簡易檢索 / 詳目顯示

研究生: 王嘉慶
Chia-Ching Wang
論文名稱: 以密度泛函理論研究在二氧化釕(110)及二氧化銥(110)表面上NHx (x = 0–3)、氮氣吸附以及氨之氧化反應
DFT Study of NHx (x = 0–3) and N2 Adsorption, and Ammonia Oxidation on RuO2(110) and IrO2(110) Surfaces
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 林聖賢
Sheng-Hsien Lin
趙奕姼
Ito Chao
魏金明
Ching-Ming Wei
何嘉仁
Jia-Jen Ho
王伯昌
Bo-Cheng Wang
蔡大翔
Dah-Shyang Tsai
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 133
中文關鍵詞: 第一原理計算密度泛函理論二氧化釕二氧化銥氨氧化固氮反應催化反應
外文關鍵詞: ab initio, nitrogen fixation, electron density difference
相關次數: 點閱:289下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文採用了密度泛函理論的計算來探討二氧化釕(110)以及二氧化銥(110)表面上之NHx (x = 0–3) 及 N2 的吸附,以及氨氣氧化反應的機制。在吸附的計算中,我們透過態密度、電子密度差異以及原子電荷變化的分析來探討吸附物質以及表面之間的作用力。分析結果顯示,無論是何種吸附物質,吸附於二氧化釕(110)或二氧化銥(110)表面上皆會生成相當類似的鍵結作用力。而主要的差異在於,於二氧化銥(110)表面上的吸附能皆大於二氧化釕(110)表面上的吸附能。其原因在於二氧化銥(110)表面上的銥原子擁有較低能量之空 軌域,而能量較低的空 軌域能讓表面上的銥原子與吸附物質產生較強的 鍵結。而反應的部分,氨氣分子於二氧化釕(110)以及二氧化銥(110)表面上同樣擁有類似的反應機制。氨氣分子於這兩個表面上的氧化反應有三個主要的步驟:NHx脫氫反應、水分子生成與脫附反應以及含氮產物生成反應。計算結果顯示,氨氣氧化反應僅能發生在富氧的環境下;當存在Ocus原子時,二氧化釕(110)以及二氧化銥(110)表面上才能有足夠的氧原子來完成NHx脫氫反應。除此之外,Ocus原子同樣也是反應中的主要氧化劑,氧化的產物皆是與Ocus原子反應而來。從能量分析來看,氮氣與一氧化氮的生成趨勢於這兩個表面上有顯著的不同。然而,無論是在哪一個表面上,氮氣與一氧化氮的選擇率皆是決定於表面Ocus原子的覆蓋率。較高的Ocus覆蓋率可以提高一氧化氮的生成量;相反的,在低Ocus原子覆蓋率的狀況下,氮氣會是主要的含氮產物。


    In this thesis, the density functional theory (DFT) calculations were applied to investigate the adsorptions of NHx (x = 0–3) species and N2, and the ammonia oxidation on the RuO2(110) and IrO2(110) surfaces. In the adsorption part, the analyses of density of states (DOS), electron density difference (EDD) and charge difference (q) provide the detailed adsorbate–surface interactions. The results demonstrate that each adsorbate has very similar interactions with both the RuO2(110) and IrO2(110) surfaces in this work. The major difference in adsorptions between these two surfaces is that the vacant state of the Ircus atom is closer to the Fermi level and could form stronger  bonding with the adsorbates. This phenomenon causes the higher binding energies of the adsorbates on the IrO2(110) surfaces than those on the RuO2(110) surfaces. In the ammonia oxidation part, calculated results show that the oxidation mechanisms on the RuO2(110) and IrO2(110) surfaces are also very similar. The ammonia oxidation reactions include three major steps: NHx dehydrogenation, H2O formation and desorption, and N-containing products formation. The oxygen-rich environment is required for ammonia oxidation over the two surfaces, because the additional Ocus atoms make the surface having sufficient oxygen species to complete the dehydrogenation. In addition, Ocus atom is also the major oxidant in the formation of oxidation products. The energetic analysis demonstrates different behavior in the formation of N2 and NO on these two surfaces. However, on both surfaces, the selectivity toward N2 and NO is dominated by the coverage of Ocus atoms on the surfaces; a higher coverage of Ocus atoms results in greater production of NO, and a lower coverage results in the production of N2.

