; Reuter, K.; Jentys, A.; Bermejo-Deval, R.; Lercher, J. A. Lewis–Brønsted acid pairs in Ga/H-ZSM-5 to catalyze dehydrogenation of light alkanes. Journal of the American Chemical Society 2018, 140 (14), 4849-4859.
    (164) Tsuji, Y.; Yoshizawa, K. Mixed-Anion Control of C–H Bond Activation of Methane on the IrO2 Surface. The Journal of Physical Chemistry C 2020, 124 (31), 17058-17072.
    (165) Xu, J.; Cao, X.-M.; Hu, P. Improved prediction for the methane activation mechanism on rutile metal oxides by a machine learning model with geometrical descriptors. The Journal of Physical Chemistry C 2019, 123 (47), 28802-28810.
    (166) Kim, M.; Franklin, A.; Martin, R.; Feng, F.; Li, T.; Liang, Z.; Asthagiri, A.; Weaver, J. Adsorption and oxidation of CH4 on oxygen-rich IrO2 (110). The Journal of Physical Chemistry C 2019, 123 (45), 27603-27614.
    (167) Martin, R.; Lee, C. J.; Mehar, V.; Kim, M.; Asthagiri, A.; Weaver, J. F. Catalytic Oxidation of Methane on IrO2 (110) Films Investigated Using Ambient-Pressure X-ray Photoelectron Spectroscopy. ACS Catalysis 2022, 12 (5), 2840-2853.
    (168) Cheng, Z.; Qin, L.; Guo, M.; Fan, J. A.; Xu, D.; Fan, L. S. Methane adsorption and dissociation on iron oxide oxygen carriers: the role of oxygen vacancies. Phys Chem Chem Phys 2016, 18 (24), 16423-16435. DOI: 10.1039/c6cp01287f.
    (169) Suib, S. L. New and future developments in catalysis: activation of carbon dioxide; Newnes, 2013, 0444538836.
    (170) Lee, C. H.; Huang, H. Y.; Lee, J. J.; Huang, C. Y.; Kao, Y. C.; Lee, G. H.; Peng, S. M.; Jiang, J. C.; Chao, I.; Lu, K. L. Amide-CO2 Interaction Induced Gate-Opening Behavior for CO2 Adsorption in 2-Fold Interpenetrating Framework. Chemistryselect 2016, 1 (11), 2923-2929. DOI: 10.1002/slct.201600345.
    (171) Lim, S.; Choi, J. W.; Suh, D. J.; Song, K. H.; Ham, H. C.; Ha, J. M. Combined experimental and density functional theory (DFT) studies on the catalyst design for the oxidative coupling of methane. Journal of Catalysis 2019, 375, 478-492. DOI: 10.1016/j.jcat.2019.04.008.
    (172) Havran, V.; Dudukovic, M. P.; Lo, C. S. Conversion of Methane and Carbon Dioxide to Higher Value Products. Ind Eng Chem Res 2011, 50 (12), 7089-7100. DOI: 10.1021/ie2000192.
    (173) Zhao, Y.; Cui, C.; Han, J.; Wang, H.; Zhu, X.; Ge, Q. Direct C–C Coupling of CO2 and the Methyl Group from CH4 Activation through Facile Insertion of CO2 into Zn–CH3 σ-Bond. Journal of the American Chemical Society 2016, 138 (32), 10191-10198.
    (174) Pham, M.; Goujard, V.; Tatibouët, J.; Batiot-Dupeyrat, C. Activation of methane and carbon dioxide in a dielectric-barrier discharge-plasma reactor to produce hydrocarbons Influence of La2O3/γ-Al2O3 catalyst. Catalysis today 2011, 171 (1), 67-71.
    (175) Huang, W.; Xie, K. C.; Wang, J. P.; Gao, Z. H.; Yin, L. H.; Zhu, Q. M. Possibility of direct conversion of CH4 and CO2 to high-value products. Journal of Catalysis 2001, 201 (1), 100-104. DOI: 10.1006/jcat.2001.3223.
    (176) Spivey, J. J.; Wilcox, E. M.; Roberts, G. W. Direct utilization of carbon dioxide in chemical synthesis: Vinyl acetate via methane carboxylation. Catal Commun 2008, 9 (5), 685-689. DOI: 10.1016/j.catcom.2007.08.023.
