簡易檢索 / 詳目顯示

研究生: 賴柏融
Po-Jung Lai
論文名稱: 密度泛函理論應用於金屬吸附含硼石墨烯表面儲氫材料之研究
Density Functional Theory Study of Hydrogen Spillover Storage on Metals/Boron-Doped Graphene Surface
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 呂光烈
Kuang-Lieh Lu
趙奕姼
Ito Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 71
中文關鍵詞: 密度泛函理論石墨烯氫氣儲存
外文關鍵詞: graphene, hydrogen Storage, DFT
相關次數: 點閱:324下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了達到無汙染的氫能經濟(Hydrogen Economy),發展安全且便利的氫氣儲存系統是一個重要的目標。美國能源部(Department of Energy)也已經提出在儲氫系統中必須達到的目標值。在此研究中,我們利用密度泛函理論(DFT)探討在金屬吸附含硼石墨烯上,氫氣的吸附、擴散與脫附。同時考慮了兩種排列的金屬吸附,一種是含硼石墨烯上排列吸附了鎳-鈀-鈷金屬;另一種是含硼石墨烯上排列吸附了鎳-鈦-鎂金屬。在兩種排列的金屬吸附中,三個金屬依照對氫的吸附能由高至低依序排列,對氫有最高吸附能的金屬擔任吸附氫的一端,同時對氫有最低吸附能的金屬則擔任釋放氫的一端。再來我們研究經由氫氣溢流而儲存在金屬吸附含硼石墨烯上的儲氫量,計算結果顯示出當金屬有最高氫氣負載時可以顯著降低氫擴散的能障;氫的脫附在金屬吸附之含硼石墨烯上相對於純石墨也容易了許多。我們發現如果考慮雙面的金屬吸附,儲氫重量比最高可以達到6.4%。因此可行的氫氣溢流機制與高儲氫比使得金屬吸附含硼石墨烯的設計是一個有發展潛力的氫氣儲存材料。


    The safe and convenient hydrogen storage is a crucial target in the transition to a hydrogen-based energy economy. Target values of hydrogen storage that must be achieved for critical parameters in such a system have been proposed by the US Department of Energy. In this work, we investigate the hydrogen adsorption, diffusion, and desorption on different metal decorated boron-doped graphene by performing density functional theory calculations. Here we considered two cases: one is the boron doped graphene decorated with Ni-Pd-Co and another one is decorated with Ni-Ti-Mg. In each case, these three kinds of metals are arranged with high, medium and less hydrogen adsorption energies. The metal with largest hydrogen adsorption energy plays a vital role as hydrogen adsorption part; while the metal with smallest hydrogen adsorption energy is suitable for hydrogen release part. Then we investigate the hydrogen storage capacity of these metal decorated boron-doped graphene via spill over mechanism and the calculated results show that the hydrogen diffusion energy barrier can be greatly decreased when the metal has maximum hydrogen coverage and hydrogen desorption on metals/boron-doped graphene is easier compared to desorption on pristine graphene. We found that hydrogen gravimetric capacity can reach up to 6.4% for double side of metals/boron-doped graphene. Hence, the design of metals/boron-doped graphene is a promising material in hydrogen storage with facile hydrogen spillover process and high hydrogen capacity.

    ABSTRACT 摘 要 致 謝 INDEX OF FIGURE INDEX OF TABLE CHAPTER 1. INTRODUCTION 1.1 Hydrogen storage 1.2 Graphene 1.2.1 What is Graphene? 1.2.2 Different forms of carbon 1.2.3 The properties of graphene and its application 1.2.4 Hydrogen adsorption fundamentals on graphene 1.3 Metal decoration 1.4 Spillover process 1.5 Boron-doped graphene 1.6 Present Study CHAPTER 2. COMPUTATIONAL DETAILS 2.1 Method 2.2 Surface model CHAPTER 3. RESULTS AND DISCUSSION 3.1 Hydrogen adsorption ability of various metal decorated graphene. 3.2 Hydrogen adsorption and spillover mechanism 3.2.1 Ni-Pd-Co metals/boron-doped graphene 3.2.2 Ni-Ti-Mg metals/boron-doped graphene CHAPTER 4. CONCLUSION REFERENCE