    1 Introduction••••••••••••••••••••••••••••••••1 1.1 Introduction to RuO2 and IrO2•••••••••••••••••••••••1 1.2 Introduction to Ammonia Oxidation and Nitrogen Reduction•••••••••7 1.3 About This Work•••••••••••••••••••••••••••••12 2 Computational Details•••••••••••••••••••••••••••14 2.1 Theoretical Background••••••••••••••••••••••••••14 2.2 Methods and Parameters in This Work•••••••••••••••••••21 2.3 Surface Models••••••••••••••••••••••••••••••22 3 NHx and N2 Adsorption•••••••••••••••••••••••••••24 3.1 NHx on RuO2(110) Surfaces••••••••••••••••••••••••24 3.2 NHx on IrO2(110) Surfaces••••••••••••••••••••••••38 3.3 N2 Adsorption••••••••••••••••••••••••••••••52 3.4 Summary•••••••••••••••••••••••••••••••••59 4 Ammonia Oxidation•••••••••••••••••••••••••••••61 4.1 Oxidation on the RuO2(110) Surface••••••••••••••••••••61 4.2 Oxidation on the IrO2(110) Surface••••••••••••••••••••82 4.3 Summary•••••••••••••••••••••••••••••••••97 5 Conclusion•••••••••••••••••••••••••••••••••99 References•••••••••••••••••••••••••••••••••104 Appendices•••••••••••••••••••••••••••••••••116

    (1) Mattheiss, L. F. phys. Rev. B 1976, 13, 2433.
    (2) Ryden, W. D.; Lawson, A. W.; Sartain, C. C. Phys. Rev. B 1970, 1, 1494.
    (3) Ryden, W. D.; Lawson, A. W. Phys. Rev. B 1984, 1, 1813.
    (4) Jia, Q. X.; Shi, Z. Q.; Jiao, K. L.; Anderson, W. A.; Collins, F. M. Thin Solid Films 1991, 196, 29.
    (5) Halder, N. C. Electrocomp. Sci. Technol. 1983, 11, 21.
    (6) Bobran, K.; Kusy, A. J. Phys.: Condens. Matter 1991, 3, 7015.
    (7) Kolowa, E.; So, F. C. T.; Pan, E. T.-S.; Nicolet, M.-A. Appl. Phys. Lett. 1987, 50, 854.
    (8) Al-Shareef, H. N.; Bellur, K. R.; Kingon, A. I.; Auciello, O. Appl. Phys. Lett.,1995, 66, 239.
    (9) Takemura, K.; Sakuma, T.; Miyasada, Y. Appl. Phys. Lett. 1994, 64, 2967.
    (10) Zheng, J. P.; Jow, T. R. J. Electrochem. Soc. 1995, 142, L6.
    (11) Kotz, R.; Carlen, M. Electrochim. Acta 2000, 45, 2483.
    (12) Kuhn, A. T.; Mortimer, C. J. J. Electrochem. Soc. 1973, 120, 231.
    (13) Trasatti, S.; Buzzance, G. J. Electroanal. Chem. Interfacial Electrochem. 1971, 29, 635.
    (14) Ashcroft, A. T.; Cheetham, A. K.; Foord, J. S.; Green, M. L. H.; Grey, C. P.; Murrell, A. J.; Vernon, P. D. F. Nature 1990, 344, 319.
    (15) Narducci, D.; Ornaghi, A.; Mari, C. M. Sens. Actuators B 1994, 19, 566.
    (16) Salomonsson, A.; Roy, S.; Aulin, C.; Cerdá J.; Käll, P.-O.; Ojamäe, L.; Strand, M.; Sanati, M.; Spetz, A. L. Sens. Actuators B 2005, 107, 831.
    (17) Peden, C. H. F.; Goodman, D. W. J. Phys. Chem. 1986, 90, 1360.
    (18) Stampfl, C.; Schwegmann, S.; Over, H.; Scheffler, M.; Ertl, G. Phys. Rev. Lett. 1996, 77, 3371.
    (19) Böttcher, A.; Niehus, H.; Schwegmann, S.; Over, H.; Ertl, G. J. Phys. Chem. 1997, 101, 11185.
    (20) Böttcher, A.; Rogazia, M.; Niehus, H.; Over, H.; Ertl, G. J. Phys. Chem. 1999, 103, 6267.
    (21) Kim, Y.D.; Seitsonen, A. P.; Over, H. Surf. Sci. 2000, 465, 1.
    (22) Over, H.; Kim, Y. D.; Seitsonen, A. P.; Wendt, S.; Lundgren, E.; Schmid, M.; Varga, P.; Morgante, A.; Ertl, G. Science 2000, 287, 1474.