    (177) Xu, Y. S.; Wu, D. X.; Deng, P. L.; Li, J.; Luo, J. M.; Chen, Q.; Huang, W.; Shim, C. M.; Jia, C. M.; Liu, Z. X.; et al. Au decorated Pd nanowires for methane oxidation to liquid C1 products. Applied Catalysis B-Environmental 2022, 308, 121223. DOI: ARTN 12122310.1016/j.apcatb.2022.121223.
    (178) Liang, Z.; Li, T.; Kim, M.; Asthagiri, A.; Weaver, J. F. Low-temperature activation of methane on the IrO(2)(110) surface. Science 2017, 356 (6335), 299-303. DOI: 10.1126/science.aam9147.
    (179) Lee, C.-H.; Wu, J.-Y.; Lee, G.-H.; Peng, S.-M.; Jiang, J.-C.; Lu, K.-L. Amide-containing zinc (II) metal–organic layered networks: A structure–CO 2 capture relationship. Inorganic Chemistry Frontiers 2015, 2 (5), 477-484.
    (180) Lee, C. H.; Huang, H. Y.; Liu, Y. H.; Luo, T. T.; Lee, G. H.; Peng, S. M.; Jiang, J. C.; Chao, I.; Lu, K. L. Cooperative effect of unsheltered amide groups on CO2 adsorption inside open-ended channels of a zinc(II)-organic framework. Inorg Chem 2013, 52 (7), 3962-3968. DOI: 10.1021/ic302758g .
    (181) Yan, Y.; Wong, R. J.; Ma, Z. R.; Donat, F.; Xi, S. B.; Saqline, S.; Fan, Q. W. H.; Du, Y. H.; Borgna, A.; He, Q.; et al. CO2 hydrogenation to methanol on tungsten-doped Cu/CeO2 catalysts. Applied Catalysis B-Environmental 2022, 306, 121098. DOI: ARTN 12109810.1016/j.apcatb.2022.121098.
    (182) Wang, Y.; Wang, Y.; Li, L.; Cui, C.; Liu, X.; Da. Costa, P.; Hu, C. Syngas production via CO2 reforming of methane over aluminum-promoted NiO–10Al2O3–ZrO2 catalyst. ACS omega 2021, 6 (34), 22383-22394.
    (183) Yue, L.; Li, J. M.; Chen, C.; Fu, X. L.; Gong, Y.; Xia, X. L.; Hou, J. W.; Xiao, C. J.; Chen, X. J.; Zhao, L. J.; et al. Thermal-stable Pd@mesoporous silica core-shell nanocatalysts for dry reforming of methane with good coke-resistant performance. Fuel 2018, 218, 335-341. DOI: 10.1016/j.fuel.2018.01.052.
    (184) Xie, X.; Otremba, T.; Littlewood, P.; Schomacker, R.; Thomas, A. One-Pot Synthesis of Supported, Nanocrystalline Nickel Manganese Oxide for Dry Reforming of Methane. Acs Catalysis 2013, 3 (2), 224-229. DOI: 10.1021/cs3003963.
    (185) Nair, M. M.; Kaliaguine, S.; Kleitz, F. Nanocast LaNiO3 Perovskites as Precursors for the Preparation of Coke-Resistant Dry Reforming Catalysts. Acs Catalysis 2014, 4 (11), 3837-3846. DOI: 10.1021/cs500918c.
    (186) Bhavani, A. G.; Kim, W. Y.; Lee, J. S. Barium Substituted Lanthanum Manganite Perovskite for CO2 Reforming of Methane. Acs Catalysis 2013, 3 (7), 1537-1544. DOI: 10.1021/cs400245m.
    (187) Huang, W.; Xie, K.-C.; Wang, J.-P.; Gao, Z.-H.; Yin, L.-H.; Zhu, Q.-M. Possibility of direct conversion of CH4 and CO2 to high-value products. Journal of Catalysis 2001, 201 (1), 100-104.
    (188) Liu, G.; Ariyarathna, I. R.; Ciborowski, S. M.; Zhu, Z.; Miliordos, E.; Bowen, K. H. Simultaneous Functionalization of Methane and Carbon Dioxide Mediated by Single Platinum Atomic Anions. Journal of the American Chemical Society 2020, 142 (51), 21556-21561.