    (1)Lutz., A. E.; S., R.; Larson, J. O. K. Int. J. Hydrogen Energy 2002, 27, 1103.
    (2)Schlapbach, L.; Züttel, A. Nature 2001, 414, 353.
    (3)http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage.pdf, 2011.
    (4)Huot, J.; Liang, G.; Boily, S.; Neste, A. V.; Schulz, R. J. Alloys Compd. 1999, 495, 293.
    (5)Ahluwalia, R. K. Int. J. Hydrogen Energy 2007, 32, 1251.
    (6)Mal, H. H. V.; Buschow, K. H. J.; Miedema, A. R. J. Less Common Met. 1974, 35, 65.
    (7)Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. Phys. Today 2004, 57, 39.
    (8)Reich, S.; Maultzsch, J.; Thomsen, C.; Ordejón, P. Phys. Rev. B 2002, 66, 035412.
    (9)Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
    (10)Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
    (11)S.Iijima Nature 1991, 354, 56.
    (12)Iijima, S.; Ichihashi, T. Nature 1993, 363, 603.
    (13)Bethune, D. S.; Kiang, C. H.; Devries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605.
    (14)Geim, A. K. N., K. S. Nat. Mater. 2007, 6, 183.
    (15)Al-Mashat, L.; Shin, K.; Kalantar-zadeh, K.; Plessis, J. D.; Han, S. H.; Kojima, R. W.; Kaner, R. B.; Li, D.; Gou, X.; Ippolito, S. J.; Wlodarski, W. J. Phys. Chem. C 2010, 114, 16168.
    (16)Heller, I.; Chatoor, S.; Männik, J.; Zevenbergen, M. A. G.; Oostinga, J. B.; Morpurgo, A. F.; Dekker, C.; Lemay, S. G. Nano Letters 2010, 10, 1563.
    (17)Li, W.; Tan, C.; Lowe, M. A.; Abruña, H. c. D.; Ralph, D. C. ACS Nano 2011, 5, 2264.
    (18)Rangel, N. L.; Gimenez, A.; Sinitskii, A.; Seminario, J. M. J. Phys. Chem. C 2011, 115, 12128.
    (19)Schneider, G. g. F.; Kowalczyk, S. W.; Calado, V. E.; Pandraud, G. g.; Zandbergen, H. W.; Vandersypen, L. M. K.; Dekker, C. Nano Letters 2010, 10, 3163.
    (20)Yoo, J. J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B. G.; Srivastava, A.; Conway, M.; Mohana Reddy, A. L.; Yu, J.; Vajtai, R.; Ajayan, P. M. Nano Letters 2011, 11, 1423.
    (21)Lin, Y. M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H. Y.; Grill, A.; Avouris, P. Science 2010, 327, 662.
    (22)Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science 2009, 324, 1312.
    (23)Schedin, F. G., A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Nat. Mater. 2007, 6, 652.
    (24)Costanzo, F.; Silvestrelli, P. L.; Ancilotto, F. J. Chem. Theory Comput. 2012, 8, 1288.
    (25)Arellano, J. S.; Molina, L. M.; Rubio, A.; Alonso, J. A. J. Chem. Phys. 2000, 112, 8114.
    (26)Ströbel, R.; Garche, J.; Moseley, P. T.; Jörissen, L.; Wolf, G. J. Power Sources 2006, 159, 781.
    (27)Jena, P. J. Phys. Chem. Lett. 2011, 2, 206.
    (28)López-Corral, I.; Germán, E.; Juan, A.; Volpe, M. A.; Brizuela, G. P. Int. J. Hydrogen Energy 2012, 37, 6653.
    (29)Li, Y.; Zhao, G.; Liu, C.; Wang, Y.; Sun, J.; Gu, Y.; Wang, Y.; Zeng, Z. Int. J. Hydrogen Energy 2012, 37, 5754.
    (30)Lu, R.; Rao, D.; Lu, Z.; Qian, J.; Li, F.; Wu, H.; Wang, Y.; Xiao, C.; Deng, K.; Kan, E.; Deng, W. J. Phys. Chem. C 2012, 116, 21291.