    (23) Fan, C. Y.; Wang, J.; Jacobi, K.; Ertl, G. J. Chem. Phys. 2001, 114, 10058.
    (24) Kim, Y. D.; Seitsonen, A.P.; Over, H. Phys. Rev. B 2001, 63, 115419.
    (25) Kim, Y. D.; Over, H.; Krabbes, G.; Ertl, G. Top Catal. 2001, 14, 95.
    (26) Madhavaram, H.; Idriss, H.; Wendt, S.; Kim, Y. D.; Knapp, M.; Over, H.; Abmann, J.; Loffler, E.; Muhler, M. J. Catal. 2001, 202, 296.
    (27) Over, H.; Seitsonen, A. P.; Lundgren, E.; Schmid, M.; Varga, P. J. Am. Chem. Soc. 2001, 123, 11807.
    (28) Over, H.; Seitsonen, A. P.; Lundgren, E.; Schmid, M.; Varga, P. Surf. Sci. 2002, 515, 143.
    (29) Seitsonen, A. P.; Kim, Y. D.; Knapp, M.; Wendt, S.; Over, H. Phys. Rev. B 2001, 65, 035 413.
    (30) Wang, J.; Fan, C. Y.; Jacobi, K.; Ertl, G. Surf. Sci. 2001, 481, 113.
    (31) Laffosse, A.; Wang, Y.; Jacobi, K. J. Chem. Phys. 2002, 117, 2823.
    (32) Wang, W. B.; Zei, M. S.; Ertl, G. Chem. Phys. Lett. 2002, 355, 301.
    (33) Wang, J.; Fan, C. Y.; Jacobi, K.; Ertl, G. J. Phys. Chem. B 2002, 106, 3422.
    (34) Wendt, S.; Seitsonen, A. P.; Kim, Y. D.; Knapp, M.; Idriss, H.; Over, H. Surf. Sci. 2002, 505, 137.
    (35) Gong, X.-Q.; Liu, Z.-P.; Raval, R.; Hu, P. J. Am. Chem. Soc. 2004, 126, 8.
    (36) Kim, S. H.; Paulus, U. A.; Wang, Y.; Wintterlin, J.; Jacobi, K.; Ertl, G. J. Chem. Phys. 2003, 119, 9729.
    (37) Over, H.; Muhler, M. Prog. Surf. Sci. 2003, 72, 3.
    (38) Paulus, U.A.; Wang, Y.; Jacobi, K.; Ertl, G. Surf. Sci. 2003, 547, 349.
    (39) Reuter, K.; Scheffler, M. Phys. Rev. B 2003, 68, 045 407.
    (40) Wendt, S.; Seitonen, A. P.; Over, H. Catal. Today 2003, 85, 167.
    (41) Assmann, J.; Narkhede, V.; Khodeir, L.; Loffler, E.; Hinrichsen, O.; Birkner, A.; Over, H.; Muhler, M. J. Phys. Chem. B 2004, 108, 14634.
    (42) Kim, S. H.; Wintterlin, J. J. Phys. Chem. B 2004, 108, 14565.
    (43) Knapp, M.; Seitsonen, A. P.; Kim, Y. D.; Over, H. J. Phys. Chem. B 2004, 108, 14392.
    (44) Paulus, U. A.; Wang, Y.; Kim, S. H.; Geng, P.; Wintterlin, J.; Jacobi, K.; Ertl, G. J. Chem. Phys. 2004, 121, 11302.
    (45) Reuter, K.; Frenkel, D.; Scheffler, M. Phys. Rev. Lett. 2004, 93, 116105.
    (46) Wendt, S.; Knapp, M.; Over, H. J. Am. Chem. Soc. 2004, 126, 1537.
    (47) Liu, Z.-P.; Hu, P.; Alavi, A. J. Chem. Phys. 2001, 114, 5956.
    (48) Reuter, L.; Scheffler, M. Phys. Rev. B 2006, 73, 045433.
    (49) Faekas, A.; Mellau, G. Ch.; Over, H. J. Phys. Chem. C 2009, 113, 14341.
    (50) Wang, H.; Schneider, W. F. Surf. Sci. 2009, 603, L91.
    (51) Paulus, U. A.; Wang, Y.; Bonzel, H. P.; Jacobi, K.; Ertl, G. J. Phys. Chem. B 2005, 109, 2139.
    (52) Jacobi, K.; Wang, Y.; Ertl, G. J. Phys. Chem. B 2006, 110, 6115.