    (189) Shavi, R.; Ko, J.; Cho, A.; Han, J. W.; Seo, J. G. Mechanistic insight into the quantitative synthesis of acetic acid by direct conversion of CH4 and CO2: An experimental and theoretical approach. Applied Catalysis B-Environmental 2018, 229, 237-248. DOI: 10.1016/j.apcatb.2018.01.058.
    (190) Rabie, A. M.; Betiha, M. A.; Park, S. E. Direct synthesis of acetic acid by simultaneous co-activation of methane and CO2 over Cu-exchanged ZSM-5 catalysts. Applied Catalysis B-Environmental 2017, 215, 50-59. DOI: 10.1016/j.apcatb.2017.05.053.
    (191) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Physical Review Letters 1996, 77 (18), 3865-3868. DOI 10.1103/PhysRevLett.77.3865.
    (192) Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter 1996, 54 (16), 11169-11186. DOI: 10.1103/physrevb.54.11169 .
    (193) Kresse, G.; Hafner, J. Norm-Conserving and Ultrasoft Pseudopotentials for First-Row and Transition-Elements. Journal of Physics-Condensed Matter 1994, 6 (40), 8245-8257. DOI: Doi 10.1088/0953-8984/6/40/015.
    (194) Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter 1993, 47 (1), 558-561. DOI: 10.1103/physrevb.47.558 .
    (195) Sholl, D.; Steckel, J. A. Density functional theory: a practical introduction; John Wiley & Sons, 2011.(196) Jiang, J. C.; Chang, H. C.; Lee, Y. T.; Lin, S. H. Ab initio studies of NH4+(H2O)(1-5) and the influence of hydrogen-bonding nonadditivity on geometries and vibrations. Journal of Physical Chemistry A 1999, 103 (16), 3123-3135. DOI: DOI 10.1021/jp9838543.
    (197) Yizengaw, K. W.; Abay, T. A.; Ayele, D. W.; Jiang, J.-C. The remarkable performance of a single iridium atom supported on hematite for methane activation: a density functional theory study. RSC advances 2022, 12 (36), 23736-23746.
    (198) Schaub, R.; Wahlstrom, E.; Ronnau, A.; Lagsgaard, E.; Stensgaard, I.; Besenbacher, F. Oxygen-mediated diffusion of oxygen vacancies on the TiO2(110) surface. Science 2003, 299 (5605), 377-379. DOI: 10.1126/science.1078962.
    (199) Pu, Z. Y.; Liu, X. S.; Jia, A. P.; Xie, Y. L.; Lu, J. Q.; Luo, M. F. Enhanced activity for CO oxidation over Pr- and Cu-doped CeO2 catalysts: Effect of oxygen vacancies. J Phys Chem C 2008, 112 (38), 15045-15051. DOI: 10.1021/jp805389k.
    (200) Liu, L. J.; Zhao, C. Y.; Li, Y. Spontaneous Dissociation of CO2 to CO on Defective Surface of Cu(I)/TiO2-x Nanoparticles at Room Temperature. J Phys Chem C 2012, 116 (14), 7904-7912. DOI: 10.1021/jp300932b.
    (201) French, S. A.; Sokol, A. A.; Bromley, S. T.; Catlow, C. R.; Rogers, S. C.; King, F.; Sherwood, P. From CO(2) to Methanol by Hybrid QM/MM Embedding This work was supported by EU Esprit IV project 25047. S.A.F. is grateful to ICI and Synetix for funding. K. Waugh, L. Whitmore, S. Cristol, and P. Sushko are thanked for their helpful insights. QM/MM=quantum mechanics/molecular mechanics. Angew Chem Int Ed Engl 2001, 40 (23), 4437-4440. DOI: 10.1002/1521-3773(20011203)40:23<4437::aid-anie4437>3.0.co;2-l .
    (202) Yizengaw, K. W.; Abay, T. A.; Ayele, D. W.; Jiang, J. C. The remarkable performance of a single iridium atom supported on hematite for methane activation: a density functional theory study. RSC Adv 2022, 12 (36), 23736-23746. DOI: 10.1039/d2ra03585e .
    (203) Spielfiedel, A.; Feautrier, N.; Cossartmagos, C.; Chambaud, G.; Rosmus, P.; Werner, H. J.; Botschwina, P. Bent Valence Excited-States of Co2. J Chem Phys 1992, 97 (11), 8382-8388. DOI: Doi 10.1063/1.463408.