    (31)Zhou, C.; Wu, J.; Nie, A.; Forrey, R. C.; Tachibana, A.; Cheng, H. J. Phys. Chem. C 2007, 111, 12773.
    (32)Singh, A. K.; Ribas, M. A.; Yakobson, B. I. ACS Nano 2009, 3, 1657.
    (33)Kubas, G. J. J. Organomet. Chem. 2009, 694, 2648.
    (34)Kubas, G. J. J. Organomet. Chem. 2001, 635, 37.
    (35)W. Curtis Conner, J.; Falconer', J. L. Chem. Rev. 1995, 95, 759.
    (36)Yang, F. H.; Yang, R. T. Carbon 2002, 40, 437.
    (37)Gao, Y.; Zhao, N.; Li, J.; Liu, E.; He, C.; Shi, C. Int. J. Hydrogen Energy 2012, 37, 11835.
    (38)Chen, L.; Cooper, A. C.; Pez, G. P.; Cheng, H. J. Phys. Chem. C 2007, 111, 18995.
    (39)Sun, Q.; Wang, Q.; Jena, P.; Kawazoe, Y. J. Am. Chem. Soc. 2005, 127, 14582.
    (40)Bhattacharya, A.; Bhattacharya, S.; Majumder, C.; Das, G. P. J. Phys. Chem. C 2010, 114, 10297.
    (41)Park, H.-L.; Yi, S.-C.; Chung, Y.-C. Int. J. Hydrogen Energy 2010, 35, 3583.
    (42)Kim, G.; Jhi, S.-H.; Park, N. Appl. Phys. Lett. 2008, 92, 013106.
    (43)Zhu, Z. H.; Lu, G. Q.; Hatori, H. J. Phys. Chem. B 2006, 110, 1249.
    (44)López-Corral, I.; Germán, E. a.; Juan, A.; Volpe, M. a. A.; Brizuela, G. P. J. Phys. Chem. C 2011, 115, 4315.
    (45)Wang, L.; Yang, R. T. J. Phys. Chem. C 2008, 112, 12486.
    (46)Cheng, H.; Chen, L.; Cooper, A. C.; Sha, X.; Pez, G. P. Energ. Environ. Sci. 2008, 1, 338.
    (47)Parambhath, V. B.; Nagar, R.; Sethupathi, K.; Ramaprabhu, S. J. Phys. Chem. C 2011, 115, 15679.
    (48)Psofogiannakis, G. M.; Froudakis, G. E. J. Phys. Chem. C 2009, 113, 14908.
    (49)Wu, H.-Y.; Fan, X.; Kuo, J.-L.; Deng, W.-Q. J. Phys. Chem. C 2011, 115, 9241.
    (50)Hornekær, L.; Šljivančanin, Ž.; Xu, W.; Otero, R.; Rauls, E.; Stensgaard, I.; Lægsgaard, E.; Hammer, B.; Besenbacher, F. Phys. Rev. Lett. 2006, 96, 156104.
    (51)Wang, L.; Stuckert, N. R.; Yang, R. T. AIChE J. 2011, 57, 2902.
    (52)Giannozzi, P.; al, e. J. Phys.: Condens. Matter 2009, 21, 395502.
    (53)Perdew, J. P.; Wang, Y. Phys. Rev. B 1986, 33, 8800.
    (54)Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 46, 6671.
    (55)Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.
    (56)Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.
    (57)Kresse, G.; Furthmuller, J. Comp. Mater. Sci. 1996, 6, 15.
    (58)Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169.
    (59)Kresse, G.; Hafner, J. Phys. Rev. B 1993, 48, 13115.
    (60)Kresse, G.; Hafner, J. J. Phys.: Condens. Matter 1994, 6, 8245.
    (61)Mills, G.; Jónsson, H. Phys. Rev. Lett. 1994, 72, 1124.
    (62)White, K. A.; Bird, D. M. Phys. Rev. B 1994, 50, 4954.
    (63)Mills, G.; Jónsson, H. Surf. Sci. 1995, 324, 305.
    (64)Cervenka, J.; Flipse, C. F. J. J. Phys.: Conf. Ser. 2007, 61, 190.
    (65)Naeini, J. G.; Way, B. M.; Dahn, J. R.; Irwin, J. C. Phys. Rev. B 1996, 54, 144.
    (66)Sigal, A.; Rojas, M. I.; Leiva, E. P. M. Phys. Rev. Lett. 2011, 107.

    QR CODE