    (53) Crihan, D.; Knapp, M.; Seitsonen, A. P.; Over, H. J. Phys. Chem. B 2006, 110, 22947.
    (54) Jacobi, K.; Wang, Y.; Ertl, G. J. Phys. Chem. B 2006, 110, 22948.
    (55) Sun, Q.; Reuter, K.; Scheffler, M. Phys. Rev. B 2004, 70, 235402.
    (56) Lobo, A.; Conrad, H. Surf. Sci. 2003, 523, 279.
    (57) Wang, Y.; Jacobi, K.; Ertl, G. J. Phys. Chem. B 2003, 107, 13918.
    (58) Hong, S.; Rahman, T. S.; Jacobi, K.; Ertl, G. J. Phys. Chem. C 2007, 111, 12361.
    (59) Jacobi, K.; Wang, Y. Surf. Sci. 2009, 603, 1600.
    (60) Wang, Y.; Jacobi, K.; Schöne, W.-D.; Ertl, G. J. Phys. Chem. B 2005, 109, 7883.
    (61) López, N.; Gómez-Segura, J.; Marín R. P.; Pérez-Ramírez, J. J. Catal. 2008, 255, 39.
    (62) Crihan, D.; Knapp, M.; Zweidinger, S.; Lundgren, E.; Weststrate, C. J.; Andersen, J. N.; Seitsonen, A. P.; Over, H. Angew. Chem. Int. Ed. 2008, 47, 2131.
    (63) Zweidinger, S.; Crihan, D.; Knapp, M.; Hofmann, J. P.; Seitsonen, A. P.; Weststrate, C. J.; Lundgren, E.; Andersen, J. N.; Over, H. J. Phys. Chem. C 2008, 112, 9966.
    (64) Mattheiss, L. F. Phys. Rev. B 1976, 13, 2433.
    (65) Ryden, W. D.; Lawson A. W.; Sartain, C. C. Phys. Rev. B 1970, 1, 1494.
    (66) Osaka, A.; Takatsuna T.; Miura, Y. J. Non-Cryst. Solids 1994, 178, 313.
    (67) Ioroi, T.; Kitazawa, N.; Yasuda, K.; Yamamoto Y.; Takenaka, H. J. Electrochem. Soc. 2000, 147, 2018.
    (68) Cogan, S. F.; Plante, T. D.; McFadden R. S.; Rauh, R. D. Sol. Energy Mater. 1987, 16, 371.
    (69) Nishio, K.; Watanabe T.; Tsuchiya, T. Thin Solid Films 1999, 350, 96.
    (70) Fog A.; Buck, R. P. Sens. Actuators 1984, 5, 137.
    (71) Yao, S.; Wang M.; Madou, M. J. Electrochem. Soc. 2001, 148, H29.
    (72) Jo, W. Appl. Phys. 2001, A 72, 81.
    (73) Pinnow, C. U.; Kasko, I.; Nagel, N.; Poppa, S.; Mikolajick, T.; Dehm, C.; Hösler, W.; Bleyl, F.; Jahnel, F.; Seibt, M.; Geyer, U.; Samwer, K. J. Appl. Phys. 2002, 91, 9591.
    (74) Shin, J. C.; Hwang, C. S.; Kim, H. J. Appl. Phys. Lett. 2000, 76, 1609.
    (75) Tankiewicz, S.; Morten, B.; Prudenziati, M.; Golonka, L. J. Sens, Actuators, A, Phys. 2001, 95, 39.
    (76) Chalamala, B. R.; Reuss, R. H.; Dean, K. A.; Sosa, E. D.; Golden, D. E. J. Appl. Phys. 2002, 91, 6141.
    (77) Chalamala, B. R.; Wei, Y.; Reuss, R. H.; Aggarwal, S.; Gnade, B. E.; Ramesh, R.; Bernhard, J. M.; Sosa, E. D.; Golden, D. E. Appl. Phys. Lett. 1999, 74, 1394.
    (78) Chalamala, B. R.; Wei, Y.; Reuss, R. H.; Aggarwal, S.; Perusse, S. R.; Gnade, B. E.; Ramesh, R. J. Vac. Sci. Technol. 2000, B 18, 1919.
    (79) He, Y. B.; Stierle, A.; Li, W. X.; Farkas, A.; Kasper N.; Over, H. J. Phys. Chem. C 2008, 112, 11946.