    (204) Zhao, Y. T.; Wang, H.; Han, J. Y.; Zhu, X. L.; Mei, D. H.; Ge, Q. F. Simultaneous Activation of CH4 and CO2 for Concerted C-C Coupling at Oxide-Oxide Interfaces. Acs Catalysis 2019, 9 (4), 3187-3197. DOI: 10.1021/acscatal.9b00291.
    (205) Yoo, J. S.; Schumann, J.; Studt, F.; Abild-Pedersen, F.; Nørskov, J. K. Theoretical investigation of methane oxidation on Pd (111) and other metallic surfaces. The Journal of Physical Chemistry C 2018, 122 (28), 16023-16032.
    (206) Hahn, K. R.; Iannuzzi, M.; Seitsonen, A. P.; Hutter, J. Coverage Effect of the CO2 Adsorption Mechanisms on CeO2(111) by First Principles Analysis. J Phys Chem C 2013, 117 (4), 1701-1711. DOI: 10.1021/jp309565u.
    (207) Liu, G.; Ariyarathna, I. R.; Ciborowski, S. M.; Zhu, Z.; Miliordos, E.; Bowen, K. H. Simultaneous Functionalization of Methane and Carbon Dioxide Mediated by Single Platinum Atomic Anions. J Am Chem Soc 2020, 142 (51), 21556-21561. DOI: 10.1021/jacs.0c11112.
    (208) Shavi, R.; Ko, J.; Cho, A.; Han, J. W.; Seo, J. G. Mechanistic insight into the quantitative synthesis of acetic acid by direct conversion of CH4 and CO2: An experimental and theoretical approach. Applied Catalysis B: Environmental 2018, 229, 237-248.
    (209) Yang, Y.; Yang, B.; Zhao, Y. X.; Jiang, L. X.; Li, Z. Y.; Ren, Y.; Xu, H. G.; Zheng, W. J.; He, S. G. Direct Conversion of Methane with Carbon Dioxide Mediated by RhVO(3) (-) Cluster Anions. Angew Chem Int Ed Engl 2019, 58 (48), 17287-17292. DOI: 10.1002/anie.201911195.
    (210) Xianglan, X.; Hong, H.; Jianjun, L.; Wenming, L.; Wenlong, L.; Xiang, W. Promotional effects of samarium on Co3O4 spinel for CO and CH4 oxidation. Journal of Rare Earths 2014, 32 (2), 159-169.
    (211) Liotta, L. F.; Di Carlo, G.; Longo, A.; Pantaleo, G.; Venezia, A. M. Support effect on the catalytic performance of Au/Co3O4-CeO2 catalysts for CO and CH4 oxidation. Catalysis Today 2008, 139 (3), 174-179. DOI: 10.1016/j.cattod.2008.04.025.
    (212) Cui, W. G.; Zhang, G. Y.; Hu, T. L.; Bu, X. H. Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coordination Chemistry Reviews 2019, 387, 79-120. DOI: 10.1016/j.ccr.2019.02.001.
    (213) Rostrup-Nielsen, J.; Nielsen, P. H. Catalyst deactivation in synthesis gas production, and important syntheses; Marcel Dekker: New York, NY, USA, 1985.
    (214) Maxted, E. The poisoning of metallic catalysts. In Advances in catalysis, Vol. 3; Elsevier, 1951; pp 129-178.
    (215) Rostrup-Nielsen, J. Promotion by poisoning. In Studies in Surface Science and Catalysis, Vol. 68; Elsevier, 1991; pp 85-101.
    (216) Rostrup-Nielsen, J.; Trimm, D. L. Mechanisms of carbon formation on nickel-containing catalysts. Journal of Catalysis 1977, 48 (1-3), 155-165.
    (217) Menon, P. G. Coke on Catalysts - Harmful, Harmless, Invisible and Beneficial Types. Journal of Molecular Catalysis 1990, 59 (2), 207-220. DOI: Doi 10.1016/0304-5102(90)85053-K.
    (218) Bartholomew, C. H. Carbon deposition in steam reforming and methanation. Catalysis Reviews Science and Engineering 1982, 24 (1), 67-112.
    (219) Qi, Y. F.; Li, J.; Zhang, Y. Q.; Cao, Q.; Si, Y. M.; Wu, Z. R.; Akram, M.; Xu, X. Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: Role of single cobalt and electron transfer pathway. Applied Catalysis B-Environmental 2021, 286, 119910. DOI: ARTN 11991010.1016/j.apcatb.2021.119910.