    (80) Chen, R.-S.; Huang, Y.-S.; Tsai, D.-S.; Chattopadhyay, S.; Wu, C.-T.; Lan Z.-H.; Chen, K.-H. Chem. Mater. 2004, 16, 2457.
    (81) Chen, R. S.; Chang, H. M.; Huang, Y. S.; Tsai, D. S.; Chattopadhyay S.; Chen, K. H. J. Cryst. Growth 2004, 271, 105.
    (82) Jian, X.-H.; Tsai, D.-S.; Chung, W.-H.; Huang Y.-S.; Liu, F.-J. J. Mater. Chem. 2009, 19, 1601.
    (83) Chung, W.-H.; Wang, C.-C.; Tsai, D.-S.; Jiang, J.-C.; Cheng, Y.-C.; Fan, L.-J.; Yang Y.-W.; Huang, Y.-S. Surf. Sci. 2009, 604, 118.
    (84) Gang, L.; Anderson, B. G.; van Grondelle, J.; van Santen, R. A.; van Gennip, W. J. H.; Niemantsverdriet, J. W.; Kooyman, P. J.; Koester, A.; Brongersma, H. H. J. Catal. 2002, 206, 60.
    (85) Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Appl. Catal. B 1998, 18, 1.
    (86) Yin, S. F.; Xu, B. Q.; Zhou, X. P.; Au, C. T. Appl. Catal., A 2004, 277, 1.
    (87) Stolbov, S.; Rahman, T. S. J. Chem. Phys. 2005, 123, 204716-1.
    (88) Christensen, C. H.; Johannessen, T.; Sørensen, R. Z.; Nørskov, J. K. Catal. Today 2006, 111, 140.
    (89) Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed.; Wiley–VCH: Weinheim, 2005.
    (90) Satterfield, C. N. Heterogeneous Catalysis in Industrial Practice, 2nd ed.; McGraw-Hill: New York, 1991.
    (91) Novell-Leruth, G.; Valcárcel, A.; Pérez-Ramírez, J.; Ricart, J. M. J. Phys. Chem. C 2007, 111, 860.
    (92) Offermans, W. K.; Jansen, A. P. J.; van Santen, R. A.; Novell-Leruth, G.; Ricart, J. M.; Pérez-Ramírez, J. J. Phys. Chem. C 2007, 111, 17551.
    (93) Novell-Leruth, G.; Ricart, J. M.; Pérez-Ramírez, J. J. Phys. Chem. C 2008, 112, 13554.
    (94) Popa, C.; Offermans, W. K.; van Santen, R. A.; Jansen, A. P. J. Phys. Rev. B, 2006, 74, 155428.
    (95) Popa, C.; van Santen, R. A.; Jansen, A. P. J. J. Phys. Chem. C 2007, 111, 9839.
    (96) López, N.; García-Mota, M.; Gómez-Díaz, J. J. Phys. Chem. C 2008, 112, 247.
    (97) Wang, Y.; Jacobi, K.; Schöne, W.-D.; Ertl, G. J. Phys. Chem. B 2005, 109, 7883.
    (98) Andrussow, L. Z. Angew. Chem. 1926, 39, 321.
    (99) Raschig, F. Z. Angew. Chem. 1927, 40, 1183.
    (100) Bodenstein, M. Z. Electrochem. Angew. Phys. Chem. 1935, 41, 466.
    (101) MacKey, B. A.; Fryzuk, M. D. Chem. Rev. 2004, 104, 385.
    (102) Shaver, M. P.; Fryzuk, M. D. Adv. Synth. Catal. 2003, 345, 1061.
    (103) Rees, D. C.; Howard, J. B. Curr. Opin. Chem. Biol. 2000, 4, 559.
    (104) Igarashi, R. Y.; Seefeldt, L. C. Crit. Rev. Biochem. Mol. Biol. 2003, 38, 351.
    (105) Howard, J. B.; Rees, D. C. Chem. Rev. 1996, 96, 2965.
    (106) Burgess, B. K.; Lowe, D. J. Chem. Rev. 1996, 96, 2983.
    (107) Eady, R. R. Chem. Rev. 1996, 96, 3013.
    (108) Studt, F.; Tuczek, F. J. Comput. Chem. 2006, 27, 1278.
    (109) Kilgore, U. J.; Yang, X.; Tomaszewski, J.; Huffman, J. C.; Minodiola, D. J. Inorg. Chem. 2006, 45, 10712.
    (110) McKee, M. L. J. Comput. Chem. 2007, 28, 1342.