    (220) Peng, X.; Wu, J.; Zhao, Z.; Wang, X.; Dai, H.; Wei, Y.; Xu, G.; Hu, F. Activation of peroxymonosulfate by single atom Co-NC catalysts for high-efficient removal of chloroquine phosphate via non-radical pathways: electron-transfer mechanism. Chemical Engineering Journal 2022, 429, 132245.
    (221) Peng, X.; Wu, J.; Zhao, Z.; Wang, X.; Dai, H.; Xu, L.; Xu, G.; Jian, Y.; Hu, F. Activation of peroxymonosulfate by single-atom Fe-g-C3N4 catalysts for high efficiency degradation of tetracycline via nonradical pathways: Role of high-valent iron-oxo species and Fe–Nx sites. Chemical Engineering Journal 2022, 427, 130803.
    (222) Li, Y.; Ma, S. L.; Xu, S. J.; Fu, H. C.; Li, Z. Q.; Li, K.; Sheng, K.; Du, J. G.; Lu, X.; Li, X. H.; et al. Novel magnetic biochar as an activator for peroxymonosulfate to degrade bisphenol A: Emphasizing the synergistic effect between graphitized structure and CoFe2O4. Chemical Engineering Journal 2020, 387, 124094. DOI: ARTN 12409410.1016/j.cej.2020.124094.
    (223) Chen, L.; Wang, S.; Yang, Z. C.; Qian, J. S.; Pan, B. C. Selective interfacial oxidation of organic pollutants in Fenton-like system mediated by Fe(III)-adsorbed carbon nanotubes. Applied Catalysis B-Environmenta 2021, 292, 120193. DOI:ARTN 12019310.1016/j.apcatb.2021.120193.
    (224) Schwarz, H.; Shaik, S.; Li, J. Electronic Effects on Room-Temperature, Gas-Phase C-H Bond Activations by Cluster Oxides and Metal Carbides: The Methane Challenge. J Am Chem Soc 2017, 139 (48), 17201-17212. DOI: 10.1021/jacs.7b10139 .
    (225) Harrath, K.; Yu, X.; Xiao, H.; Li, J. The key role of support surface hydrogenation in the CH4 to CH3OH selective oxidation by a ZrO2-supported single-atom catalyst. ACS Catalysis 2019, 9 (10), 8903-8909.
    (226) Filot, I. A. W.; Broos, R. J. P.; van Rijn, J. P. M.; van Heugten, G. J. H. A.; van Santen, R. A.; Hensen, E. J. M. First-Principles-Based Microkinetics Simulations of Synthesis Gas Conversion on a Stepped Rhodium Surface. Acs Catalysis 2015, 5 (9), 5453-5467. DOI: 10.1021/acscatal.5b01391.
    (227) Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it? Joule 2018, 2 (5), 825-832.
    (228) De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019, 364 (6438), eaav3506.
    (229) Pan, F.; Yang, Y. Designing CO2 reduction electrode materials by morphology and interface engineering. Energy & Environmental Science 2020, 13 (8), 2275-2309.
    (230) Masel, R. I.; Liu, Z.; Yang, H.; Kaczur, J. J.; Carrillo, D.; Ren, S.; Salvatore, D.; Berlinguette, C. P. An industrial perspective on catalysts for low-temperature CO(2) electrolysis. Nat Nanotechnol 2021, 16 (2), 118-128. DOI: 10.1038/s41565-020-00823-x.
    (231) Wang, K.; Wu, Y. Y.; Cao, X. B.; Gu, L.; Hu, J. A Zn-CO2 Flow Battery Generating Electricity and Methane. Advanced Functional Materials 2020, 30 (9), 1908965. DOI: ARTN 190896510.1002/adfm.201908965.
    (232) Siegelman, R. L.; Milner, P. J.; Kim, E. J.; Weston, S. C.; Long, J. R. Challenges and opportunities for adsorption-based CO(2) capture from natural gas combined cycle emissions. Energy Environ Sci 2019, 12 (7), 2161-2173. DOI: 10.1039/c9ee00505f.
    (233) Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S.; Space, B.; Wojtas, L.; et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 2013, 495 (7439), 80-84. DOI: 10.1038/nature11893.