    (111) Tanaka, H.; Mori, H.; Seino, H.; Hidai, M.; Mizobe, Y.; Yoshizawa, K. J. Am. Chem. Soc. 2008, 130, 9037.
    (112) Schrock, R. R. Angew. Chem., Int. Ed. 2008, 47, 5512.
    (113) Schenk, S.; Le Guennic, B.; Kirchner, B.; M. Reiher, Inorg. Chem. 2008, 47, 3634.
    (114) Schenk, S.; Reiher, M. Inorg. Chem. 2009, 48, 1638.
    (115) Levine, Ira N. Quantum chemistry 5th ed.; Prentice-Hall Inc.: New Jersey, 1991; Ch. 15.
    (116) Gibson, M. C. Ph.D. thesis, University of Durham, Durham, UK.
    (117) Haynes, P. D. Ph.D. thesis, University of Cambridge, Cambridge, UK.
    (118) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
    (119) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 48, 13115.
    (120) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.
    (121) Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15.
    (122) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.
    (123) Perdew, J. P. In Electronic Structure of Solids ’91; Ziesche, P., Eschrig, H., eds.; Akademie Verlag: Berlin, 1991; p 11.
    (124) The functional PBE was also examined in this work. The calculated NH3 binding energy on the s-RuO2(110) surface is –1.53 eV, which 0.03 eV higher than the result calculated by PW91.
    (125) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
    (126) Jacobi, K.; Wang, Y.; Fan, C. Y.; Dietrich, H. J. Chem. Phys. 2001, 115, 4306.
    (127) Benndorf, C.; Madey, T. Surf. Sci. 1983, 135, 164.
    (128) Offermans, W. K.; Jansen, A. P. J.; van Santen, R. A. Surf. Sci. 2006, 600, 1714.
    (129) Satoh, S.; Fujimoto, H.; Koboyashi, H. J. Phys. Chem. B 2006, 110, 4846.
    (130) Since the features of the DOS and EDD in models s-NH-cus and s-NH-br are similar, only the results from model s-NH-cus were plotted.
    (131) Huang, W.; Lai, W.; Xie, D. Surf. Sci. 2008, 602, 1288.
    (132) Stachiotti, M. G. Phys. Rev. B 2009, 79, 115405.
    (133) Yamazoe, S.; Masutani, Y.; Teramura, K.; Hitomi, Y.; Shishido, T.; Tanaka, T. Appl. Catal. B 2008, 83, 123.
    (134) Yuan, Q.; Zhao, Y.-P.; Li L.; Wang, T. J. Phys. Chem. C 2009, 113, 6107.
    (135) Lu, H.-L.; Chen, W.; Ding, S.-J.; Zhang, D. W.; Wang, L.-K. Chem. Phys. Lett. 2007, 445, 188.
    (136) Leenaerts, O.; Partoens, B.; Peeters, F. M. Phys. Rev. B 2008, 77, 125416.
    (137) The TiO2(110) surface model was also a 2 × 1 slab model with the same layer thickness and vacuum space as the model of the IrO2(110) surface; it was calculated using the same computational settings described herein.
    (138) Ricart, J. M.; Ample, F.; Clotet, A.; Curulla, D.; Niemantsverdriet, J. W. H.; Paul, J. F.; Pérez-Ramírez, J. J. Catal. 2005, 232, 179.
    (139) Roy, D.; Navarro-Vazquez, A.; Schleyer, P. v. R. J. Am. Chem. Soc. 2009, 131, 13045.
    (140) Pérez-Ramírez, J.; Kondratenko, E. V.; Novell-Leruth, G.; Ricart, J. M. J. Catal. 2009, 261, 217.
    (141) Paul, J.-F.; Pérez-Ramírez, J.; Ample F.; Ricart, J. M. J. Phys. Chem. B 2004, 108, 17921.
    (142) Pérez-Ramírez, J.; Kondratenko, E. V. Chem. Commun. 2004, 376.
    (143) Pérez-Ramírez, J.; Kondratenko, E. V.; Kondratenko, V. A.; Baerns, M. J. Catal. 2004, 227, 90.
    (144) Pérez-Ramírez, J.; Kondratenko, E. V.; Kondratenko, V. A.; Baerns, M. J. Catal. 2005, 229, 303.
    (145) Crawford, P.; Hu, P. J. Phys. Chem. B 2006, 110, 24929.
    (146) Ample, F.; Ricart, J. M.; Clotet, A.; Curulla, D.; Niemantsverdriet, J. W. H. Chem. Phys. Lett. 2004, 385, 52.

    QR CODE