    (234) Daiyan, R.; Saputera, W. H.; Masood, H.; Leverett, J.; Lu, X. Y.; Amal, R. A Disquisition on the Active Sites of Heterogeneous Catalysts for Electrochemical Reduction of CO2 to Value-Added Chemicals and Fuel. Advanced Energy Materials 2020, 10 (11), 1902106. DOI: ARTN 190210610.1002/aenm.201902106.
    (235) Leung, D. Y. C.; Caramanna, G.; Maroto-Valer, M. M. An overview of current status of carbon dioxide capture and storage technologies. Renewable & Sustainable Energy Reviews 2014, 39, 426-443. DOI: 10.1016/j.rser.2014.07.093.
    (236) Chen, C.; He, N. H.; Wang, S. Y. Electrocatalytic C-N Coupling for Urea Synthesis. Small Science 2021, 1 (11), 2100070. DOI: ARTN 210007010.1002/smsc.202100070.
    (237) Tao, Z.; Rooney, C. L.; Liang, Y.; Wang, H. Accessing Organonitrogen Compounds via C-N Coupling in Electrocatalytic CO(2) Reduction. J Am Chem Soc 2021, 143 (47), 19630-19642. DOI: 10.1021/jacs.1c10714.
    (238) Li, J.; Zhang, Y.; Kuruvinashetti, K.; Kornienko, N. Construction of C-N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat Rev Chem 2022, 6 (5), 303-319. DOI: 10.1038/s41570-022-00379-5.
    (239) Alfian, M.; Purwanto, W. W. Multi-objective optimization of green urea production. Energy Science & Engineering 2019, 7 (2), 292-304. DOI: 10.1002/ese3.281.
    (240) Comer, B. M.; Fuentes, P.; Dimkpa, C. O.; Liu, Y. H.; Fernandez, C. A.; Arora, P.; Realff, M.; Singh, U.; Hatzell, M. C.; Medford, A. J. Prospects and Challenges for Solar Fertilizers. Joule 2019, 3 (7), 1578-1605. DOI: 10.1016/j.joule.2019.05.001.
    (241) Glibert, P. M.; Harrison, J.; Heil, C.; Seitzinger, S. Escalating worldwide use of urea - a global change contributing to coastal eutrophication. Biogeochemistry 2006, 77 (3), 441-463. DOI: 10.1007/s10533-005-3070-5.
    (242) Barzagli, F.; Mani, F.; Peruzzini, M. From greenhouse gas to feedstock: formation of ammonium carbamate from CO2 and NH3 in organic solvents and its catalytic conversion into urea under mild conditions. Green Chemistry 2011, 13 (5), 1267-1274. DOI: 10.1039/c0gc00674b.
    (243) Pérez-Fortes, M.; Bocin-Dumitriu, A.; Tzimas, E. CO2 utilization pathways: techno-economic assessment and market opportunities. Energy Procedia 2014, 63, 7968-7975.
    (244) Ji, S.; Wang, Z.; Zhao, J. A boron-interstitial doped C 2 N layer as a metal-free electrocatalyst for N 2 fixation: a computational study. Journal of Materials Chemistry A 2019, 7 (5), 2392-2399.
    (245) Guo, X.; Gu, J.; Lin, S.; Zhang, S.; Chen, Z.; Huang, S. Tackling the Activity and Selectivity Challenges of Electrocatalysts toward the Nitrogen Reduction Reaction via Atomically Dispersed Biatom Catalysts. J Am Chem Soc 2020, 142 (12), 5709-5721. DOI: 10.1021/jacs.9b13349.
    (246) Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Heterogeneous Fe(3) single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat Commun 2018, 9 (1), 1610. DOI: 10.1038/s41467-018-03795-8.
    (247) Obek, C. A.; Ayittey, F. K.; Saptoro, A. Improved process modifications of aqueous ammonia-based CO2 capture system. In MATEC Web of Conferences, 2019; EDP Sciences: Vol. 268, p 02004.
    (248) Bonalumi, D.; Lillia, S.; Valenti, G. Rate-based simulation and techno-economic analysis of coal-fired power plants with aqueous ammonia carbon capture. Energy Conversion and Management 2019, 199, 111966. DOI:ARTN 111966 10.1016/j.enconman.2019.111966.
    (249) Al-Hamed, K. H. M.; Dincer, I. A comparative review of potential ammonia-based carbon capture systems. J Environ Manage 2021, 287, 112357. DOI: 10.1016/j.jenvman.2021.112357.

    QR CODE